metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­iodido[methyl 2-(quinolin-8-yl­­oxy)­acetate-κN]mercury(II)

aSchool of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
*Correspondence e-mail: wangyuhong@mail.usts.edu.cn

(Received 21 June 2012; accepted 7 July 2012; online 14 July 2012)

In the title mononuclear complex, [HgI2(C12H11NO3)], the HgII ion has a distorted trigonal–planar coordination sphere defined by two I anions and the N atom of a methyl 2-(quinolin-8-yl­oxy)acetate ligand. In the crystal, face-to-face ππ stacking inter­actions, with a centroid–centroid distance of 3.563 (9) Å, are observed.

Related literature

For derivatives of quinoline, see: Cheng et al. (2007[Cheng, X. N., Zhang, W. X. & Chen, X. M. (2007). J. Am. Chem. Soc. 129, 15738-15739.]); Ghedini et al. (2002[Ghedini, M., Deda, M. L., Aiello, I. & Grisolia, A. (2002). J. Chem. Soc. Dalton Trans. pp. 3406-3409.]); Inomata et al. (1999[Inomata, Y., Haneda, T. F. S. & Howell, F. S. (1999). J. Inorg. Biochem. 76, 13-17.]); Jotterand et al. (2001[Jotterand, N., Pearce, D. A. & Imperiali, B. (2001). J. Org. Chem. 66, 3224-3228.]). For transition metal coordination compounds of 8-quinolinyloxy­acetic acid, see: Cheng et al. (2007[Cheng, X. N., Zhang, W. X. & Chen, X. M. (2007). J. Am. Chem. Soc. 129, 15738-15739.]); Song et al. (2004[Song, R.-F., Wang, Y.-H. & Jiang, F. (2004). Acta Cryst. E60, m1695-m1696.]); Wang et al. (2005[Wang, Y. H., Song, R. F. & Zhang, F. Y. (2005). J. Mol. Struct. 752, 104-109.], 2008[Wang, Z., Fan, J., Zhang, W. & Wang, J. (2008). Acta Cryst. E64, m1446.]).

[Scheme 1]

Experimental

Crystal data
  • [HgI2(C12H11NO3)]

  • Mr = 671.61

  • Triclinic, [P \overline 1]

  • a = 7.5889 (5) Å

  • b = 10.3670 (7) Å

  • c = 11.4241 (11) Å

  • α = 72.203 (18)°

  • β = 74.40 (2)°

  • γ = 68.644 (19)°

  • V = 784.33 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 13.75 mm−1

  • T = 223 K

  • 0.30 × 0.15 × 0.12 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.095, Tmax = 0.191

  • 6692 measured reflections

  • 2912 independent reflections

  • 2068 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.104

  • S = 1.08

  • 2912 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 1.74 e Å−3

  • Δρmin = −2.02 e Å−3

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku/MSC, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2004[Rigaku (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decades, the complexes of quinoline derivatives have been intensively studied due to their intriguing diversity and potential applications as functional materials (Cheng et al., 2007; Ghedini et al., 2002; Inomata et al., 1999; Jotterand et al., 2001). 8-Quinolinyloxyacetic acid and their derivatives exhibit a rich structural variety, and reports of the complexes with such ligands have increased in recent years (Cheng et al., 2007; Song et al., 2004; Wang, Song et al., 2005; Wang, Fan et al., 2008). As a contribution to this research field, we prepared the title HgII complex with 8-(methoxycarbonylmethoxy)quinoline ligand and report its crystal structure herein.

The title HgI2 adduct is a mononuclear compound. The HgII atom exists in a distorted trigonal planar geometry formed by two I atoms and one quinoline N atom of the 8-(methoxycarbonylmethoxy)quinoline ligand (Fig. 1). The Hg—N bond length is 2.470 (9) Å and the Hg—I bond lengths are 2.6163 (12) and 2.6246 (11) Å. The angles around the Hg atom vary from 102.2 (2) to 151.47 (4)°. Weak Hg···O interactions with distances of 2.764 (1) and 2.897 (1) Å are observed. Intermolecular face-to-face π-π stacking interactions are also observed between the quinoline rings of centrosymmetrically related complex molecules, with a centroid-centroid separation of 3.563 (9) Å (Fig. 2).

Related literature top

For derivatives of quinoline, see: Cheng et al. (2007); Ghedini et al. (2002); Inomata et al. (1999); Jotterand et al. (2001). For transition metal coordination compounds of 8-quinolinyloxyacetic acid, see: Cheng et al. (2007); Song et al. (2004); Wang, Song et al. (2005); Wang, Fan et al. (2008).

Experimental top

Triethylamine (0.0101 g, 0.1 mmol) and 8-quinolinyloxyacetic acid (0.0203 g, 0.1 mmol) were dissolved in methanol (3 ml). The mixture was stirred for 2 min, Then, the mixture and HgI2 (0.0455 g, 0.1 mmol) were placed in a thick Pyrex tube and heated at 150 °C for 5 days. After cooling at a rate of 5 °C/h to ambient temperature, colourless prism crystals were collected, washed with anhydrous ethanol, and dried at room temperature. The yield was 52% based on 8-quinolinyloxyacetic acid. Analysis found: C, 21.98; H, 1.63; N, 2.11%; calculated for C12H11I2HgNO3: C, 21.46; H, 1.65; N, 2.09%.

Refinement top

H atoms were included in calculated positions and refined as riding, with C—H distances of 0.94 (aromatic), 0.98 (methylene) and 0.97 Å (methyl), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Structure description top

In the past decades, the complexes of quinoline derivatives have been intensively studied due to their intriguing diversity and potential applications as functional materials (Cheng et al., 2007; Ghedini et al., 2002; Inomata et al., 1999; Jotterand et al., 2001). 8-Quinolinyloxyacetic acid and their derivatives exhibit a rich structural variety, and reports of the complexes with such ligands have increased in recent years (Cheng et al., 2007; Song et al., 2004; Wang, Song et al., 2005; Wang, Fan et al., 2008). As a contribution to this research field, we prepared the title HgII complex with 8-(methoxycarbonylmethoxy)quinoline ligand and report its crystal structure herein.

The title HgI2 adduct is a mononuclear compound. The HgII atom exists in a distorted trigonal planar geometry formed by two I atoms and one quinoline N atom of the 8-(methoxycarbonylmethoxy)quinoline ligand (Fig. 1). The Hg—N bond length is 2.470 (9) Å and the Hg—I bond lengths are 2.6163 (12) and 2.6246 (11) Å. The angles around the Hg atom vary from 102.2 (2) to 151.47 (4)°. Weak Hg···O interactions with distances of 2.764 (1) and 2.897 (1) Å are observed. Intermolecular face-to-face π-π stacking interactions are also observed between the quinoline rings of centrosymmetrically related complex molecules, with a centroid-centroid separation of 3.563 (9) Å (Fig. 2).

For derivatives of quinoline, see: Cheng et al. (2007); Ghedini et al. (2002); Inomata et al. (1999); Jotterand et al. (2001). For transition metal coordination compounds of 8-quinolinyloxyacetic acid, see: Cheng et al. (2007); Song et al. (2004); Wang, Song et al. (2005); Wang, Fan et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids. The dashed lines indicate weak Hg···O interactions.
[Figure 2] Fig. 2. A view of intermolecular π-π stacking interactions between the quinoline rings of neighbouring complexes. H atoms are omitted for clarity. Symmetry code: (i) 1-x, 1-y, 1-z.
Diiodido[methyl 2-(quinolin-8-yloxy)acetate-κN]mercury(II) top
Crystal data top
[HgI2(C12H11NO3)]Z = 2
Mr = 671.61F(000) = 600
Triclinic, P1Dx = 2.844 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.5889 (5) ÅCell parameters from 3945 reflections
b = 10.3670 (7) Åθ = 3.0–27.5°
c = 11.4241 (11) ŵ = 13.75 mm1
α = 72.203 (18)°T = 223 K
β = 74.40 (2)°Block, colourless
γ = 68.644 (19)°0.30 × 0.15 × 0.12 mm
V = 784.33 (15) Å3
Data collection top
Rigaku Saturn
diffractometer
2912 independent reflections
Radiation source: fine-focus sealed tube2068 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 14.63 pixels mm-1θmax = 25.5°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1112
Tmin = 0.095, Tmax = 0.191l = 1311
6692 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0218P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2912 reflectionsΔρmax = 1.74 e Å3
127 parametersΔρmin = 2.02 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0122 (6)
Crystal data top
[HgI2(C12H11NO3)]γ = 68.644 (19)°
Mr = 671.61V = 784.33 (15) Å3
Triclinic, P1Z = 2
a = 7.5889 (5) ÅMo Kα radiation
b = 10.3670 (7) ŵ = 13.75 mm1
c = 11.4241 (11) ÅT = 223 K
α = 72.203 (18)°0.30 × 0.15 × 0.12 mm
β = 74.40 (2)°
Data collection top
Rigaku Saturn
diffractometer
2912 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2068 reflections with I > 2σ(I)
Tmin = 0.095, Tmax = 0.191Rint = 0.075
6692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.08Δρmax = 1.74 e Å3
2912 reflectionsΔρmin = 2.02 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.51208 (7)0.82132 (6)0.69012 (5)0.0363 (2)
I10.20950 (11)0.98926 (10)0.59179 (9)0.0367 (3)
I20.79754 (12)0.77753 (11)0.80042 (9)0.0407 (3)
O10.4074 (12)0.5817 (10)0.8269 (8)0.036 (2)
O20.2395 (13)0.8117 (11)0.9230 (9)0.044 (3)
O30.0431 (12)0.7026 (11)1.0766 (9)0.044 (3)
N10.6241 (13)0.6124 (11)0.5978 (11)0.032 (3)
C10.7266 (17)0.6246 (15)0.4837 (13)0.0351 (11)
H10.73880.71480.44040.042*
C20.8204 (17)0.5104 (14)0.4210 (13)0.0351 (11)
H20.89160.52590.33960.042*
C30.8046 (17)0.3814 (15)0.4808 (13)0.0351 (11)
H30.86400.30530.44090.042*
C40.6940 (18)0.3573 (15)0.6095 (13)0.0351 (11)
C50.6720 (17)0.2266 (15)0.6712 (13)0.0351 (11)
H50.73040.14890.63340.042*
C60.5686 (17)0.2116 (15)0.7835 (13)0.0351 (11)
H60.55650.12120.82610.042*
C70.4726 (17)0.3280 (14)0.8446 (13)0.0351 (11)
H70.39900.31590.92550.042*
C80.4950 (18)0.4584 (15)0.7775 (13)0.0351 (11)
C90.6036 (18)0.4816 (15)0.6632 (13)0.0351 (11)
C100.2660 (17)0.5716 (16)0.9448 (14)0.041 (4)
H10A0.16360.54160.93460.050*
H10B0.32950.50011.01190.050*
C110.1829 (19)0.7104 (17)0.9780 (15)0.040 (4)
C120.052 (2)0.8306 (17)1.1242 (14)0.056 (5)
H12A0.03730.84821.15980.083*
H12B0.16210.81811.18810.083*
H12C0.09460.91091.05650.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0374 (3)0.0355 (4)0.0358 (4)0.0110 (2)0.0080 (2)0.0067 (3)
I10.0336 (5)0.0352 (6)0.0399 (6)0.0105 (4)0.0073 (4)0.0065 (5)
I20.0408 (5)0.0497 (7)0.0322 (6)0.0198 (4)0.0088 (4)0.0011 (5)
O10.045 (5)0.034 (6)0.026 (6)0.013 (4)0.013 (4)0.018 (5)
O20.052 (6)0.045 (7)0.036 (7)0.019 (5)0.012 (5)0.019 (6)
O30.046 (5)0.055 (7)0.028 (6)0.022 (5)0.017 (4)0.017 (6)
N10.030 (6)0.018 (6)0.050 (8)0.005 (5)0.011 (5)0.010 (6)
C10.038 (2)0.032 (3)0.032 (3)0.011 (2)0.0028 (19)0.005 (2)
C20.038 (2)0.032 (3)0.032 (3)0.011 (2)0.0028 (19)0.005 (2)
C30.038 (2)0.032 (3)0.032 (3)0.011 (2)0.0028 (19)0.005 (2)
C40.038 (2)0.032 (3)0.032 (3)0.011 (2)0.0028 (19)0.005 (2)
C50.038 (2)0.032 (3)0.032 (3)0.011 (2)0.0028 (19)0.005 (2)
C60.038 (2)0.032 (3)0.032 (3)0.011 (2)0.0028 (19)0.005 (2)
C70.038 (2)0.032 (3)0.032 (3)0.011 (2)0.0028 (19)0.005 (2)
C80.038 (2)0.032 (3)0.032 (3)0.011 (2)0.0028 (19)0.005 (2)
C90.038 (2)0.032 (3)0.032 (3)0.011 (2)0.0028 (19)0.005 (2)
C100.033 (7)0.053 (10)0.033 (9)0.024 (7)0.010 (6)0.014 (8)
C110.041 (8)0.038 (9)0.040 (10)0.018 (7)0.016 (7)0.007 (8)
C120.068 (10)0.064 (12)0.029 (10)0.024 (9)0.029 (8)0.030 (9)
Geometric parameters (Å, º) top
Hg1—N12.470 (9)C4—C51.371 (19)
Hg1—I12.6163 (12)C4—C91.456 (17)
Hg1—I22.6246 (11)C5—C61.308 (18)
O1—C81.419 (14)C5—H50.9400
O1—C101.482 (15)C6—C71.441 (16)
O2—C111.209 (17)C6—H60.9400
O3—C111.328 (17)C7—C81.381 (19)
O3—C121.452 (15)C7—H70.9400
N1—C11.321 (17)C8—C91.348 (19)
N1—C91.377 (17)C10—C111.469 (19)
C1—C21.432 (16)C10—H10A0.9800
C1—H10.9400C10—H10B0.9800
C2—C31.336 (19)C12—H12A0.9700
C2—H20.9400C12—H12B0.9700
C3—C41.481 (19)C12—H12C0.9700
C3—H30.9400
N1—Hg1—I1104.4 (2)C7—C6—H6118.7
N1—Hg1—I2102.2 (2)C8—C7—C6116.1 (13)
I1—Hg1—I2151.47 (4)C8—C7—H7121.9
C8—O1—C10117.4 (10)C6—C7—H7121.9
C11—O3—C12116.1 (11)C9—C8—C7124.7 (12)
C1—N1—C9118.9 (10)C9—C8—O1113.5 (12)
C1—N1—Hg1117.2 (9)C7—C8—O1121.7 (12)
C9—N1—Hg1123.5 (9)C8—C9—N1123.9 (12)
N1—C1—C2124.8 (13)C8—C9—C4114.8 (13)
N1—C1—H1117.6N1—C9—C4121.2 (12)
C2—C1—H1117.6C11—C10—O1109.9 (12)
C3—C2—C1118.5 (13)C11—C10—H10A109.7
C3—C2—H2120.7O1—C10—H10A109.7
C1—C2—H2120.7C11—C10—H10B109.7
C2—C3—C4120.5 (12)O1—C10—H10B109.7
C2—C3—H3119.8H10A—C10—H10B108.2
C4—C3—H3119.8O2—C11—O3127.6 (13)
C5—C4—C9122.5 (13)O2—C11—C10123.5 (13)
C5—C4—C3121.4 (11)O3—C11—C10108.8 (13)
C9—C4—C3116.1 (12)O3—C12—H12A109.5
C6—C5—C4119.1 (12)O3—C12—H12B109.5
C6—C5—H5120.4H12A—C12—H12B109.5
C4—C5—H5120.4O3—C12—H12C109.5
C5—C6—C7122.6 (14)H12A—C12—H12C109.5
C5—C6—H6118.7H12B—C12—H12C109.5
I1—Hg1—N1—C180.1 (9)C7—C8—C9—N1180.0 (12)
I2—Hg1—N1—C189.5 (9)O1—C8—C9—N11.9 (19)
I1—Hg1—N1—C9107.3 (9)C7—C8—C9—C42 (2)
I2—Hg1—N1—C983.1 (9)O1—C8—C9—C4179.4 (10)
C9—N1—C1—C20.1 (19)C1—N1—C9—C8176.7 (13)
Hg1—N1—C1—C2172.9 (9)Hg1—N1—C9—C810.8 (18)
N1—C1—C2—C30 (2)C1—N1—C9—C40.7 (18)
C1—C2—C3—C40.7 (19)Hg1—N1—C9—C4171.9 (8)
C2—C3—C4—C5178.3 (13)C5—C4—C9—C80.7 (19)
C2—C3—C4—C91.2 (18)C3—C4—C9—C8176.4 (12)
C9—C4—C5—C61 (2)C5—C4—C9—N1178.3 (12)
C3—C4—C5—C6178.1 (12)C3—C4—C9—N11.2 (18)
C4—C5—C6—C71 (2)C8—O1—C10—C11177.0 (10)
C5—C6—C7—C80.2 (19)C12—O3—C11—O20 (2)
C6—C7—C8—C92 (2)C12—O3—C11—C10178.5 (11)
C6—C7—C8—O1179.8 (10)O1—C10—C11—O27.3 (19)
C10—O1—C8—C9172.5 (11)O1—C10—C11—O3173.7 (10)
C10—O1—C8—C79.4 (17)

Experimental details

Crystal data
Chemical formula[HgI2(C12H11NO3)]
Mr671.61
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)7.5889 (5), 10.3670 (7), 11.4241 (11)
α, β, γ (°)72.203 (18), 74.40 (2), 68.644 (19)
V3)784.33 (15)
Z2
Radiation typeMo Kα
µ (mm1)13.75
Crystal size (mm)0.30 × 0.15 × 0.12
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.095, 0.191
No. of measured, independent and
observed [I > 2σ(I)] reflections
6692, 2912, 2068
Rint0.075
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.104, 1.08
No. of reflections2912
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.74, 2.02

Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Science and Technology Foundation of the Ministry of Development of China (grant No. 2010-K6-8).

References

First citationCheng, X. N., Zhang, W. X. & Chen, X. M. (2007). J. Am. Chem. Soc. 129, 15738–15739.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGhedini, M., Deda, M. L., Aiello, I. & Grisolia, A. (2002). J. Chem. Soc. Dalton Trans. pp. 3406–3409.  Web of Science CrossRef Google Scholar
First citationInomata, Y., Haneda, T. F. S. & Howell, F. S. (1999). J. Inorg. Biochem. 76, 13–17.  Web of Science CSD CrossRef CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationJotterand, N., Pearce, D. A. & Imperiali, B. (2001). J. Org. Chem. 66, 3224–3228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku/MSC, Tokyo, Japan.  Google Scholar
First citationRigaku (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, R.-F., Wang, Y.-H. & Jiang, F. (2004). Acta Cryst. E60, m1695–m1696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Z., Fan, J., Zhang, W. & Wang, J. (2008). Acta Cryst. E64, m1446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y. H., Song, R. F. & Zhang, F. Y. (2005). J. Mol. Struct. 752, 104–109.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds