organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,8-Di­benzoyl­naph­tha­lene-2,7-diyl dibenzoate

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 25 June 2012; accepted 7 July 2012; online 14 July 2012)

In the title compound, C38H24O6, the phenyl rings of the benzoyl and benzo­yloxy groups make dihedral angles of 67.12 (5), 85.15 (5), 76.41 (5) and 71.47 (5)° with the naphthal­ene ring system. In the crystal, C—H⋯O hydrogen bonds link mol­ecules into chains parallel to the b axis. The structure also features C—H⋯π and ππ stacking inter­actions, with centroid–centroid distances in the range 3.6441 (7)–3.9197 (8) Å.

Related literature

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Mitsui et al. (2008[Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.]); Nakaema, Imaizumi et al. (2008[Nakaema, K., Imaizumi, M., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o747.]); Nakaema, Watanabe et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Mitsui et al. (2008[Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.], 2009[Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.]).

[Scheme 1]

Experimental

Crystal data
  • C38H24O6

  • Mr = 576.57

  • Orthorhombic, P b c a

  • a = 18.0080 (3) Å

  • b = 12.4307 (2) Å

  • c = 25.3332 (4) Å

  • V = 5670.89 (16) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 193 K

  • 0.40 × 0.40 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.756, Tmax = 0.930

  • 95847 measured reflections

  • 5182 independent reflections

  • 4687 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.084

  • S = 1.05

  • 5182 reflections

  • 398 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.95 2.41 3.0584 (17) 125
C28—H28⋯Cg2i 0.95 2.65 3.4877 (14) 148
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of the naphthalene core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylnaphthalenes, e.g., 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema, Watanabe et al., 2008). The aroyl groups at 1,8-positions of the naphthalene rings in these compounds are oriented in opposite directions. Furthermore, we have also investigated modification of 2,7-positions in 1,8-diaroylnaphthalene compounds and clarified the X-ray crystal structures of the resulting molecules such as (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalene-1-yl)methanone (Mitsui et al., 2008) and (4-chlorobenzoyl)(2-hydroxy-7-ethoxynaphthalene-1-yl)methanone (Mitsui et al., 2009). Besides, the homologous aroyl group-free naphthalene derivative, 2,7-bis(4-acetylphenoxy)napthalene (Nakaema, Imaizumi et al., 2008) has been revealed. As a part of our ongoing studies on the formation and crystal structure analyses of aroylated naphthalene derivatives, the crystal structure analysis of the title compound, 1,8-dibenzoylnaphthalene bearing benzoyloxy groups at the 2,7-positions, is discussed in this article.

The molecular structure of the title compound is displayed in Fig 1. The benzene rings of benzoyl groups and benzene rings of benzoyloxy groups are twisted away from the naphthalene ring. Two benzoyl groups at 1,8-positions of the naphthalene ring are situated in opposite directions, anti orientation. The dihedral angles between the benzene rings of benzoyl groups and the naphthalene ring system are 67.12 (5)° [C10—C1—C11—O1 torsion angle = -48.68 (15)°] and 85.15 (5)° [C10—C9—C18—O2 torsion angle = -59.99 (16)°], respectively. The dihedral angle between the best planes of the two benzene rings is 59.81 (6)°, which is distinctively larger than that of the homologous 1,8-dibenzoyl-2,7-dimethoxynaphthalene [12.18°]. The two benzoyloxy groups at 2,7-positions of naphthalene ring are also situated in opposite directions. The dihedral angles between the benzene rings of benzoyloxy groups and the naphthalene ring system are 71.47 (5)° and 76.41 (5)°, respectively. The phenyl rings and carbonyloxy moieties make almost coplanar [O4—C25—C26—C27 torsion angle = -5.7 (2)° and O6—C32—C33—C38 torsion angle = -8.86 (19)°].

In the crystal packing (Fig. 2), C–H···O interactions between the O1 oxygen atom of a carbonyl groups and the H15 hydrogen atoms of the C12–C17 phenyl ring are observed linking molecules into chains parallel to the b axis (Table 1). Further stabilization is provided by a C—H···π (Table 1) and by ππ stacking interactions [Cg1···Cg2i, 3.6441 (7) Å; Cg3···Cg3ii, 3.9197 (8) Å; Cg1, Cg2 and Cg3 are the centroids of the C1–C5/C10, C5–C10 and C26–C31 rings, respectively; symmetry codes: (i) 1-x, -y, 1-z; (ii) 2-x, -y, 1-z].

Related literature top

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Mitsui et al. (2008); Nakaema, Imaizumi et al. (2008); Nakaema, Watanabe et al. (2008); Mitsui et al. (2008, 2009).

Experimental top

The title compound was prepared by reaction of 1,8-dibenzoyl-2,7-dihydroxynaphthalene (0.2 mmol, 73.68 mg), which was obtained via ethyl ether cleavage reaction of 1,8-dibenzoyl-2,7-diethoxynaphthalene, benzoyl chloride (0.4 mmol, 56.2 mg), and triethylamine (0.4 mmol, 40.5 mg) in dichloromethane (2.5 ml). After the reaction mixture was stirred at room temperature for 2 h, it was poured into water (30 ml) and the mixture was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give the crude product, which was purified by recrystallization from dichloromethane. Colourless single crystals suitable for X-ray diffraction were obtained by repeated crystallization from dichloromethane (isolated yield 65%).

Spectroscopic data:1H NMR δ (300 MHz, CDCl3); 7.20–7.28 (8H, m), 7.38 (2H, t, J=13.5 Hz), 7.46 (2H, t, J=14.7 Hz), 7.54 (4H, d, J=7.5 Hz), 7.57 (2H, d, J=9.0 Hz), 7.74 (4H, d, J=7.8 Hz), 8.15 (2H, d, J=9.3 Hz) p.p.m.. 13C NMR δ (100 MHz, CDCl3); 122.20, 127.93, 128.25, 128.29, 129.94, 130.04, 130.87, 131.71, 133.26, 133.67, 138.27, 147.90, 163.99, 195.49 p.p.m.. IR (KBr); 1735 (OC O), 1662 (CO), 1597 (Ar), 1507 (Ar) cm-1. M. p. = 524.9–525.9 K. Anal. Calcd for C38H24O6: C, 79.16; H, 4.20; Found: C, 79.74; H, 4.47.

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C).

Structure description top

In the course of our study on electrophilic aromatic aroylation of the naphthalene core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylnaphthalenes, e.g., 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema, Watanabe et al., 2008). The aroyl groups at 1,8-positions of the naphthalene rings in these compounds are oriented in opposite directions. Furthermore, we have also investigated modification of 2,7-positions in 1,8-diaroylnaphthalene compounds and clarified the X-ray crystal structures of the resulting molecules such as (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalene-1-yl)methanone (Mitsui et al., 2008) and (4-chlorobenzoyl)(2-hydroxy-7-ethoxynaphthalene-1-yl)methanone (Mitsui et al., 2009). Besides, the homologous aroyl group-free naphthalene derivative, 2,7-bis(4-acetylphenoxy)napthalene (Nakaema, Imaizumi et al., 2008) has been revealed. As a part of our ongoing studies on the formation and crystal structure analyses of aroylated naphthalene derivatives, the crystal structure analysis of the title compound, 1,8-dibenzoylnaphthalene bearing benzoyloxy groups at the 2,7-positions, is discussed in this article.

The molecular structure of the title compound is displayed in Fig 1. The benzene rings of benzoyl groups and benzene rings of benzoyloxy groups are twisted away from the naphthalene ring. Two benzoyl groups at 1,8-positions of the naphthalene ring are situated in opposite directions, anti orientation. The dihedral angles between the benzene rings of benzoyl groups and the naphthalene ring system are 67.12 (5)° [C10—C1—C11—O1 torsion angle = -48.68 (15)°] and 85.15 (5)° [C10—C9—C18—O2 torsion angle = -59.99 (16)°], respectively. The dihedral angle between the best planes of the two benzene rings is 59.81 (6)°, which is distinctively larger than that of the homologous 1,8-dibenzoyl-2,7-dimethoxynaphthalene [12.18°]. The two benzoyloxy groups at 2,7-positions of naphthalene ring are also situated in opposite directions. The dihedral angles between the benzene rings of benzoyloxy groups and the naphthalene ring system are 71.47 (5)° and 76.41 (5)°, respectively. The phenyl rings and carbonyloxy moieties make almost coplanar [O4—C25—C26—C27 torsion angle = -5.7 (2)° and O6—C32—C33—C38 torsion angle = -8.86 (19)°].

In the crystal packing (Fig. 2), C–H···O interactions between the O1 oxygen atom of a carbonyl groups and the H15 hydrogen atoms of the C12–C17 phenyl ring are observed linking molecules into chains parallel to the b axis (Table 1). Further stabilization is provided by a C—H···π (Table 1) and by ππ stacking interactions [Cg1···Cg2i, 3.6441 (7) Å; Cg3···Cg3ii, 3.9197 (8) Å; Cg1, Cg2 and Cg3 are the centroids of the C1–C5/C10, C5–C10 and C26–C31 rings, respectively; symmetry codes: (i) 1-x, -y, 1-z; (ii) 2-x, -y, 1-z].

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Mitsui et al. (2008); Nakaema, Imaizumi et al. (2008); Nakaema, Watanabe et al. (2008); Mitsui et al. (2008, 2009).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A partial crystal packing diagram of the title compound showing the C–H···O hydrogen interaction (dashed line). Symmetry code: (i) 3/2-x, -1/2+y, z.
1,8-Dibenzoylnaphthalene-2,7-diyl dibenzoate top
Crystal data top
C38H24O6F(000) = 2400
Mr = 576.57Dx = 1.351 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ac 2abCell parameters from 84271 reflections
a = 18.0080 (3) Åθ = 3.0–68.2°
b = 12.4307 (2) ŵ = 0.74 mm1
c = 25.3332 (4) ÅT = 193 K
V = 5670.89 (16) Å3Block, colourless
Z = 80.40 × 0.40 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5182 independent reflections
Radiation source: rotating anode4687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.5°
ω scansh = 2121
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1414
Tmin = 0.756, Tmax = 0.930l = 3029
95847 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0397P)2 + 1.6474P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5182 reflectionsΔρmax = 0.18 e Å3
398 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00092 (5)
Crystal data top
C38H24O6V = 5670.89 (16) Å3
Mr = 576.57Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 18.0080 (3) ŵ = 0.74 mm1
b = 12.4307 (2) ÅT = 193 K
c = 25.3332 (4) Å0.40 × 0.40 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5182 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
4687 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.930Rint = 0.023
95847 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
5182 reflectionsΔρmin = 0.16 e Å3
398 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61898 (5)0.15763 (7)0.34605 (3)0.0370 (2)
O20.50065 (5)0.02769 (7)0.35288 (4)0.0409 (2)
O30.75228 (4)0.08534 (7)0.45140 (3)0.0338 (2)
O40.76608 (5)0.06529 (8)0.50018 (4)0.0467 (2)
O50.35421 (4)0.12464 (6)0.40337 (3)0.03133 (19)
O60.32765 (5)0.30188 (7)0.40896 (4)0.0435 (2)
C10.62268 (6)0.09205 (9)0.43251 (5)0.0292 (2)
C20.67885 (6)0.09509 (9)0.46926 (5)0.0318 (3)
C30.66720 (7)0.11854 (10)0.52281 (5)0.0350 (3)
H30.70770.12050.54680.042*
C40.59685 (7)0.13832 (10)0.53959 (5)0.0343 (3)
H40.58830.15400.57580.041*
C50.53608 (6)0.13602 (9)0.50417 (5)0.0300 (2)
C60.46371 (6)0.15936 (9)0.52283 (5)0.0323 (3)
H60.45640.17370.55930.039*
C70.40452 (6)0.16164 (9)0.48963 (5)0.0323 (3)
H70.35640.17970.50220.039*
C80.41618 (6)0.13662 (9)0.43633 (5)0.0292 (2)
C90.48431 (6)0.11040 (9)0.41559 (4)0.0280 (2)
C100.54791 (6)0.11234 (9)0.44988 (5)0.0279 (2)
C110.64142 (6)0.08607 (9)0.37478 (5)0.0300 (3)
C120.68743 (6)0.00277 (9)0.35355 (5)0.0315 (3)
C130.69647 (7)0.09995 (10)0.38020 (5)0.0346 (3)
H130.67260.11090.41320.042*
C140.73998 (7)0.18031 (11)0.35889 (5)0.0411 (3)
H140.74630.24620.37740.049*
C150.77445 (8)0.16499 (11)0.31054 (6)0.0449 (3)
H150.80460.22010.29590.054*
C160.76479 (8)0.06924 (12)0.28359 (6)0.0459 (3)
H160.78800.05910.25030.055*
C170.72179 (7)0.01137 (11)0.30470 (5)0.0395 (3)
H170.71550.07690.28600.047*
C180.48452 (6)0.06636 (9)0.35992 (5)0.0306 (3)
C190.46058 (6)0.13750 (10)0.31580 (5)0.0337 (3)
C200.42928 (7)0.09152 (13)0.27092 (5)0.0463 (3)
H200.42240.01580.26900.056*
C210.40808 (9)0.15631 (17)0.22901 (6)0.0618 (5)
H210.38500.12520.19900.074*
C220.42038 (8)0.26547 (17)0.23072 (6)0.0623 (5)
H220.40710.30920.20140.075*
C230.45204 (8)0.31167 (13)0.27503 (6)0.0531 (4)
H230.46080.38700.27610.064*
C240.47094 (7)0.24812 (11)0.31782 (5)0.0408 (3)
H240.49110.28030.34870.049*
C250.79254 (7)0.00012 (10)0.47096 (5)0.0346 (3)
C260.86968 (6)0.00040 (10)0.45085 (5)0.0331 (3)
C270.91357 (7)0.08882 (11)0.46329 (6)0.0406 (3)
H270.89340.14650.48330.049*
C280.98659 (8)0.09286 (11)0.44665 (6)0.0438 (3)
H281.01650.15340.45520.053*
C291.01600 (7)0.00930 (12)0.41776 (6)0.0454 (3)
H291.06630.01210.40650.054*
C300.97251 (8)0.07880 (12)0.40502 (6)0.0476 (3)
H300.99300.13620.38500.057*
C310.89918 (7)0.08345 (11)0.42147 (5)0.0407 (3)
H310.86930.14380.41270.049*
C320.31154 (6)0.21336 (10)0.39400 (5)0.0321 (3)
C330.24452 (6)0.18511 (10)0.36282 (5)0.0327 (3)
C340.22400 (7)0.07882 (11)0.35420 (6)0.0433 (3)
H340.25300.02200.36840.052*
C350.16118 (8)0.05601 (13)0.32482 (6)0.0516 (4)
H350.14750.01670.31860.062*
C360.11833 (7)0.13831 (14)0.30455 (6)0.0500 (4)
H360.07560.12220.28400.060*
C370.13754 (7)0.24401 (14)0.31411 (6)0.0495 (4)
H370.10740.30060.30090.059*
C380.20081 (7)0.26746 (12)0.34296 (5)0.0419 (3)
H380.21430.34030.34920.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0313 (4)0.0409 (5)0.0387 (5)0.0039 (4)0.0022 (4)0.0094 (4)
O20.0448 (5)0.0337 (5)0.0442 (5)0.0012 (4)0.0010 (4)0.0063 (4)
O30.0234 (4)0.0391 (5)0.0387 (5)0.0006 (3)0.0019 (3)0.0049 (4)
O40.0345 (5)0.0486 (5)0.0571 (6)0.0002 (4)0.0024 (4)0.0164 (5)
O50.0238 (4)0.0337 (4)0.0366 (5)0.0009 (3)0.0027 (3)0.0019 (3)
O60.0383 (5)0.0340 (5)0.0582 (6)0.0002 (4)0.0092 (4)0.0045 (4)
C10.0269 (6)0.0265 (5)0.0341 (6)0.0005 (4)0.0007 (5)0.0016 (5)
C20.0251 (6)0.0323 (6)0.0379 (7)0.0010 (4)0.0001 (5)0.0024 (5)
C30.0307 (6)0.0393 (7)0.0351 (7)0.0027 (5)0.0076 (5)0.0002 (5)
C40.0353 (6)0.0369 (6)0.0306 (6)0.0026 (5)0.0017 (5)0.0002 (5)
C50.0304 (6)0.0282 (6)0.0314 (6)0.0022 (4)0.0003 (5)0.0018 (5)
C60.0336 (6)0.0339 (6)0.0293 (6)0.0018 (5)0.0036 (5)0.0005 (5)
C70.0273 (6)0.0341 (6)0.0355 (6)0.0011 (5)0.0049 (5)0.0007 (5)
C80.0251 (5)0.0285 (6)0.0341 (6)0.0025 (4)0.0020 (5)0.0018 (5)
C90.0272 (6)0.0263 (5)0.0306 (6)0.0013 (4)0.0002 (4)0.0015 (4)
C100.0268 (6)0.0253 (5)0.0315 (6)0.0017 (4)0.0003 (5)0.0018 (4)
C110.0220 (5)0.0339 (6)0.0342 (6)0.0036 (4)0.0012 (4)0.0032 (5)
C120.0262 (5)0.0357 (6)0.0327 (6)0.0013 (5)0.0007 (5)0.0002 (5)
C130.0313 (6)0.0391 (6)0.0336 (6)0.0008 (5)0.0017 (5)0.0034 (5)
C140.0416 (7)0.0362 (7)0.0456 (8)0.0045 (5)0.0010 (6)0.0053 (6)
C150.0448 (7)0.0427 (7)0.0473 (8)0.0099 (6)0.0079 (6)0.0024 (6)
C160.0506 (8)0.0490 (8)0.0381 (7)0.0056 (6)0.0135 (6)0.0035 (6)
C170.0434 (7)0.0385 (7)0.0365 (7)0.0025 (6)0.0052 (5)0.0059 (5)
C180.0226 (5)0.0341 (6)0.0350 (6)0.0024 (5)0.0007 (4)0.0031 (5)
C190.0242 (5)0.0474 (7)0.0297 (6)0.0033 (5)0.0016 (5)0.0009 (5)
C200.0350 (7)0.0671 (9)0.0369 (7)0.0055 (6)0.0015 (5)0.0040 (6)
C210.0428 (8)0.1077 (15)0.0349 (8)0.0028 (9)0.0077 (6)0.0057 (8)
C220.0429 (8)0.0980 (14)0.0459 (9)0.0144 (9)0.0010 (7)0.0269 (9)
C230.0461 (8)0.0589 (9)0.0544 (9)0.0169 (7)0.0097 (7)0.0183 (7)
C240.0376 (7)0.0449 (7)0.0399 (7)0.0100 (6)0.0025 (6)0.0025 (6)
C250.0302 (6)0.0365 (6)0.0370 (7)0.0007 (5)0.0047 (5)0.0026 (5)
C260.0290 (6)0.0363 (6)0.0341 (6)0.0001 (5)0.0040 (5)0.0017 (5)
C270.0387 (7)0.0379 (7)0.0451 (8)0.0025 (5)0.0019 (6)0.0017 (6)
C280.0380 (7)0.0434 (7)0.0498 (8)0.0115 (6)0.0015 (6)0.0036 (6)
C290.0315 (7)0.0573 (9)0.0474 (8)0.0065 (6)0.0056 (6)0.0056 (7)
C300.0375 (7)0.0528 (8)0.0525 (8)0.0019 (6)0.0094 (6)0.0090 (7)
C310.0340 (6)0.0425 (7)0.0457 (8)0.0056 (5)0.0009 (6)0.0064 (6)
C320.0271 (6)0.0347 (6)0.0346 (6)0.0008 (5)0.0031 (5)0.0003 (5)
C330.0254 (5)0.0407 (6)0.0321 (6)0.0013 (5)0.0021 (5)0.0013 (5)
C340.0341 (7)0.0423 (7)0.0536 (8)0.0013 (6)0.0056 (6)0.0056 (6)
C350.0390 (7)0.0568 (9)0.0589 (9)0.0089 (6)0.0054 (7)0.0129 (7)
C360.0300 (6)0.0806 (11)0.0392 (7)0.0049 (7)0.0046 (6)0.0042 (7)
C370.0368 (7)0.0674 (10)0.0442 (8)0.0065 (7)0.0061 (6)0.0102 (7)
C380.0377 (7)0.0447 (7)0.0434 (8)0.0018 (6)0.0033 (6)0.0049 (6)
Geometric parameters (Å, º) top
O1—C111.2184 (14)C18—C191.4890 (17)
O2—C181.2178 (15)C19—C241.3886 (19)
O3—C251.3760 (14)C19—C201.3917 (18)
O3—C21.4027 (14)C20—C211.386 (2)
O4—C251.1984 (15)C20—H200.9500
O5—C321.3649 (14)C21—C221.375 (3)
O5—C81.4019 (13)C21—H210.9500
O6—C321.1994 (15)C22—C231.384 (2)
C1—C21.3751 (16)C22—H220.9500
C1—C101.4388 (16)C23—C241.3839 (19)
C1—C111.5027 (17)C23—H230.9500
C2—C31.4035 (18)C24—H240.9500
C3—C41.3588 (17)C25—C261.4796 (17)
C3—H30.9500C26—C311.3866 (18)
C4—C51.4155 (17)C26—C271.3900 (17)
C4—H40.9500C27—C281.3817 (19)
C5—C61.4163 (16)C27—H270.9500
C5—C101.4226 (17)C28—C291.377 (2)
C6—C71.3582 (17)C28—H280.9500
C6—H60.9500C29—C301.384 (2)
C7—C81.4013 (17)C29—H290.9500
C7—H70.9500C30—C311.3859 (19)
C8—C91.3738 (16)C30—H300.9500
C9—C101.4376 (16)C31—H310.9500
C9—C181.5129 (16)C32—C331.4845 (17)
C11—C121.4817 (16)C33—C381.3859 (18)
C12—C131.3935 (17)C33—C341.3892 (18)
C12—C171.3946 (17)C34—C351.3835 (19)
C13—C141.3797 (18)C34—H340.9500
C13—H130.9500C35—C361.381 (2)
C14—C151.386 (2)C35—H350.9500
C14—H140.9500C36—C371.380 (2)
C15—C161.383 (2)C36—H360.9500
C15—H150.9500C37—C381.3848 (19)
C16—C171.3747 (19)C37—H370.9500
C16—H160.9500C38—H380.9500
C17—H170.9500
C25—O3—C2116.55 (9)C20—C19—C18119.12 (12)
C32—O5—C8117.77 (9)C21—C20—C19119.91 (15)
C2—C1—C10118.47 (11)C21—C20—H20120.0
C2—C1—C11119.67 (10)C19—C20—H20120.0
C10—C1—C11121.09 (10)C22—C21—C20120.31 (15)
C1—C2—O3118.21 (10)C22—C21—H21119.8
C1—C2—C3123.37 (11)C20—C21—H21119.8
O3—C2—C3118.07 (10)C21—C22—C23120.08 (15)
C4—C3—C2118.65 (11)C21—C22—H22120.0
C4—C3—H3120.7C23—C22—H22120.0
C2—C3—H3120.7C22—C23—C24119.99 (16)
C3—C4—C5121.25 (11)C22—C23—H23120.0
C3—C4—H4119.4C24—C23—H23120.0
C5—C4—H4119.4C23—C24—C19120.22 (14)
C4—C5—C6119.70 (11)C23—C24—H24119.9
C4—C5—C10120.09 (11)C19—C24—H24119.9
C6—C5—C10120.20 (11)O4—C25—O3122.37 (11)
C7—C6—C5121.31 (11)O4—C25—C26125.66 (11)
C7—C6—H6119.3O3—C25—C26111.96 (10)
C5—C6—H6119.3C31—C26—C27119.88 (12)
C6—C7—C8118.32 (11)C31—C26—C25122.77 (11)
C6—C7—H7120.8C27—C26—C25117.34 (11)
C8—C7—H7120.8C28—C27—C26120.05 (13)
C9—C8—C7123.71 (11)C28—C27—H27120.0
C9—C8—O5117.25 (10)C26—C27—H27120.0
C7—C8—O5118.57 (10)C29—C28—C27120.06 (12)
C8—C9—C10118.45 (10)C29—C28—H28120.0
C8—C9—C18116.39 (10)C27—C28—H28120.0
C10—C9—C18124.56 (10)C28—C29—C30120.21 (12)
C5—C10—C9117.92 (10)C28—C29—H29119.9
C5—C10—C1118.17 (10)C30—C29—H29119.9
C9—C10—C1123.91 (10)C29—C30—C31120.13 (13)
O1—C11—C12120.84 (11)C29—C30—H30119.9
O1—C11—C1118.09 (11)C31—C30—H30119.9
C12—C11—C1121.05 (10)C30—C31—C26119.68 (12)
C13—C12—C17119.17 (11)C30—C31—H31120.2
C13—C12—C11122.38 (11)C26—C31—H31120.2
C17—C12—C11118.45 (11)O6—C32—O5123.38 (11)
C14—C13—C12120.30 (12)O6—C32—C33125.57 (11)
C14—C13—H13119.9O5—C32—C33111.04 (10)
C12—C13—H13119.9C38—C33—C34119.63 (12)
C13—C14—C15120.03 (12)C38—C33—C32118.69 (11)
C13—C14—H14120.0C34—C33—C32121.66 (11)
C15—C14—H14120.0C35—C34—C33119.80 (13)
C16—C15—C14119.88 (12)C35—C34—H34120.1
C16—C15—H15120.1C33—C34—H34120.1
C14—C15—H15120.1C36—C35—C34120.35 (14)
C17—C16—C15120.40 (12)C36—C35—H35119.8
C17—C16—H16119.8C34—C35—H35119.8
C15—C16—H16119.8C37—C36—C35120.01 (13)
C16—C17—C12120.22 (12)C37—C36—H36120.0
C16—C17—H17119.9C35—C36—H36120.0
C12—C17—H17119.9C36—C37—C38119.96 (14)
O2—C18—C19121.95 (11)C36—C37—H37120.0
O2—C18—C9118.98 (11)C38—C37—H37120.0
C19—C18—C9118.96 (10)C37—C38—C33120.22 (13)
C24—C19—C20119.42 (12)C37—C38—H38119.9
C24—C19—C18121.43 (11)C33—C38—H38119.9
C10—C1—C2—O3174.10 (10)C15—C16—C17—C120.1 (2)
C11—C1—C2—O34.11 (16)C13—C12—C17—C160.85 (19)
C10—C1—C2—C30.96 (17)C11—C12—C17—C16179.85 (12)
C11—C1—C2—C3169.03 (11)C8—C9—C18—O2111.05 (12)
C25—O3—C2—C1120.40 (12)C10—C9—C18—O259.98 (15)
C25—O3—C2—C366.09 (14)C8—C9—C18—C1965.30 (14)
C1—C2—C3—C40.65 (19)C10—C9—C18—C19123.68 (12)
O3—C2—C3—C4173.80 (11)O2—C18—C19—C24153.51 (12)
C2—C3—C4—C50.25 (18)C9—C18—C19—C2430.26 (16)
C3—C4—C5—C6178.62 (11)O2—C18—C19—C2024.45 (17)
C3—C4—C5—C100.21 (18)C9—C18—C19—C20151.78 (11)
C4—C5—C6—C7177.65 (11)C24—C19—C20—C210.66 (19)
C10—C5—C6—C71.18 (17)C18—C19—C20—C21178.67 (12)
C5—C6—C7—C82.15 (17)C19—C20—C21—C222.4 (2)
C6—C7—C8—C90.37 (18)C20—C21—C22—C231.9 (2)
C6—C7—C8—O5171.54 (10)C21—C22—C23—C240.4 (2)
C32—O5—C8—C9121.80 (11)C22—C23—C24—C192.2 (2)
C32—O5—C8—C765.76 (13)C20—C19—C24—C231.64 (19)
C7—C8—C9—C102.32 (17)C18—C19—C24—C23176.32 (11)
O5—C8—C9—C10174.33 (9)C2—O3—C25—O42.77 (17)
C7—C8—C9—C18169.28 (11)C2—O3—C25—C26178.22 (10)
O5—C8—C9—C182.73 (15)O4—C25—C26—C31173.21 (13)
C4—C5—C10—C9179.66 (10)O3—C25—C26—C317.82 (17)
C6—C5—C10—C91.52 (16)O4—C25—C26—C275.6 (2)
C4—C5—C10—C10.50 (16)O3—C25—C26—C27173.33 (11)
C6—C5—C10—C1178.32 (10)C31—C26—C27—C280.3 (2)
C8—C9—C10—C53.17 (15)C25—C26—C27—C28178.55 (12)
C18—C9—C10—C5167.69 (10)C26—C27—C28—C290.0 (2)
C8—C9—C10—C1176.66 (11)C27—C28—C29—C300.3 (2)
C18—C9—C10—C112.48 (17)C28—C29—C30—C310.2 (2)
C2—C1—C10—C50.86 (16)C29—C30—C31—C260.2 (2)
C11—C1—C10—C5168.98 (10)C27—C26—C31—C300.4 (2)
C2—C1—C10—C9179.31 (10)C25—C26—C31—C30178.39 (13)
C11—C1—C10—C910.85 (17)C8—O5—C32—O66.18 (17)
C2—C1—C11—O1121.04 (12)C8—O5—C32—C33174.52 (9)
C10—C1—C11—O148.67 (15)O6—C32—C33—C388.86 (19)
C2—C1—C11—C1257.47 (15)O5—C32—C33—C38170.42 (11)
C10—C1—C11—C12132.81 (11)O6—C32—C33—C34169.72 (13)
O1—C11—C12—C13161.25 (11)O5—C32—C33—C3410.99 (16)
C1—C11—C12—C1320.28 (17)C38—C33—C34—C351.6 (2)
O1—C11—C12—C1717.71 (17)C32—C33—C34—C35179.88 (13)
C1—C11—C12—C17160.76 (11)C33—C34—C35—C360.7 (2)
C17—C12—C13—C141.15 (18)C34—C35—C36—C370.8 (2)
C11—C12—C13—C14179.89 (11)C35—C36—C37—C381.6 (2)
C12—C13—C14—C150.6 (2)C36—C37—C38—C330.7 (2)
C13—C14—C15—C160.4 (2)C34—C33—C38—C370.8 (2)
C14—C15—C16—C170.7 (2)C32—C33—C38—C37179.42 (12)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.952.413.0584 (17)125
C28—H28···Cg2i0.952.653.4877 (14)148
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC38H24O6
Mr576.57
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)193
a, b, c (Å)18.0080 (3), 12.4307 (2), 25.3332 (4)
V3)5670.89 (16)
Z8
Radiation typeCu Kα
µ (mm1)0.74
Crystal size (mm)0.40 × 0.40 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.756, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
95847, 5182, 4687
Rint0.023
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.05
No. of reflections5182
No. of parameters398
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.952.413.0584 (17)125
C28—H28···Cg2i0.952.653.4877 (14)148
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for technical advice. This work was partially supported by the Shorai Foundation for Scienece and Technology.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Imaizumi, M., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o747.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds