organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4,5-Di­hydro-1H-benzo[g]indazol-3-yl)pyridinium chloride dihydrate

aDepartment of Biology and Chemistry, Bao Shan College, Bao Shan, Yunnan 678000, People's Republic of China
*Correspondence e-mail: bsxyylf@163.com

(Received 19 June 2012; accepted 2 July 2012; online 7 July 2012)

In the cation of the title compound, C16H14N3+·Cl·2H2O, the cyclo­hexa-1,3-diene ring displays a screw-boat conformation and the pyridine ring is slightly twisted with respect to the pyrazole ring with a dihedral angle of 4.56 (12)°. In the crystal, ions and water mol­ecules are linked into a three-dimensional network by classical N—H⋯O, N—H⋯Cl, O—H⋯Cl and O—H⋯O hydrogen bonds and by ππ stacking inter­actions, with centroid–centroid distances of 3.7580 (14) and 3.7794 (14) Å.

Related literature

For background to the pharmacological properties of indazole derivatives, see: Bistochi et al. (1981[Bistochi, G. A., De Meo, G., Pedini, M., Ricci, A., Brouilhet, H., Bucherie, S., Rabaud, M. & Jacquignon, P. (1981). Farmaco Ed. Sci. 36, 315-333.]); Keppler & Hartmann (1994[Keppler, B. K. & Hartmann, M. (1994). Met. Based Drugs, 1, 145-149.]); Gomtsyan et al. (2008[Gomtsyan, A., Bayburt, E. K., Schmidt, R. G., Surowy, C. S., Honore, P., Marsh, K. C., Hannick, S. M., McDonald, H. A., Wetter, J. M., Sullivan, J. P., Jarvis, M. F., Faltynek, C. R. & Lee, C. H. (2008). J. Med. Chem. 51, 392-395.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N3+·Cl·2H2O

  • Mr = 319.78

  • Triclinic, [P \overline 1]

  • a = 6.7977 (5) Å

  • b = 9.4406 (7) Å

  • c = 12.2691 (9) Å

  • α = 93.846 (3)°

  • β = 96.883 (3)°

  • γ = 93.490 (3)°

  • V = 778.04 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.22 × 0.19 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 8076 measured reflections

  • 2710 independent reflections

  • 2185 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 1.06

  • 2710 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2Wi 0.86 2.12 2.856 (2) 143
N3—H3⋯Cl1 0.86 2.32 3.1618 (19) 167
O1W—H1WA⋯Cl1ii 0.89 2.25 3.142 (2) 174
O1W—H1WB⋯Cl1iii 0.87 2.37 3.237 (3) 178
O2W—H2WA⋯Cl1 0.89 2.29 3.139 (2) 158
O2W—H2WB⋯O1W 0.92 1.86 2.749 (3) 162
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Indazole derivatives exhibit a variety of pharmacological properties such as anti-inflammatory (Bistochi et al., 1981), antitumor (Keppler & Hartmann, 1994), anti-HIV and analgesic properties (Gomtsyan et al., 2008). Here, we present the crystal structure determination of the title compound.

The asymmetric unit of the title compound (Fig. 1) consists of an organic cation, a chloride anion a two lattice water molecules. In the cation, the cyclohexa-1,3-diene ring displays a screw-boat conformation, with atoms C8 and C10 displaced by -0.190 (3) and 0.283 (3) Å, respectively, from the C7/C9/C12/C11 mean plane, and the pyridine ring is twisted to the pyrazole ring by a dihedral angle of 4.56 (12)°. In the crystal structure, cations, anions and water molecule are linked into a three-dimensional network by classical N—H···O, N—H···Cl, O—H···Cl and O—H···O hydrogen bonds (Table 1). In addition, ππ stacking interactions [centroid-centroid distances of 3.7580 (14) and 3.7794 (14) Å] extending along the a axis are observed.

Related literature top

For background to the pharmacological properties of indazole derivatives, see: Bistochi et al. (1981); Keppler & Hartmann (1994); Gomtsyan et al. (2008).

Experimental top

A solution of 3,4-dihydronaphthalen-1(2H)-one (1.46 g, 0.01 mol) was added to a stirred solution of hydrazine (0.05 g, 0.01 mol) in dry tetrahydrofuran (50 ml) at 0°C for 3 h, then n-butyllithium (0.02 mol) was added at a fast dropwise rate during a 5 min period. The solution was stirred at 0°C for an additional 30 min, then methyl isonicotinate (1.37 g, 0.01 mol) dissolved in THF (40 ml) was added to the dilithiated intermediate, and the solution was stirred for 60 min at 0°C. Finally, 20 ml of 3 M hydrochloric acid was added, and the two phase mixture was well stirred and heated under reflux for 45 min. The mixture was then neutralized with solid sodium bicarbonate, and the layers were separated. The aqueous layer was extracted with ether and the organic fractions were combined, evaporated, and the crude product was dissolved in hydrochloric acid (2M, 20 ml). The solution was filtered and the filtrate was set aside for five weeks to obtain colourless crystals.

Refinement top

C- and N-bound H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N). Water H atoms were located in a difference Fourier map (O—H = 0.87–0.92 Å) and refined as riding with Uiso(H) = 1.5Ueq(O).

Structure description top

Indazole derivatives exhibit a variety of pharmacological properties such as anti-inflammatory (Bistochi et al., 1981), antitumor (Keppler & Hartmann, 1994), anti-HIV and analgesic properties (Gomtsyan et al., 2008). Here, we present the crystal structure determination of the title compound.

The asymmetric unit of the title compound (Fig. 1) consists of an organic cation, a chloride anion a two lattice water molecules. In the cation, the cyclohexa-1,3-diene ring displays a screw-boat conformation, with atoms C8 and C10 displaced by -0.190 (3) and 0.283 (3) Å, respectively, from the C7/C9/C12/C11 mean plane, and the pyridine ring is twisted to the pyrazole ring by a dihedral angle of 4.56 (12)°. In the crystal structure, cations, anions and water molecule are linked into a three-dimensional network by classical N—H···O, N—H···Cl, O—H···Cl and O—H···O hydrogen bonds (Table 1). In addition, ππ stacking interactions [centroid-centroid distances of 3.7580 (14) and 3.7794 (14) Å] extending along the a axis are observed.

For background to the pharmacological properties of indazole derivatives, see: Bistochi et al. (1981); Keppler & Hartmann (1994); Gomtsyan et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound showing displacement ellipsoids drawn at the 50% probability level.
4-(4,5-Dihydro-1H-benzo[g]indazol-3-yl)pyridinium chloride dihydrate top
Crystal data top
C16H14N3+·Cl·2H2OZ = 2
Mr = 319.78F(000) = 336
Triclinic, P1Dx = 1.365 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7977 (5) ÅCell parameters from 2710 reflections
b = 9.4406 (7) Åθ = 1.7–25.0°
c = 12.2691 (9) ŵ = 0.26 mm1
α = 93.846 (3)°T = 293 K
β = 96.883 (3)°Block, colourless
γ = 93.490 (3)°0.22 × 0.19 × 0.18 mm
V = 778.04 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2185 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
φ and ω scansh = 87
8076 measured reflectionsk = 1011
2710 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.5403P]
where P = (Fo2 + 2Fc2)/3
2710 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C16H14N3+·Cl·2H2Oγ = 93.490 (3)°
Mr = 319.78V = 778.04 (10) Å3
Triclinic, P1Z = 2
a = 6.7977 (5) ÅMo Kα radiation
b = 9.4406 (7) ŵ = 0.26 mm1
c = 12.2691 (9) ÅT = 293 K
α = 93.846 (3)°0.22 × 0.19 × 0.18 mm
β = 96.883 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2185 reflections with I > 2σ(I)
8076 measured reflectionsRint = 0.033
2710 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
2710 reflectionsΔρmin = 0.32 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3584 (4)0.6698 (3)0.8547 (2)0.0387 (6)
H10.36800.63020.92240.046*
C20.3132 (4)0.5827 (3)0.75906 (19)0.0339 (6)
H20.29030.48500.76220.041*
C30.3018 (3)0.6421 (2)0.65730 (17)0.0247 (5)
C40.3295 (3)0.7899 (2)0.65869 (18)0.0286 (5)
H40.31810.83310.59250.034*
C50.3731 (3)0.8721 (3)0.75539 (19)0.0318 (5)
H50.39210.97050.75510.038*
C60.2672 (3)0.5559 (2)0.55224 (17)0.0230 (5)
C70.2449 (3)0.4070 (2)0.52895 (17)0.0240 (5)
C80.2336 (4)0.2806 (2)0.5973 (2)0.0322 (6)
H8A0.10140.26830.61900.039*
H8B0.32740.29780.66360.039*
C90.2217 (3)0.3888 (2)0.41550 (18)0.0240 (5)
C100.2804 (4)0.1448 (3)0.5328 (2)0.0364 (6)
H10A0.42340.13910.54180.044*
H10B0.22370.06380.56590.044*
C110.2075 (3)0.1303 (2)0.4108 (2)0.0312 (5)
C120.1880 (3)0.2522 (2)0.35072 (19)0.0271 (5)
C130.1380 (3)0.2384 (3)0.2367 (2)0.0315 (5)
H130.12580.31900.19750.038*
C140.1064 (4)0.1042 (3)0.1821 (2)0.0403 (6)
H140.07430.09490.10600.048*
C150.1224 (4)0.0156 (3)0.2399 (2)0.0437 (7)
H150.09970.10540.20280.052*
C160.1723 (4)0.0027 (3)0.3532 (2)0.0395 (6)
H160.18240.08430.39140.047*
N10.3885 (3)0.8098 (2)0.85102 (16)0.0349 (5)
H1N0.41870.86190.91160.042*
N20.2606 (3)0.62466 (19)0.45875 (14)0.0249 (4)
N30.2321 (3)0.52067 (19)0.37761 (14)0.0248 (4)
H30.22140.53570.30890.030*
O1W0.8185 (3)0.6654 (3)0.04112 (19)0.0691 (7)
H1WA0.94130.64350.06470.083*
H1WB0.79640.59060.00500.083*
O2W0.5429 (3)0.85870 (19)0.07832 (14)0.0399 (5)
H2WA0.48370.78980.11180.048*
H2WB0.65320.80850.07320.048*
Cl10.25495 (10)0.60918 (7)0.13519 (5)0.0441 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0428 (15)0.0472 (17)0.0268 (12)0.0083 (12)0.0023 (10)0.0076 (11)
C20.0393 (14)0.0321 (14)0.0313 (12)0.0048 (11)0.0043 (10)0.0078 (11)
C30.0193 (11)0.0282 (13)0.0277 (11)0.0045 (9)0.0045 (8)0.0048 (9)
C40.0290 (12)0.0281 (13)0.0299 (12)0.0040 (10)0.0061 (9)0.0043 (10)
C50.0298 (13)0.0295 (13)0.0362 (13)0.0028 (10)0.0062 (10)0.0008 (11)
C60.0206 (11)0.0237 (12)0.0259 (11)0.0022 (9)0.0043 (8)0.0069 (9)
C70.0185 (11)0.0239 (12)0.0308 (11)0.0033 (9)0.0044 (9)0.0057 (9)
C80.0338 (13)0.0265 (13)0.0383 (13)0.0043 (10)0.0067 (10)0.0114 (11)
C90.0202 (11)0.0216 (12)0.0314 (12)0.0028 (9)0.0053 (9)0.0062 (9)
C100.0356 (14)0.0262 (14)0.0503 (15)0.0063 (10)0.0094 (11)0.0122 (12)
C110.0221 (12)0.0234 (13)0.0496 (14)0.0024 (9)0.0100 (10)0.0042 (11)
C120.0200 (11)0.0247 (13)0.0372 (12)0.0011 (9)0.0080 (9)0.0001 (10)
C130.0238 (12)0.0305 (14)0.0412 (13)0.0021 (10)0.0088 (10)0.0005 (11)
C140.0342 (14)0.0385 (16)0.0463 (15)0.0001 (11)0.0064 (11)0.0101 (13)
C150.0367 (15)0.0264 (14)0.0659 (18)0.0017 (11)0.0103 (13)0.0144 (13)
C160.0321 (14)0.0236 (13)0.0637 (18)0.0008 (10)0.0104 (12)0.0032 (12)
N10.0318 (11)0.0424 (14)0.0292 (10)0.0034 (9)0.0020 (8)0.0063 (9)
N20.0266 (10)0.0214 (10)0.0270 (9)0.0023 (8)0.0035 (7)0.0033 (8)
N30.0286 (10)0.0227 (10)0.0232 (9)0.0024 (8)0.0030 (7)0.0021 (8)
O1W0.0588 (14)0.0699 (16)0.0761 (15)0.0245 (12)0.0030 (11)0.0103 (12)
O2W0.0382 (10)0.0376 (11)0.0409 (10)0.0052 (8)0.0003 (8)0.0142 (8)
Cl10.0570 (4)0.0417 (4)0.0343 (3)0.0068 (3)0.0048 (3)0.0064 (3)
Geometric parameters (Å, º) top
C1—N11.330 (3)C10—C111.514 (4)
C1—C21.378 (3)C10—H10A0.9700
C1—H10.9300C10—H10B0.9700
C2—C31.398 (3)C11—C161.392 (3)
C2—H20.9300C11—C121.413 (3)
C3—C41.395 (3)C12—C131.395 (3)
C3—C61.464 (3)C13—C141.385 (3)
C4—C51.365 (3)C13—H130.9300
C4—H40.9300C14—C151.378 (4)
C5—N11.344 (3)C14—H140.9300
C5—H50.9300C15—C161.386 (4)
C6—N21.353 (3)C15—H150.9300
C6—C71.411 (3)C16—H160.9300
C7—C91.380 (3)N1—H1N0.8600
C7—C81.507 (3)N2—N31.339 (2)
C8—C101.532 (3)N3—H30.8600
C8—H8A0.9700O1W—H1WA0.8917
C8—H8B0.9700O1W—H1WB0.8693
C9—N31.359 (3)O2W—H2WA0.8928
C9—C121.459 (3)O2W—H2WB0.9171
N1—C1—C2120.6 (2)C8—C10—H10A108.1
N1—C1—H1119.7C11—C10—H10B108.1
C2—C1—H1119.7C8—C10—H10B108.1
C1—C2—C3119.6 (2)H10A—C10—H10B107.3
C1—C2—H2120.2C16—C11—C12118.1 (2)
C3—C2—H2120.2C16—C11—C10121.2 (2)
C4—C3—C2117.2 (2)C12—C11—C10120.5 (2)
C4—C3—C6120.0 (2)C13—C12—C11120.4 (2)
C2—C3—C6122.8 (2)C13—C12—C9123.8 (2)
C5—C4—C3121.2 (2)C11—C12—C9115.8 (2)
C5—C4—H4119.4C14—C13—C12119.8 (2)
C3—C4—H4119.4C14—C13—H13120.1
N1—C5—C4119.4 (2)C12—C13—H13120.1
N1—C5—H5120.3C15—C14—C13120.4 (3)
C4—C5—H5120.3C15—C14—H14119.8
N2—C6—C7111.32 (19)C13—C14—H14119.8
N2—C6—C3117.73 (19)C14—C15—C16120.2 (2)
C7—C6—C3130.9 (2)C14—C15—H15119.9
C9—C7—C6104.38 (19)C16—C15—H15119.9
C9—C7—C8120.7 (2)C15—C16—C11121.1 (2)
C6—C7—C8134.9 (2)C15—C16—H16119.4
C7—C8—C10111.05 (19)C11—C16—H16119.4
C7—C8—H8A109.4C1—N1—C5121.9 (2)
C10—C8—H8A109.4C1—N1—H1N119.0
C7—C8—H8B109.4C5—N1—H1N119.0
C10—C8—H8B109.4N3—N2—C6104.52 (17)
H8A—C8—H8B108.0N2—N3—C9112.78 (17)
N3—C9—C7106.99 (19)N2—N3—H3123.6
N3—C9—C12127.6 (2)C9—N3—H3123.6
C7—C9—C12125.4 (2)H1WA—O1W—H1WB93.0
C11—C10—C8116.6 (2)H2WA—O2W—H2WB92.1
C11—C10—H10A108.1
N1—C1—C2—C31.0 (4)C16—C11—C12—C131.0 (3)
C1—C2—C3—C42.6 (3)C10—C11—C12—C13174.2 (2)
C1—C2—C3—C6176.0 (2)C16—C11—C12—C9178.5 (2)
C2—C3—C4—C52.4 (3)C10—C11—C12—C96.2 (3)
C6—C3—C4—C5176.3 (2)N3—C9—C12—C137.7 (4)
C3—C4—C5—N10.4 (3)C7—C9—C12—C13170.8 (2)
C4—C3—C6—N20.9 (3)N3—C9—C12—C11172.8 (2)
C2—C3—C6—N2179.5 (2)C7—C9—C12—C118.8 (3)
C4—C3—C6—C7176.5 (2)C11—C12—C13—C140.3 (3)
C2—C3—C6—C72.0 (4)C9—C12—C13—C14179.2 (2)
N2—C6—C7—C90.7 (2)C12—C13—C14—C150.6 (4)
C3—C6—C7—C9178.3 (2)C13—C14—C15—C160.7 (4)
N2—C6—C7—C8177.6 (2)C14—C15—C16—C110.1 (4)
C3—C6—C7—C84.8 (4)C12—C11—C16—C150.9 (3)
C9—C7—C8—C1023.2 (3)C10—C11—C16—C15174.3 (2)
C6—C7—C8—C10160.4 (2)C2—C1—N1—C51.1 (4)
C6—C7—C9—N30.4 (2)C4—C5—N1—C11.4 (3)
C8—C7—C9—N3177.81 (19)C7—C6—N2—N30.7 (2)
C6—C7—C9—C12178.3 (2)C3—C6—N2—N3178.68 (17)
C8—C7—C9—C120.9 (3)C6—N2—N3—C90.5 (2)
C7—C8—C10—C1136.3 (3)C7—C9—N3—N20.0 (2)
C8—C10—C11—C16155.3 (2)C12—C9—N3—N2178.70 (19)
C8—C10—C11—C1229.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2Wi0.862.122.856 (2)143
N3—H3···Cl10.862.323.1618 (19)167
O1W—H1WA···Cl1ii0.892.253.142 (2)174
O1W—H1WB···Cl1iii0.872.373.237 (3)178
O2W—H2WA···Cl10.892.293.139 (2)158
O2W—H2WB···O1W0.921.862.749 (3)162
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H14N3+·Cl·2H2O
Mr319.78
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.7977 (5), 9.4406 (7), 12.2691 (9)
α, β, γ (°)93.846 (3), 96.883 (3), 93.490 (3)
V3)778.04 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.22 × 0.19 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8076, 2710, 2185
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.119, 1.06
No. of reflections2710
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.32

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2Wi0.862.122.856 (2)143.4
N3—H3···Cl10.862.323.1618 (19)167.4
O1W—H1WA···Cl1ii0.892.253.142 (2)174.1
O1W—H1WB···Cl1iii0.872.373.237 (3)177.7
O2W—H2WA···Cl10.892.293.139 (2)158.1
O2W—H2WB···O1W0.921.862.749 (3)162.4
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge the Natural Science Foundation of Bao Shan College (grant No. 09B001K) for financial support.

References

First citationBistochi, G. A., De Meo, G., Pedini, M., Ricci, A., Brouilhet, H., Bucherie, S., Rabaud, M. & Jacquignon, P. (1981). Farmaco Ed. Sci. 36, 315–333.  Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGomtsyan, A., Bayburt, E. K., Schmidt, R. G., Surowy, C. S., Honore, P., Marsh, K. C., Hannick, S. M., McDonald, H. A., Wetter, J. M., Sullivan, J. P., Jarvis, M. F., Faltynek, C. R. & Lee, C. H. (2008). J. Med. Chem. 51, 392–395.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKeppler, B. K. & Hartmann, M. (1994). Met. Based Drugs, 1, 145–149.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds