organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-(2-bromo­eth­yl)-3-(4-meth­­oxy­phen­yl)-1H-pyrazole-5-carboxyl­ate

aDepartment of Chemistry and Chemical Engineering, Jining University, Qufu 273155, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: yinling_1109@163.com

(Received 10 July 2012; accepted 16 July 2012; online 21 July 2012)

In the title compound, C15H17BrN2O3, the dihedral angle between the benzene and pyrazole rings is 5.63 (2)°. The crystal packing is stabilized by weak ππ stacking inter­actions [centroid–centroid distance = 3.927 (5) Å] and inter­molecular C—H⋯O and C—H⋯Br hydrogen bonds.

Related literature

For the biological activity of pyrazole compounds, see: Nagwa et al. (2012[Nagwa, M., Gawad, A. E., Georgey, H. H., Ibrahim, N. A., Amin, N. H. & Abdelsalam, R. M. (2012). Arch. Pharm. Res. 35, 807-821.]); Fahmy et al. (2012[Fahmy, H. H., Khalifa, N. M., Nossier, E. S., Abdalla, M. M. & Ismai, M. M. (2012). Acta Pol. Pharm. 69, 411-421.]); Wang et al. (2011[Wang, Y., Xu, W. R., Shao, H., Xie, Y. F. & Wang, J. W. (2011). Chin. J. Chem. 29, 2039-2048.]). For related structures, see: Dong et al. (2007[Dong, W.-L., Ge, Y.-Q., Xia, Y. & Zhao, B.-X. (2007). Acta Cryst. E63, o4701.]); Hao et al. (2012[Hao, B.-Q., Xu, W.-R., Meng, F.-C. & Duan, G.-Y. (2012). Acta Cryst. E68, o877.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17BrN2O3

  • Mr = 353.22

  • Monoclinic, C 2/c

  • a = 24.691 (7) Å

  • b = 6.7678 (17) Å

  • c = 17.884 (5) Å

  • β = 97.184 (5)°

  • V = 2965.1 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.78 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.14 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear-SM Expert. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.606, Tmax = 0.697

  • 13190 measured reflections

  • 3501 independent reflections

  • 2684 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.062

  • S = 1.02

  • 3501 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Br1i 0.95 2.93 3.6791 (18) 137
C15—H15B⋯O1ii 0.99 2.56 3.288 (2) 130
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear-SM Expert. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazole compounds are associated with a wide spectrum of biological activities (Nagwa et al., 2012; Fahmy et al., 2012). The title compound is a key intermediate during the synthesis of our own Lp-PLA2 inhibitors (Wang et al., 2011).

In title compound (Fig. 1) the dihedral angle between the benzene ring (C2—C7) and the pyrazole ring (N1/N2/C8—C10) is 5.63 (2) °. All bond lengths and angles are normal and in a good agreement with those reported previously for related compounds (Dong et al., 2007; Hao et al., 2012). The crystal packing is stabilized by weak ππ stacking interactions [Cg1···Cg2i = 3.697 (9) Å, Cg1 and Cg2 are the centroids of the benzene and pyrazole ring, respectively; symmetry code: (i) -x, 2-y, 1-z] and weak intermolecular C—H···O and C—H···Br hydrogen interactions (Table 1).

Related literature top

For the biological activity of pyrazole compounds, see: Nagwa et al. (2012); Fahmy et al. (2012); Wang et al. (2011). For related structures, see: Dong et al. (2007); Hao et al. (2012).

Experimental top

A mixture of of ethyl 3-(4-methoxyphenyl)-1H-pyrazole-5-carboxylate (2.46 g, 10 mmol), 1,2-dibromoethane (3.76 g, 20 mmol), K2CO3 (5.53 g, 40 mmol) in dried acetonitrile (30 ml) was refluxed overnight. On cooling, the reaction mixture was filtered and poured into 200 ml of brine. The resulting mixture was extracted with dichloromethane (3 × 50 ml), and the combined extracts were washed with saturated brine, dried over Na2SO4 and evaporated on a rotary evaporator to afford the crude product as brown solid, which was purified by column chromatography to yield the pure product as colourless crystals (yield 88%). Single crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation at room temperature of a solution of the title compound in dichloromethane/hexane (1:5 v/v). M.p.: 361–363 K.

Refinement top

All H atoms were found in a difference Fourier map and refined using a riding model, with C–H = 0.95–0.99 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Structure description top

Pyrazole compounds are associated with a wide spectrum of biological activities (Nagwa et al., 2012; Fahmy et al., 2012). The title compound is a key intermediate during the synthesis of our own Lp-PLA2 inhibitors (Wang et al., 2011).

In title compound (Fig. 1) the dihedral angle between the benzene ring (C2—C7) and the pyrazole ring (N1/N2/C8—C10) is 5.63 (2) °. All bond lengths and angles are normal and in a good agreement with those reported previously for related compounds (Dong et al., 2007; Hao et al., 2012). The crystal packing is stabilized by weak ππ stacking interactions [Cg1···Cg2i = 3.697 (9) Å, Cg1 and Cg2 are the centroids of the benzene and pyrazole ring, respectively; symmetry code: (i) -x, 2-y, 1-z] and weak intermolecular C—H···O and C—H···Br hydrogen interactions (Table 1).

For the biological activity of pyrazole compounds, see: Nagwa et al. (2012); Fahmy et al. (2012); Wang et al. (2011). For related structures, see: Dong et al. (2007); Hao et al. (2012).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009); cell refinement: CrystalClear-SM Expert (Rigaku/MSC, 2009); data reduction: CrystalClear-SM Expert (Rigaku/MSC, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level.
Ethyl 1-(2-bromoethyl)-3-(4-methoxyphenyl)-1H-pyrazole-5-carboxylate top
Crystal data top
C15H17BrN2O3F(000) = 1440
Mr = 353.22Dx = 1.583 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5090 reflections
a = 24.691 (7) Åθ = 1.9–27.9°
b = 6.7678 (17) ŵ = 2.78 mm1
c = 17.884 (5) ÅT = 113 K
β = 97.184 (5)°Prism, colourless
V = 2965.1 (13) Å30.20 × 0.18 × 0.14 mm
Z = 8
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3501 independent reflections
Radiation source: rotating anode2684 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.033
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.3°
ω and φ scansh = 3230
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku/MSC, 2009)
k = 88
Tmin = 0.606, Tmax = 0.697l = 2320
13190 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0311P)2]
where P = (Fo2 + 2Fc2)/3
3501 reflections(Δ/σ)max = 0.002
192 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C15H17BrN2O3V = 2965.1 (13) Å3
Mr = 353.22Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.691 (7) ŵ = 2.78 mm1
b = 6.7678 (17) ÅT = 113 K
c = 17.884 (5) Å0.20 × 0.18 × 0.14 mm
β = 97.184 (5)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3501 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku/MSC, 2009)
2684 reflections with I > 2σ(I)
Tmin = 0.606, Tmax = 0.697Rint = 0.033
13190 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.02Δρmax = 0.61 e Å3
3501 reflectionsΔρmin = 0.33 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.300383 (7)0.03804 (3)0.042640 (10)0.02615 (7)
O10.67705 (4)0.29412 (19)0.23584 (6)0.0228 (3)
O20.32875 (5)0.23696 (19)0.13898 (7)0.0238 (3)
O30.41059 (5)0.20467 (18)0.18169 (6)0.0207 (3)
N10.43218 (5)0.3178 (2)0.06953 (8)0.0196 (3)
N20.39195 (5)0.3026 (2)0.01120 (8)0.0190 (3)
C10.72814 (7)0.2707 (3)0.20691 (11)0.0295 (5)
H1A0.72840.14450.18000.044*
H1B0.75790.27220.24870.044*
H1C0.73320.37920.17220.044*
C20.63072 (6)0.2885 (3)0.18455 (10)0.0177 (4)
C30.58195 (7)0.3140 (3)0.21405 (10)0.0215 (4)
H30.58210.33510.26660.026*
C40.53298 (7)0.3087 (3)0.16717 (10)0.0212 (4)
H40.49980.32710.18810.025*
C50.53125 (6)0.2770 (2)0.08977 (9)0.0162 (4)
C60.58044 (7)0.2519 (3)0.06120 (10)0.0177 (4)
H60.58030.23000.00870.021*
C70.63016 (7)0.2582 (3)0.10763 (10)0.0183 (4)
H70.66340.24180.08680.022*
C80.47850 (6)0.2734 (2)0.04107 (9)0.0162 (4)
C90.46766 (7)0.2326 (2)0.03645 (9)0.0174 (4)
H90.49330.19830.06970.021*
C100.41209 (7)0.2527 (2)0.05401 (9)0.0168 (4)
C110.37810 (7)0.2314 (3)0.12779 (10)0.0185 (4)
C120.38331 (7)0.1924 (3)0.25861 (9)0.0231 (4)
H12A0.36090.31200.27120.028*
H12B0.35910.07530.26450.028*
C130.42739 (7)0.1759 (3)0.30925 (10)0.0291 (5)
H13A0.45070.29350.30330.044*
H13B0.41070.16540.36180.044*
H13C0.44950.05800.29560.044*
C140.33701 (7)0.3614 (3)0.02402 (10)0.0221 (4)
H14A0.31270.35630.02440.026*
H14B0.33790.49970.04220.026*
C150.31375 (7)0.2311 (3)0.08072 (10)0.0242 (4)
H15A0.27900.28870.09290.029*
H15B0.33950.22670.12780.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02115 (10)0.03091 (12)0.02741 (12)0.00178 (8)0.00701 (8)0.00177 (8)
O10.0133 (6)0.0390 (8)0.0157 (7)0.0006 (5)0.0001 (5)0.0010 (5)
O20.0158 (6)0.0325 (8)0.0219 (7)0.0010 (5)0.0023 (5)0.0001 (5)
O30.0177 (6)0.0287 (8)0.0148 (7)0.0011 (5)0.0011 (5)0.0004 (5)
N10.0158 (7)0.0257 (9)0.0163 (8)0.0004 (6)0.0020 (6)0.0001 (6)
N20.0128 (7)0.0258 (9)0.0176 (8)0.0006 (6)0.0010 (6)0.0005 (6)
C10.0138 (9)0.0494 (14)0.0247 (11)0.0010 (8)0.0004 (8)0.0007 (9)
C20.0154 (8)0.0191 (9)0.0178 (9)0.0018 (7)0.0006 (7)0.0024 (7)
C30.0190 (9)0.0317 (11)0.0139 (9)0.0002 (7)0.0024 (7)0.0020 (7)
C40.0145 (8)0.0304 (11)0.0195 (10)0.0004 (7)0.0049 (7)0.0000 (8)
C50.0147 (8)0.0158 (9)0.0179 (9)0.0008 (6)0.0008 (7)0.0011 (7)
C60.0198 (8)0.0208 (10)0.0127 (9)0.0015 (7)0.0027 (7)0.0006 (7)
C70.0144 (8)0.0223 (10)0.0189 (9)0.0009 (7)0.0057 (7)0.0007 (7)
C80.0155 (8)0.0160 (9)0.0168 (9)0.0012 (6)0.0013 (7)0.0014 (7)
C90.0172 (8)0.0173 (9)0.0179 (9)0.0000 (7)0.0027 (7)0.0001 (7)
C100.0173 (8)0.0174 (9)0.0153 (9)0.0010 (7)0.0000 (7)0.0002 (7)
C110.0193 (9)0.0161 (9)0.0196 (10)0.0014 (7)0.0000 (7)0.0015 (7)
C120.0225 (9)0.0291 (11)0.0161 (9)0.0032 (8)0.0033 (7)0.0001 (7)
C130.0281 (10)0.0385 (13)0.0198 (10)0.0039 (9)0.0004 (8)0.0006 (8)
C140.0146 (8)0.0282 (11)0.0231 (10)0.0038 (7)0.0011 (7)0.0027 (8)
C150.0181 (9)0.0363 (12)0.0185 (10)0.0004 (8)0.0037 (8)0.0050 (8)
Geometric parameters (Å, º) top
Br1—C151.9581 (19)C5—C81.474 (2)
O1—C21.3746 (18)C6—C71.394 (2)
O1—C11.431 (2)C6—H60.9500
O2—C111.2103 (19)C7—H70.9500
O3—C111.341 (2)C8—C91.406 (2)
O3—C121.456 (2)C9—C101.375 (2)
N1—C81.343 (2)C9—H90.9500
N1—N21.3515 (18)C10—C111.480 (2)
N2—C101.366 (2)C12—C131.505 (2)
N2—C141.459 (2)C12—H12A0.9900
C1—H1A0.9800C12—H12B0.9900
C1—H1B0.9800C13—H13A0.9800
C1—H1C0.9800C13—H13B0.9800
C2—C31.384 (2)C13—H13C0.9800
C2—C71.389 (2)C14—C151.511 (2)
C3—C41.383 (2)C14—H14A0.9900
C3—H30.9500C14—H14B0.9900
C4—C51.396 (2)C15—H15A0.9900
C4—H40.9500C15—H15B0.9900
C5—C61.386 (2)
C2—O1—C1116.96 (13)C10—C9—C8105.49 (15)
C11—O3—C12116.03 (13)C10—C9—H9127.3
C8—N1—N2105.62 (13)C8—C9—H9127.3
N1—N2—C10111.51 (13)N2—C10—C9106.80 (14)
N1—N2—C14117.78 (13)N2—C10—C11123.97 (15)
C10—N2—C14130.28 (14)C9—C10—C11129.22 (16)
O1—C1—H1A109.5O2—C11—O3124.45 (16)
O1—C1—H1B109.5O2—C11—C10126.26 (17)
H1A—C1—H1B109.5O3—C11—C10109.29 (14)
O1—C1—H1C109.5O3—C12—C13106.78 (14)
H1A—C1—H1C109.5O3—C12—H12A110.4
H1B—C1—H1C109.5C13—C12—H12A110.4
O1—C2—C3115.67 (15)O3—C12—H12B110.4
O1—C2—C7124.70 (15)C13—C12—H12B110.4
C3—C2—C7119.63 (15)H12A—C12—H12B108.6
C4—C3—C2120.12 (16)C12—C13—H13A109.5
C4—C3—H3119.9C12—C13—H13B109.5
C2—C3—H3119.9H13A—C13—H13B109.5
C3—C4—C5121.41 (16)C12—C13—H13C109.5
C3—C4—H4119.3H13A—C13—H13C109.5
C5—C4—H4119.3H13B—C13—H13C109.5
C6—C5—C4117.70 (15)N2—C14—C15112.65 (15)
C6—C5—C8122.05 (15)N2—C14—H14A109.1
C4—C5—C8120.25 (15)C15—C14—H14A109.1
C5—C6—C7121.58 (16)N2—C14—H14B109.1
C5—C6—H6119.2C15—C14—H14B109.1
C7—C6—H6119.2H14A—C14—H14B107.8
C2—C7—C6119.56 (15)C14—C15—Br1111.80 (12)
C2—C7—H7120.2C14—C15—H15A109.3
C6—C7—H7120.2Br1—C15—H15A109.3
N1—C8—C9110.58 (15)C14—C15—H15B109.3
N1—C8—C5120.26 (15)Br1—C15—H15B109.3
C9—C8—C5129.14 (15)H15A—C15—H15B107.9
C8—N1—N2—C101.04 (18)C4—C5—C8—C9175.81 (17)
C8—N1—N2—C14174.27 (15)N1—C8—C9—C100.5 (2)
C1—O1—C2—C3179.24 (16)C5—C8—C9—C10178.89 (16)
C1—O1—C2—C71.2 (2)N1—N2—C10—C90.77 (19)
O1—C2—C3—C4179.36 (16)C14—N2—C10—C9172.91 (17)
C7—C2—C3—C40.2 (3)N1—N2—C10—C11178.04 (15)
C2—C3—C4—C50.3 (3)C14—N2—C10—C115.9 (3)
C3—C4—C5—C60.4 (3)C8—C9—C10—N20.18 (19)
C3—C4—C5—C8179.62 (16)C8—C9—C10—C11178.54 (17)
C4—C5—C6—C70.1 (3)C12—O3—C11—O23.3 (2)
C8—C5—C6—C7179.16 (16)C12—O3—C11—C10176.61 (14)
O1—C2—C7—C6178.88 (15)N2—C10—C11—O27.2 (3)
C3—C2—C7—C60.6 (3)C9—C10—C11—O2174.33 (19)
C5—C6—C7—C20.6 (3)N2—C10—C11—O3172.76 (16)
N2—N1—C8—C90.91 (19)C9—C10—C11—O35.8 (2)
N2—N1—C8—C5179.50 (14)C11—O3—C12—C13176.44 (15)
C6—C5—C8—N1173.34 (16)N1—N2—C14—C1564.7 (2)
C4—C5—C8—N15.9 (2)C10—N2—C14—C15123.56 (19)
C6—C5—C8—C95.0 (3)N2—C14—C15—Br167.21 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Br1i0.952.933.6791 (18)137
C15—H15B···O1ii0.992.563.288 (2)130
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H17BrN2O3
Mr353.22
Crystal system, space groupMonoclinic, C2/c
Temperature (K)113
a, b, c (Å)24.691 (7), 6.7678 (17), 17.884 (5)
β (°) 97.184 (5)
V3)2965.1 (13)
Z8
Radiation typeMo Kα
µ (mm1)2.78
Crystal size (mm)0.20 × 0.18 × 0.14
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku/MSC, 2009)
Tmin, Tmax0.606, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
13190, 3501, 2684
Rint0.033
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.062, 1.02
No. of reflections3501
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.33

Computer programs: CrystalClear-SM Expert (Rigaku/MSC, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Br1i0.952.933.6791 (18)136.8
C15—H15B···O1ii0.992.563.288 (2)129.8
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1/2.
 

Acknowledgements

The authors thank the Jining University Foundation (No. 2012YYJJ07) for financial support of this work.

References

First citationDong, W.-L., Ge, Y.-Q., Xia, Y. & Zhao, B.-X. (2007). Acta Cryst. E63, o4701.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFahmy, H. H., Khalifa, N. M., Nossier, E. S., Abdalla, M. M. & Ismai, M. M. (2012). Acta Pol. Pharm. 69, 411–421.  Web of Science CAS PubMed Google Scholar
First citationHao, B.-Q., Xu, W.-R., Meng, F.-C. & Duan, G.-Y. (2012). Acta Cryst. E68, o877.  CSD CrossRef IUCr Journals Google Scholar
First citationNagwa, M., Gawad, A. E., Georgey, H. H., Ibrahim, N. A., Amin, N. H. & Abdelsalam, R. M. (2012). Arch. Pharm. Res. 35, 807–821.  PubMed Google Scholar
First citationRigaku/MSC (2009). CrystalClear-SM Expert. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Xu, W. R., Shao, H., Xie, Y. F. & Wang, J. W. (2011). Chin. J. Chem. 29, 2039–2048.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds