organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[3-(1,3-Benzo­thia­zol-2-yl)-2,2-di­methyl­prop­yl]-2-methyl-2,3-di­hydro-1,3-benzo­thia­zole

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 19 June 2012; accepted 27 June 2012; online 7 July 2012)

In the title compound, C20H22N2S2, the five-membered thia­zole ring of the 2-methyl-2,3-dihydro-1,3-benzothia­zole unit has an envelope conformation. The dihedral angle between the planar [maximum deviation of 0.014 (1) Å for the S atom] benzothia­zole ring system and the benzene ring is 78.37 (12)°. Two intra­molecular C—H⋯S hydrogen bonds are observed, forming rings of graph-set motif S(6). In the crystal, the molecules are consolidated in pairs through N—H⋯N hydrogen bonds and are arranged parallel to the b axis.

Related literature

For the biological activity of benzothia­zoles, see: Prabhu et al. (2011[Prabhu, P., Shastry, C. S., Pande, S. S. & Selvam, T. P. (2011). Res. Pharm. 1, 6-12.]); Chaudhary et al. (2010[Chaudhary, P., Sharma, P. K., Sharma, A. & Varshney, J. (2010). Int. J. Curr. Pharm. Res. 2, 5-11.]): Kaur et al. (2010[Kaur, H., Kumar, S., Singh, I., Saxena, K. K. & Kumar, A. (2010). Dig. J. Nanomater. Bios. 5, 67-76.]). For the crystal structures of closely related compounds see: Ghalib et al. (2011[Ghalib, R. M., Hashim, R., Sulaiman, O., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o1523-o1524.]); Chen et al. (2009[Chen, Y.-S., Zhang, K. & Zhao, S.-Q. (2009). Acta Cryst. E65, o1926.]); Brandenburg et al. (1987[Brandenburg, K. L., Heeg, M. J. & Abrahamson, H. B. (1987). Inorg. Chem. 26, 1064-1069.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2S2

  • Mr = 354.52

  • Triclinic, [P \overline 1]

  • a = 9.8472 (8) Å

  • b = 9.9039 (8) Å

  • c = 11.7974 (9) Å

  • α = 88.490 (2)°

  • β = 67.006 (2)°

  • γ = 60.764 (2)°

  • V = 904.64 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 273 K

  • 0.49 × 0.13 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.868, Tmax = 0.985

  • 10184 measured reflections

  • 3354 independent reflections

  • 2667 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.113

  • S = 0.91

  • 3354 reflections

  • 224 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N2⋯N2i 0.79 (3) 2.35 (3) 3.130 (3) 170 (4)
C10—H10B⋯S1 0.97 2.87 3.543 (2) 128
C20—H20B⋯S1 0.96 2.67 3.331 (4) 126
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzothiazole derivatives have attracted remarkable interest in medicinal chemistry due to their diverse biological properties, such as analgesic, anti-viral, anti-bacterial, anti-inflammatory, anti-cancer, anti-diabetic and anti-HIV activities (Prabhu et al., 2011; Chaudhary et al., 2010; Kaur et al., 2010). The title compound was an unexpected product obtained during the synthesis of different benzothiazoles derivatives to study their bioactive potential and to establish the structure-activity relationship (SAR).

The title compound (Fig. 1) is composed of a benzothiazole (S2/N2/C11–C17) and a 2,3-dihydrobenzothiazole (S1/N1/C1–C7) ring connected through a dimethyl propyl chain (C8–C10/C19/C20). The five membered dihydrobenzothiazole ring (S1/N1/C1/C6–C7) assumes an envelope conformation (Q = 0.252 (3) Å and φ = 321.5 (6)°) with the pseudo axially oriented methyl group attached at C7. The benzothiazole ring (S2/N2/C11–C17) is planar (maximum deviation of 0.014 (1) Å for atom S2) and forms a dihedral angle of 78.37 (12)° with the C1–C6 phenyl ring. The envelope conformation of the dihydrobenzothiazole ring is stabilized by two intramolecular C10–H10B···S1 and C20–H20B···S1 hydrogen interactions (Table 1) forming two S(6) ring motifs. In the crystal, the molecules are consolidated in pairs through N—H···N intermolecular hydrogen bonds and arranged parallel to the b axis (Fig. 2 and Table 1). Bond lengths and angles are within the normal range and similar to those reported for closely related structures (Ghalib et al., 2011; Chen et al., 2009; Brandenburg et al., 1987).

Related literature top

For the biological activity of benzothiazoles, see: Prabhu et al. (2011); Chaudhary et al. (2010): Kaur et al. (2010). For the crystal structures of closely related compounds see: Ghalib et al. (2011); Chen et al. (2009); Brandenburg et al. (1987).

Experimental top

A solution of dimedone (5,5-dimethylcyclohexane-1,3-dione; 500 mg, 3.5 mmol) and 2-aminothiophenol (0.384 ml, 3.5 mmol) in a mixture of acetic acid-ethanol (1:1 v/v, 15 ml) was stirred for 4 h. Progress of the reaction was monitored by thin layer chromatography in hexane:ethyl acetate (7:3 v/v) solvent system. After completion, the reaction mixture was dried under vacuum. Flash chromatography yielded the title compound in 55% yield (690 mg). Slow evaporation of an acetone/hexanes solution (1:1 v/v) yielded suitable crystals for single-crystal X-ray diffraction studies. All the starting material and solvents were purchased from commercial suppliers and used without purification.

Refinement top

C-bound H atoms were positioned geometrically with C—H = 0.93–0.96 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. The H atom on the nitrogen atom was located in a difference Fourier map and refined isotropically (N—H = 0.79 (3) Å). A rotating group model was applied to the methyl groups.

Structure description top

Benzothiazole derivatives have attracted remarkable interest in medicinal chemistry due to their diverse biological properties, such as analgesic, anti-viral, anti-bacterial, anti-inflammatory, anti-cancer, anti-diabetic and anti-HIV activities (Prabhu et al., 2011; Chaudhary et al., 2010; Kaur et al., 2010). The title compound was an unexpected product obtained during the synthesis of different benzothiazoles derivatives to study their bioactive potential and to establish the structure-activity relationship (SAR).

The title compound (Fig. 1) is composed of a benzothiazole (S2/N2/C11–C17) and a 2,3-dihydrobenzothiazole (S1/N1/C1–C7) ring connected through a dimethyl propyl chain (C8–C10/C19/C20). The five membered dihydrobenzothiazole ring (S1/N1/C1/C6–C7) assumes an envelope conformation (Q = 0.252 (3) Å and φ = 321.5 (6)°) with the pseudo axially oriented methyl group attached at C7. The benzothiazole ring (S2/N2/C11–C17) is planar (maximum deviation of 0.014 (1) Å for atom S2) and forms a dihedral angle of 78.37 (12)° with the C1–C6 phenyl ring. The envelope conformation of the dihydrobenzothiazole ring is stabilized by two intramolecular C10–H10B···S1 and C20–H20B···S1 hydrogen interactions (Table 1) forming two S(6) ring motifs. In the crystal, the molecules are consolidated in pairs through N—H···N intermolecular hydrogen bonds and arranged parallel to the b axis (Fig. 2 and Table 1). Bond lengths and angles are within the normal range and similar to those reported for closely related structures (Ghalib et al., 2011; Chen et al., 2009; Brandenburg et al., 1987).

For the biological activity of benzothiazoles, see: Prabhu et al. (2011); Chaudhary et al. (2010): Kaur et al. (2010). For the crystal structures of closely related compounds see: Ghalib et al. (2011); Chen et al. (2009); Brandenburg et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the titke compound with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms not involved in intramolecular hydrogen bonds (dashed lines) are omitted.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b axis. Only hydrogen atoms involved in hydrogen bonding (dashed lines) are shown.
2-[3-(1,3-Benzothiazol-2-yl)-2,2-dimethylpropyl]-2-methyl-2,3-dihydro- 1,3-benzothiazole top
Crystal data top
C20H22N2S2Z = 2
Mr = 354.52F(000) = 376
Triclinic, P1Dx = 1.301 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8472 (8) ÅCell parameters from 2480 reflections
b = 9.9039 (8) Åθ = 1.9–25.5°
c = 11.7974 (9) ŵ = 0.30 mm1
α = 88.490 (2)°T = 273 K
β = 67.006 (2)°Plate, yellow
γ = 60.764 (2)°0.49 × 0.13 × 0.05 mm
V = 904.64 (12) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3354 independent reflections
Radiation source: fine-focus sealed tube2667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scanθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.868, Tmax = 0.985k = 1111
10184 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 0.91 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.3605P]
where P = (Fo2 + 2Fc2)/3
3354 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 0.39 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C20H22N2S2γ = 60.764 (2)°
Mr = 354.52V = 904.64 (12) Å3
Triclinic, P1Z = 2
a = 9.8472 (8) ÅMo Kα radiation
b = 9.9039 (8) ŵ = 0.30 mm1
c = 11.7974 (9) ÅT = 273 K
α = 88.490 (2)°0.49 × 0.13 × 0.05 mm
β = 67.006 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3354 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2667 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.985Rint = 0.030
10184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.39 e Å3
3354 reflectionsΔρmin = 0.15 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32354 (9)0.83415 (8)0.06044 (6)0.0508 (2)
S20.60463 (8)0.61184 (7)0.35113 (6)0.0445 (2)
N10.0246 (3)0.9353 (3)0.2519 (2)0.0436 (5)
N20.3465 (2)0.8013 (2)0.55742 (18)0.0379 (5)
C10.0589 (3)0.8023 (3)0.1830 (2)0.0385 (6)
C20.0418 (3)0.7350 (3)0.2115 (2)0.0501 (7)
H2B0.14970.78390.28010.060*
C30.0203 (4)0.5937 (4)0.1367 (3)0.0580 (8)
H3A0.04690.54790.15580.070*
C40.1790 (4)0.5200 (4)0.0346 (3)0.0558 (7)
H4A0.21890.42450.01380.067*
C50.2793 (3)0.5872 (3)0.0039 (2)0.0460 (6)
H5A0.38630.53820.06570.055*
C60.2192 (3)0.7280 (3)0.0774 (2)0.0386 (6)
C70.1258 (3)1.0049 (3)0.1824 (2)0.0428 (6)
C80.1569 (3)1.0844 (3)0.2717 (2)0.0421 (6)
H8A0.04631.14680.34400.051*
H8C0.18451.15900.22930.051*
C90.2906 (3)0.9950 (3)0.3245 (2)0.0375 (6)
C100.2804 (3)0.8512 (3)0.3731 (2)0.0383 (6)
H10A0.16170.88760.43100.046*
H10B0.31250.77660.30240.046*
C110.3927 (3)0.7671 (3)0.4378 (2)0.0348 (5)
C120.4823 (3)0.7044 (3)0.5878 (2)0.0363 (5)
C130.4762 (3)0.7113 (3)0.7076 (2)0.0469 (6)
H13A0.37560.78460.77610.056*
C140.6216 (4)0.6076 (3)0.7226 (3)0.0532 (7)
H14A0.61840.61070.80240.064*
C150.7724 (4)0.4990 (3)0.6216 (3)0.0554 (7)
H15A0.86890.43030.63450.067*
C160.7823 (3)0.4906 (3)0.5024 (3)0.0502 (7)
H16A0.88430.41810.43440.060*
C170.6351 (3)0.5939 (3)0.4866 (2)0.0381 (6)
C180.0321 (4)1.1296 (4)0.1175 (3)0.0687 (9)
H18A0.06911.21940.17990.103*
H18B0.00101.08530.06910.103*
H18C0.10771.16210.06280.103*
C190.2421 (4)1.1127 (3)0.4357 (3)0.0502 (7)
H19A0.23711.20640.40810.075*
H19B0.32751.06540.46760.075*
H19C0.13151.13990.50090.075*
C200.4729 (3)0.9444 (3)0.2260 (3)0.0509 (7)
H20A0.47131.03240.18900.076*
H20B0.51200.85940.16170.076*
H20C0.54970.90980.26560.076*
H1N20.074 (4)0.996 (3)0.297 (2)0.041 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0468 (4)0.0560 (4)0.0375 (4)0.0280 (3)0.0046 (3)0.0051 (3)
S20.0395 (4)0.0391 (4)0.0376 (4)0.0113 (3)0.0126 (3)0.0002 (3)
N10.0316 (12)0.0483 (13)0.0363 (12)0.0134 (10)0.0105 (10)0.0029 (10)
N20.0327 (10)0.0388 (11)0.0364 (11)0.0153 (9)0.0139 (9)0.0063 (9)
C10.0348 (13)0.0469 (14)0.0313 (12)0.0162 (11)0.0185 (10)0.0057 (11)
C20.0387 (14)0.0693 (19)0.0419 (15)0.0270 (14)0.0184 (12)0.0059 (14)
C30.0574 (18)0.074 (2)0.0569 (18)0.0425 (16)0.0260 (15)0.0090 (16)
C40.0627 (18)0.0535 (17)0.0560 (18)0.0304 (15)0.0293 (15)0.0023 (14)
C50.0430 (14)0.0469 (15)0.0384 (14)0.0177 (12)0.0156 (12)0.0000 (12)
C60.0358 (13)0.0453 (14)0.0308 (12)0.0165 (11)0.0170 (10)0.0064 (11)
C70.0432 (14)0.0409 (14)0.0364 (13)0.0159 (12)0.0178 (11)0.0052 (11)
C80.0445 (14)0.0331 (13)0.0408 (14)0.0154 (11)0.0174 (12)0.0044 (11)
C90.0398 (13)0.0372 (13)0.0390 (13)0.0204 (11)0.0197 (11)0.0088 (10)
C100.0369 (13)0.0393 (13)0.0418 (14)0.0210 (11)0.0184 (11)0.0087 (11)
C110.0326 (12)0.0320 (12)0.0383 (13)0.0172 (10)0.0133 (10)0.0072 (10)
C120.0349 (12)0.0353 (13)0.0413 (13)0.0195 (11)0.0174 (11)0.0110 (10)
C130.0477 (15)0.0553 (17)0.0391 (14)0.0284 (13)0.0179 (12)0.0103 (12)
C140.0640 (18)0.0623 (18)0.0543 (17)0.0386 (16)0.0378 (15)0.0260 (15)
C150.0553 (17)0.0438 (16)0.078 (2)0.0231 (14)0.0432 (17)0.0252 (15)
C160.0408 (14)0.0344 (14)0.0639 (18)0.0099 (11)0.0245 (13)0.0071 (12)
C170.0394 (13)0.0317 (12)0.0418 (14)0.0178 (11)0.0173 (11)0.0071 (10)
C180.084 (2)0.062 (2)0.068 (2)0.0288 (17)0.0527 (19)0.0217 (16)
C190.0645 (18)0.0451 (15)0.0504 (16)0.0318 (14)0.0289 (14)0.0102 (12)
C200.0461 (15)0.0541 (17)0.0544 (17)0.0305 (14)0.0179 (13)0.0146 (13)
Geometric parameters (Å, º) top
S1—C61.756 (3)C9—C191.535 (3)
S1—C71.856 (2)C9—C101.555 (3)
S2—C171.728 (3)C10—C111.491 (3)
S2—C111.746 (2)C10—H10A0.9700
N1—C11.384 (3)C10—H10B0.9700
N1—C71.464 (3)C12—C131.394 (3)
N1—H1N20.79 (3)C12—C171.394 (3)
N2—C111.299 (3)C13—C141.374 (4)
N2—C121.392 (3)C13—H13A0.9300
C1—C21.384 (4)C14—C151.381 (4)
C1—C61.400 (3)C14—H14A0.9300
C2—C31.385 (4)C15—C161.372 (4)
C2—H2B0.9300C15—H15A0.9300
C3—C41.374 (4)C16—C171.391 (4)
C3—H3A0.9300C16—H16A0.9300
C4—C51.378 (4)C18—H18A0.9600
C4—H4A0.9300C18—H18B0.9600
C5—C61.380 (3)C18—H18C0.9600
C5—H5A0.9300C19—H19A0.9600
C7—C181.534 (4)C19—H19B0.9600
C7—C81.534 (3)C19—H19C0.9600
C8—C91.542 (3)C20—H20A0.9600
C8—H8A0.9700C20—H20B0.9600
C8—H8C0.9700C20—H20C0.9600
C9—C201.532 (3)
C6—S1—C791.74 (12)C9—C10—H10A108.6
C17—S2—C1189.66 (11)C11—C10—H10B108.6
C1—N1—C7114.6 (2)C9—C10—H10B108.6
C1—N1—H1N2115.9 (19)H10A—C10—H10B107.6
C7—N1—H1N2115.8 (19)N2—C11—C10125.0 (2)
C11—N2—C12111.0 (2)N2—C11—S2115.04 (18)
C2—C1—N1127.2 (2)C10—C11—S2119.97 (18)
C2—C1—C6119.2 (2)N2—C12—C13125.6 (2)
N1—C1—C6113.5 (2)N2—C12—C17115.1 (2)
C1—C2—C3119.2 (2)C13—C12—C17119.4 (2)
C1—C2—H2B120.4C14—C13—C12118.8 (3)
C3—C2—H2B120.4C14—C13—H13A120.6
C4—C3—C2121.3 (3)C12—C13—H13A120.6
C4—C3—H3A119.4C13—C14—C15121.3 (3)
C2—C3—H3A119.4C13—C14—H14A119.3
C3—C4—C5120.2 (3)C15—C14—H14A119.3
C3—C4—H4A119.9C16—C15—C14121.1 (3)
C5—C4—H4A119.9C16—C15—H15A119.4
C4—C5—C6119.2 (2)C14—C15—H15A119.4
C4—C5—H5A120.4C15—C16—C17117.9 (3)
C6—C5—H5A120.4C15—C16—H16A121.0
C5—C6—C1120.9 (2)C17—C16—H16A121.0
C5—C6—S1128.0 (2)C16—C17—C12121.5 (2)
C1—C6—S1111.07 (18)C16—C17—S2129.3 (2)
N1—C7—C18111.0 (2)C12—C17—S2109.22 (18)
N1—C7—C8110.4 (2)C7—C18—H18A109.5
C18—C7—C8108.3 (2)C7—C18—H18B109.5
N1—C7—S1103.03 (17)H18A—C18—H18B109.5
C18—C7—S1108.93 (19)C7—C18—H18C109.5
C8—C7—S1115.00 (18)H18A—C18—H18C109.5
C7—C8—C9124.5 (2)H18B—C18—H18C109.5
C7—C8—H8A106.2C9—C19—H19A109.5
C9—C8—H8A106.2C9—C19—H19B109.5
C7—C8—H8C106.2H19A—C19—H19B109.5
C9—C8—H8C106.2C9—C19—H19C109.5
H8A—C8—H8C106.4H19A—C19—H19C109.5
C20—C9—C19108.4 (2)H19B—C19—H19C109.5
C20—C9—C8110.9 (2)C9—C20—H20A109.5
C19—C9—C8106.2 (2)C9—C20—H20B109.5
C20—C9—C10111.5 (2)H20A—C20—H20B109.5
C19—C9—C10109.0 (2)C9—C20—H20C109.5
C8—C9—C10110.70 (19)H20A—C20—H20C109.5
C11—C10—C9114.51 (19)H20B—C20—H20C109.5
C11—C10—H10A108.6
C7—N1—C1—C2163.1 (2)C7—C8—C9—C1046.0 (3)
C7—N1—C1—C620.5 (3)C20—C9—C10—C1161.9 (3)
N1—C1—C2—C3174.7 (2)C19—C9—C10—C1157.7 (3)
C6—C1—C2—C31.5 (4)C8—C9—C10—C11174.1 (2)
C1—C2—C3—C40.3 (4)C12—N2—C11—C10178.0 (2)
C2—C3—C4—C50.8 (4)C12—N2—C11—S20.9 (3)
C3—C4—C5—C60.7 (4)C9—C10—C11—N289.5 (3)
C4—C5—C6—C10.5 (4)C9—C10—C11—S289.4 (2)
C4—C5—C6—S1178.4 (2)C17—S2—C11—N21.15 (19)
C2—C1—C6—C51.6 (4)C17—S2—C11—C10177.85 (19)
N1—C1—C6—C5175.1 (2)C11—N2—C12—C13179.4 (2)
C2—C1—C6—S1179.83 (19)C11—N2—C12—C170.1 (3)
N1—C1—C6—S13.1 (3)N2—C12—C13—C14179.8 (2)
C7—S1—C6—C5171.4 (2)C17—C12—C13—C140.4 (4)
C7—S1—C6—C110.53 (19)C12—C13—C14—C150.6 (4)
C1—N1—C7—C1890.3 (3)C13—C14—C15—C160.0 (4)
C1—N1—C7—C8149.5 (2)C14—C15—C16—C170.7 (4)
C1—N1—C7—S126.2 (2)C15—C16—C17—C120.9 (4)
C6—S1—C7—N119.83 (17)C15—C16—C17—S2179.3 (2)
C6—S1—C7—C1898.1 (2)N2—C12—C17—C16179.1 (2)
C6—S1—C7—C8140.07 (19)C13—C12—C17—C160.4 (4)
N1—C7—C8—C977.0 (3)N2—C12—C17—S20.8 (3)
C18—C7—C8—C9161.2 (2)C13—C12—C17—S2179.76 (19)
S1—C7—C8—C939.1 (3)C11—S2—C17—C16178.8 (3)
C7—C8—C9—C2078.3 (3)C11—S2—C17—C121.02 (18)
C7—C8—C9—C19164.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N2···N2i0.79 (3)2.35 (3)3.130 (3)170 (4)
C10—H10B···S10.972.873.543 (2)128
C20—H20B···S10.962.673.331 (4)126
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC20H22N2S2
Mr354.52
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)9.8472 (8), 9.9039 (8), 11.7974 (9)
α, β, γ (°)88.490 (2), 67.006 (2), 60.764 (2)
V3)904.64 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.49 × 0.13 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.868, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
10184, 3354, 2667
Rint0.030
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 0.91
No. of reflections3354
No. of parameters224
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N2···N2i0.79 (3)2.35 (3)3.130 (3)170 (4)
C10—H10B···S10.97002.87003.543 (2)128.00
C20—H20B···S10.96002.67003.331 (4)126.00
Symmetry code: (i) x, y+2, z+1.
 

References

First citationBrandenburg, K. L., Heeg, M. J. & Abrahamson, H. B. (1987). Inorg. Chem. 26, 1064–1069.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhary, P., Sharma, P. K., Sharma, A. & Varshney, J. (2010). Int. J. Curr. Pharm. Res. 2, 5–11.  CAS Google Scholar
First citationChen, Y.-S., Zhang, K. & Zhao, S.-Q. (2009). Acta Cryst. E65, o1926.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhalib, R. M., Hashim, R., Sulaiman, O., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o1523–o1524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaur, H., Kumar, S., Singh, I., Saxena, K. K. & Kumar, A. (2010). Dig. J. Nanomater. Bios. 5, 67–76.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPrabhu, P., Shastry, C. S., Pande, S. S. & Selvam, T. P. (2011). Res. Pharm. 1, 6–12.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds