organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Fluoro­phen­yl)-N-(1,3-thia­zol-2-yl)acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 10 July 2012; accepted 20 July 2012; online 28 July 2012)

In the title compound, C11H9FN2OS, the 1,3-thia­zole ring is planar (r.m.s. deviation = 0.007 Å) and forms a dihedral angle of 73.75 (5)° with the benzene ring. In the crystal, mol­ecules are linked via pairs of N—H⋯N and C—H⋯F hydrogen bonds into chains along [100].

Related literature

For general background to the title compound and for related structures, see: Fun et al. (2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926-o2927.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.], 2012a[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o1385.],b[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2461.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9FN2OS

  • Mr = 236.26

  • Monoclinic, P 21 /c

  • a = 11.9043 (13) Å

  • b = 5.2969 (6) Å

  • c = 16.4579 (18) Å

  • β = 90.397 (3)°

  • V = 1037.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100 K

  • 0.26 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.924, Tmax = 0.965

  • 12231 measured reflections

  • 3722 independent reflections

  • 3092 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.05

  • 3722 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯N1i 0.845 (16) 2.095 (16) 2.9376 (14) 175.0 (16)
C10—H10A⋯F1ii 0.95 2.51 3.4071 (14) 157
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on synthesis of amides (Fun et al., 2011a, 2011b, 2012a, 2012b), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the thiazol-2-yl ring (S1/N1/C1-C3) is nearly planar (r.m.s. deviation = 0.007 Å) and forms a dihedral angle of 73.75 (5)° with the benzene ring (C6-C11). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those reported for related structures (Fun et al., 2011a, 2011b, 2012a, 2012b). In the crystal structure (Fig. 2), molecules are linked via pairs of intermolecular N2–H1N2···N1 and C10–H10A···F1 hydrogen bonds (Table 1) into one-dimensional chains along [100].

Related literature top

For general background to the title compound and for related structures, see: Fun et al. (2011a,b, 2012a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond lengths, see: Allen et al. (1987).

Experimental top

2-Fluorolphenylacetic acid (0.154 g, 1 mmol), 2-aminothiazole (0.1 g, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 mL of ice-cold aqueous hydrochloric acid with stirring and was then extracted thrice with dichloromethane. The organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound. Single crystals were grown from acetone and toluene (1:1 v/v) mixture by the slow evaporation method (m.p.: 453-455 K).

Refinement top

Atom H1N2 was located in a difference Fourier map and refined freely [N–H = 0.846 (17) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 or 0.99 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

In continuation of our work on synthesis of amides (Fun et al., 2011a, 2011b, 2012a, 2012b), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the thiazol-2-yl ring (S1/N1/C1-C3) is nearly planar (r.m.s. deviation = 0.007 Å) and forms a dihedral angle of 73.75 (5)° with the benzene ring (C6-C11). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those reported for related structures (Fun et al., 2011a, 2011b, 2012a, 2012b). In the crystal structure (Fig. 2), molecules are linked via pairs of intermolecular N2–H1N2···N1 and C10–H10A···F1 hydrogen bonds (Table 1) into one-dimensional chains along [100].

For general background to the title compound and for related structures, see: Fun et al. (2011a,b, 2012a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2-(2-Fluorophenyl)-N-(1,3-thiazol-2-yl)acetamide top
Crystal data top
C11H9FN2OSF(000) = 488
Mr = 236.26Dx = 1.512 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4325 reflections
a = 11.9043 (13) Åθ = 4.0–32.5°
b = 5.2969 (6) ŵ = 0.30 mm1
c = 16.4579 (18) ÅT = 100 K
β = 90.397 (3)°Block, colourless
V = 1037.7 (2) Å30.26 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3722 independent reflections
Radiation source: fine-focus sealed tube3092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 32.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1718
Tmin = 0.924, Tmax = 0.965k = 87
12231 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.3919P]
where P = (Fo2 + 2Fc2)/3
3722 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H9FN2OSV = 1037.7 (2) Å3
Mr = 236.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9043 (13) ŵ = 0.30 mm1
b = 5.2969 (6) ÅT = 100 K
c = 16.4579 (18) Å0.26 × 0.18 × 0.12 mm
β = 90.397 (3)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3722 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3092 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.965Rint = 0.030
12231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.47 e Å3
3722 reflectionsΔρmin = 0.26 e Å3
149 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.11704 (6)0.19317 (14)0.03863 (4)0.02223 (16)
S10.48132 (2)0.00859 (5)0.172709 (16)0.01629 (7)
O10.28432 (7)0.26500 (17)0.18303 (5)0.01993 (17)
N10.57205 (8)0.22624 (18)0.04881 (6)0.01618 (17)
N20.39938 (7)0.40844 (19)0.08374 (6)0.01519 (17)
C10.60857 (9)0.1033 (2)0.13824 (7)0.0184 (2)
H1A0.64910.23970.16180.022*
C20.64234 (9)0.0308 (2)0.07290 (7)0.0176 (2)
H2A0.71010.00650.04520.021*
C30.48369 (8)0.2335 (2)0.09615 (6)0.01391 (18)
C40.30210 (9)0.4142 (2)0.12773 (6)0.01507 (19)
C50.22188 (9)0.6224 (2)0.10236 (7)0.0186 (2)
H5A0.24190.77870.13210.022*
H5B0.23140.65590.04360.022*
C60.10050 (8)0.5610 (2)0.11813 (6)0.01376 (18)
C70.03141 (9)0.7177 (2)0.16408 (6)0.01611 (19)
H7A0.06210.86520.18840.019*
C80.08201 (9)0.6617 (2)0.17497 (7)0.0185 (2)
H8A0.12790.77110.20620.022*
C90.12777 (9)0.4461 (2)0.14008 (7)0.0199 (2)
H9A0.20490.40760.14780.024*
C100.06080 (9)0.2858 (2)0.09371 (7)0.0181 (2)
H10A0.09120.13800.06930.022*
C110.05083 (9)0.3483 (2)0.08436 (6)0.01515 (19)
H1N20.4086 (14)0.506 (3)0.0437 (10)0.027 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0244 (3)0.0189 (3)0.0235 (3)0.0046 (3)0.0039 (3)0.0076 (3)
S10.01630 (12)0.01661 (13)0.01597 (12)0.00145 (10)0.00162 (8)0.00255 (9)
O10.0171 (3)0.0237 (4)0.0191 (3)0.0032 (3)0.0045 (3)0.0065 (3)
N10.0135 (4)0.0153 (4)0.0198 (4)0.0008 (3)0.0028 (3)0.0007 (3)
N20.0135 (4)0.0149 (4)0.0172 (4)0.0017 (3)0.0033 (3)0.0031 (3)
C10.0156 (4)0.0175 (5)0.0220 (5)0.0029 (4)0.0010 (4)0.0016 (4)
C20.0135 (4)0.0173 (5)0.0222 (5)0.0010 (4)0.0010 (4)0.0003 (4)
C30.0134 (4)0.0128 (4)0.0155 (4)0.0010 (4)0.0007 (3)0.0006 (3)
C40.0129 (4)0.0163 (5)0.0160 (4)0.0006 (4)0.0015 (3)0.0002 (4)
C50.0141 (4)0.0164 (5)0.0254 (5)0.0010 (4)0.0032 (4)0.0036 (4)
C60.0130 (4)0.0138 (4)0.0145 (4)0.0007 (4)0.0010 (3)0.0011 (3)
C70.0176 (4)0.0145 (5)0.0163 (4)0.0015 (4)0.0010 (3)0.0016 (4)
C80.0177 (5)0.0195 (5)0.0186 (5)0.0054 (4)0.0042 (4)0.0010 (4)
C90.0136 (4)0.0216 (5)0.0244 (5)0.0008 (4)0.0015 (4)0.0046 (4)
C100.0168 (4)0.0156 (5)0.0219 (5)0.0012 (4)0.0032 (4)0.0008 (4)
C110.0169 (4)0.0139 (5)0.0147 (4)0.0030 (4)0.0015 (3)0.0017 (4)
Geometric parameters (Å, º) top
F1—C111.3679 (12)C5—C61.5054 (15)
S1—C11.7262 (11)C5—H5A0.9900
S1—C31.7344 (11)C5—H5B0.9900
O1—C41.2248 (13)C6—C111.3866 (15)
N1—C31.3139 (13)C6—C71.3951 (14)
N1—C21.3872 (15)C7—C81.3952 (15)
N2—C41.3704 (13)C7—H7A0.9500
N2—C31.3802 (14)C8—C91.3878 (17)
N2—H1N20.846 (17)C8—H8A0.9500
C1—C21.3524 (16)C9—C101.3956 (16)
C1—H1A0.9500C9—H9A0.9500
C2—H2A0.9500C10—C111.3791 (15)
C4—C51.5156 (16)C10—H10A0.9500
C1—S1—C388.76 (5)C4—C5—H5B108.9
C3—N1—C2109.65 (9)H5A—C5—H5B107.7
C4—N2—C3123.58 (9)C11—C6—C7116.69 (10)
C4—N2—H1N2120.8 (12)C11—C6—C5120.92 (9)
C3—N2—H1N2115.4 (12)C7—C6—C5122.34 (10)
C2—C1—S1110.32 (9)C6—C7—C8121.19 (10)
C2—C1—H1A124.8C6—C7—H7A119.4
S1—C1—H1A124.8C8—C7—H7A119.4
C1—C2—N1115.93 (10)C9—C8—C7119.94 (10)
C1—C2—H2A122.0C9—C8—H8A120.0
N1—C2—H2A122.0C7—C8—H8A120.0
N1—C3—N2121.08 (10)C8—C9—C10120.20 (10)
N1—C3—S1115.33 (8)C8—C9—H9A119.9
N2—C3—S1123.59 (8)C10—C9—H9A119.9
O1—C4—N2121.95 (10)C11—C10—C9117.99 (11)
O1—C4—C5124.23 (9)C11—C10—H10A121.0
N2—C4—C5113.82 (9)C9—C10—H10A121.0
C6—C5—C4113.50 (9)F1—C11—C10118.45 (10)
C6—C5—H5A108.9F1—C11—C6117.56 (9)
C4—C5—H5A108.9C10—C11—C6123.98 (10)
C6—C5—H5B108.9
C3—S1—C1—C20.63 (9)C4—C5—C6—C1157.78 (14)
S1—C1—C2—N11.22 (13)C4—C5—C6—C7124.88 (11)
C3—N1—C2—C11.27 (14)C11—C6—C7—C80.15 (15)
C2—N1—C3—N2178.59 (10)C5—C6—C7—C8177.30 (10)
C2—N1—C3—S10.73 (12)C6—C7—C8—C90.31 (17)
C4—N2—C3—N1175.57 (10)C7—C8—C9—C100.36 (17)
C4—N2—C3—S13.70 (15)C8—C9—C10—C110.25 (17)
C1—S1—C3—N10.07 (9)C9—C10—C11—F1179.62 (10)
C1—S1—C3—N2179.23 (10)C9—C10—C11—C60.09 (17)
C3—N2—C4—O11.54 (17)C7—C6—C11—F1179.57 (9)
C3—N2—C4—C5179.49 (10)C5—C6—C11—F12.08 (15)
O1—C4—C5—C629.04 (16)C7—C6—C11—C100.04 (16)
N2—C4—C5—C6152.01 (10)C5—C6—C11—C10177.45 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N1i0.845 (16)2.095 (16)2.9376 (14)175.0 (16)
C10—H10A···F1ii0.952.513.4071 (14)157
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC11H9FN2OS
Mr236.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.9043 (13), 5.2969 (6), 16.4579 (18)
β (°) 90.397 (3)
V3)1037.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.26 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.924, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
12231, 3722, 3092
Rint0.030
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.05
No. of reflections3722
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N1i0.845 (16)2.095 (16)2.9376 (14)175.0 (16)
C10—H10A···F1ii0.95002.51003.4071 (14)157.00
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors would like to thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). BN also thanks the UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP–DRS-Phase 1 programme.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o1385.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2461.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds