organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-N-(3-chloro-4-fluoro­phen­yl)acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 10 July 2012; accepted 20 July 2012; online 25 July 2012)

In the title compound, C14H10BrClFNO, the benzene rings form a dihedral angle of 64.0 (2)°. In the crystal, mol­ecules are linked via inter­molecular N—H⋯O, C—H⋯O, C—H⋯Cl and C—H⋯F hydrogen bonds into layers parallel to (001). The crystal was refined as a merohedral twin with a 0.935 (114):0.065 (14) domain ratio.

Related literature

For general background to the title compound and for related structures, see: Fun et al. (2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926-o2927.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.], 2012a[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o1385.],b[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2461.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10BrClFNO

  • Mr = 342.59

  • Orthorhombic, P 21 21 21

  • a = 4.9120 (5) Å

  • b = 6.3131 (6) Å

  • c = 42.517 (4) Å

  • V = 1318.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.32 mm−1

  • T = 100 K

  • 0.30 × 0.17 × 0.07 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.440, Tmax = 0.806

  • 10866 measured reflections

  • 4737 independent reflections

  • 4358 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.120

  • S = 1.15

  • 4737 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −1.82 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1929 Friedel pairs

  • Flack parameter: 0.065 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.88 1.97 2.844 (5) 172
C2—H2A⋯O1ii 0.95 2.58 3.321 (5) 135
C10—H10A⋯Cl1iii 0.95 2.67 3.583 (5) 160
C11—H11A⋯F1iv 0.95 2.52 3.443 (6) 165
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x-1, y+1, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the synthesis of amides (Fun et al., 2011a, 2011b, 2012a, 2012b), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the two benzene rings (C1-C6, C9-C14) form a dihedral angle of 64.0 (2)°. Bond lengths and angles are within normal ranges and are comparable to those found in related structures (Fun et al., 2011a, 2011b, 2012a, 2012b). In the crystal structure (Fig. 2), molecules are linked via intermolecular N1–H1N1···O1, C2–H2A···O1, C10–H10A···Cl1 and C11–H11A···F1 hydrogen bonds (Table 1) into two-dimensional layers parallel to (001).

Related literature top

For general background to the title compound and for related structures, see: Fun et al. (2011a,b, 2012a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

4-Bromophenylacetic acid (0.213 g, 1 mmol), 3-chloro-4-fluoroaniline (0.145 g, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h, poured into 100 mL of ice-cold aqueous hydrochloric acid with stirring and was then extracted thrice with dichloromethane. The organic layer was washed with a saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound. Single crystals were grown from acetone and toluene (1:1 v/v) mixture by the slow evaporation method (m.p.: 415-417 K).

Refinement top

Atom H1N1 was located in a difference Fourier map and refined using a riding model with Uiso(H) = 1.2 Ueq(N) [N–H = 0.8825 Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 or 0.99 Å and Uiso(H) = 1.2 Ueq(C). The crystal was refined as an inversion twin with a final refined BASF ratio of 0.935 (114):0.065 (14) for 1929 Friedel pairs.

Structure description top

In continuation of our work on the synthesis of amides (Fun et al., 2011a, 2011b, 2012a, 2012b), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the two benzene rings (C1-C6, C9-C14) form a dihedral angle of 64.0 (2)°. Bond lengths and angles are within normal ranges and are comparable to those found in related structures (Fun et al., 2011a, 2011b, 2012a, 2012b). In the crystal structure (Fig. 2), molecules are linked via intermolecular N1–H1N1···O1, C2–H2A···O1, C10–H10A···Cl1 and C11–H11A···F1 hydrogen bonds (Table 1) into two-dimensional layers parallel to (001).

For general background to the title compound and for related structures, see: Fun et al. (2011a,b, 2012a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2-(4-Bromophenyl)-N-(3-chloro-4-fluorophenyl)acetamide top
Crystal data top
C14H10BrClFNOF(000) = 680
Mr = 342.59Dx = 1.726 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4232 reflections
a = 4.9120 (5) Åθ = 3.5–31.8°
b = 6.3131 (6) ŵ = 3.32 mm1
c = 42.517 (4) ÅT = 100 K
V = 1318.4 (2) Å3Plate, colourless
Z = 40.30 × 0.17 × 0.07 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4737 independent reflections
Radiation source: fine-focus sealed tube4358 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 32.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.440, Tmax = 0.806k = 99
10866 measured reflectionsl = 4663
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0038P)2 + 3.9457P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
4737 reflectionsΔρmax = 0.86 e Å3
173 parametersΔρmin = 1.82 e Å3
0 restraintsAbsolute structure: Flack (1983), 1929 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.065 (14)
Crystal data top
C14H10BrClFNOV = 1318.4 (2) Å3
Mr = 342.59Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.9120 (5) ŵ = 3.32 mm1
b = 6.3131 (6) ÅT = 100 K
c = 42.517 (4) Å0.30 × 0.17 × 0.07 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4737 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4358 reflections with I > 2σ(I)
Tmin = 0.440, Tmax = 0.806Rint = 0.032
10866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.120Δρmax = 0.86 e Å3
S = 1.15Δρmin = 1.82 e Å3
4737 reflectionsAbsolute structure: Flack (1983), 1929 Friedel pairs
173 parametersAbsolute structure parameter: 0.065 (14)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.05032 (9)1.14272 (6)0.026647 (9)0.01959 (9)
Cl11.2503 (4)0.31406 (18)0.19870 (3)0.0379 (3)
F10.8185 (7)0.1764 (6)0.24039 (7)0.0389 (8)
O10.5500 (7)0.4407 (5)0.12674 (7)0.0216 (5)
N10.9909 (6)0.3622 (6)0.13959 (7)0.0183 (6)
H1N11.16780.38120.13740.022*
C10.6150 (9)0.9292 (7)0.09204 (10)0.0206 (8)
H1A0.69390.98080.11100.025*
C20.4185 (9)1.0515 (6)0.07644 (9)0.0195 (8)
H2A0.36221.18430.08470.023*
C30.3096 (8)0.9750 (6)0.04902 (9)0.0158 (7)
C40.3851 (9)0.7798 (6)0.03669 (10)0.0185 (7)
H4A0.30460.72840.01790.022*
C50.5801 (9)0.6617 (6)0.05240 (9)0.0189 (7)
H5A0.63540.52910.04400.023*
C60.6964 (9)0.7335 (6)0.08025 (10)0.0182 (7)
C70.9099 (8)0.6042 (6)0.09676 (10)0.0204 (8)
H7A1.04660.70100.10610.025*
H7B1.00430.51420.08110.025*
C80.7943 (8)0.4641 (6)0.12252 (9)0.0157 (7)
C90.9335 (9)0.2242 (6)0.16520 (9)0.0179 (7)
C100.7350 (10)0.2685 (8)0.18765 (11)0.0268 (9)
H10A0.62620.39230.18580.032*
C110.6968 (10)0.1312 (10)0.21275 (11)0.0320 (10)
H11A0.55880.15900.22790.038*
C120.8580 (11)0.0440 (8)0.21570 (11)0.0275 (9)
C131.0540 (12)0.0902 (6)0.19399 (9)0.0228 (8)
C141.0956 (9)0.0427 (7)0.16824 (9)0.0211 (8)
H14A1.23130.01080.15300.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01688 (15)0.01907 (14)0.02281 (16)0.00264 (16)0.00107 (16)0.00387 (15)
Cl10.0564 (9)0.0216 (5)0.0357 (6)0.0089 (5)0.0016 (6)0.0003 (4)
F10.0354 (18)0.0496 (19)0.0316 (14)0.0056 (16)0.0028 (13)0.0207 (14)
O10.0082 (11)0.0314 (13)0.0253 (13)0.0002 (14)0.0008 (13)0.0045 (11)
N10.0022 (14)0.0290 (14)0.0236 (14)0.0016 (13)0.0004 (10)0.0048 (14)
C10.020 (2)0.0221 (16)0.0193 (17)0.0013 (15)0.0019 (15)0.0015 (14)
C20.017 (2)0.0183 (15)0.0229 (17)0.0020 (16)0.0024 (16)0.0017 (13)
C30.0116 (17)0.0151 (14)0.0206 (17)0.0001 (13)0.0018 (14)0.0030 (12)
C40.0139 (18)0.0213 (16)0.0202 (16)0.0035 (14)0.0002 (14)0.0024 (13)
C50.0202 (19)0.0135 (14)0.0231 (16)0.0030 (16)0.0007 (15)0.0006 (13)
C60.0142 (18)0.0204 (16)0.0200 (18)0.0003 (15)0.0013 (15)0.0015 (14)
C70.0114 (19)0.0263 (19)0.0235 (17)0.0004 (14)0.0028 (14)0.0065 (14)
C80.0067 (15)0.0216 (16)0.0187 (17)0.0004 (14)0.0027 (13)0.0020 (13)
C90.0082 (15)0.0261 (16)0.0194 (16)0.0035 (16)0.0021 (16)0.0007 (13)
C100.018 (2)0.038 (2)0.025 (2)0.0064 (19)0.0039 (17)0.0044 (17)
C110.019 (2)0.051 (3)0.026 (2)0.009 (2)0.0075 (17)0.011 (2)
C120.027 (2)0.033 (2)0.023 (2)0.007 (2)0.0017 (18)0.0093 (17)
C130.027 (2)0.0179 (15)0.0234 (17)0.0008 (18)0.0069 (19)0.0003 (12)
C140.018 (2)0.0259 (18)0.0190 (17)0.0000 (16)0.0040 (15)0.0017 (14)
Geometric parameters (Å, º) top
Br1—C31.910 (4)C5—C61.391 (6)
Cl1—C131.723 (4)C5—H5A0.9500
F1—C121.356 (5)C6—C71.503 (6)
O1—C81.222 (5)C7—C81.518 (6)
N1—C81.369 (5)C7—H7A0.9900
N1—C91.423 (5)C7—H7B0.9900
N1—H1N10.8825C9—C101.393 (6)
C1—C61.392 (6)C9—C141.401 (6)
C1—C21.403 (6)C10—C111.388 (7)
C1—H1A0.9500C10—H10A0.9500
C2—C31.371 (6)C11—C121.366 (7)
C2—H2A0.9500C11—H11A0.9500
C3—C41.390 (5)C12—C131.365 (7)
C4—C51.385 (6)C13—C141.395 (6)
C4—H4A0.9500C14—H14A0.9500
C8—N1—C9123.6 (3)C6—C7—H7B109.0
C8—N1—H1N1125.0C8—C7—H7B109.0
C9—N1—H1N1111.2H7A—C7—H7B107.8
C6—C1—C2121.1 (4)O1—C8—N1123.9 (4)
C6—C1—H1A119.5O1—C8—C7122.9 (4)
C2—C1—H1A119.5N1—C8—C7113.1 (3)
C3—C2—C1118.5 (4)C10—C9—C14119.9 (4)
C3—C2—H2A120.8C10—C9—N1122.7 (4)
C1—C2—H2A120.8C14—C9—N1117.3 (4)
C2—C3—C4122.0 (4)C11—C10—C9119.8 (4)
C2—C3—Br1119.2 (3)C11—C10—H10A120.1
C4—C3—Br1118.8 (3)C9—C10—H10A120.1
C5—C4—C3118.7 (4)C12—C11—C10119.9 (4)
C5—C4—H4A120.7C12—C11—H11A120.1
C3—C4—H4A120.7C10—C11—H11A120.1
C4—C5—C6121.3 (4)F1—C12—C13119.5 (4)
C4—C5—H5A119.4F1—C12—C11119.2 (5)
C6—C5—H5A119.4C13—C12—C11121.3 (4)
C5—C6—C1118.6 (4)C12—C13—C14120.4 (4)
C5—C6—C7120.5 (4)C12—C13—Cl1119.4 (3)
C1—C6—C7120.9 (4)C14—C13—Cl1120.2 (4)
C6—C7—C8113.1 (3)C13—C14—C9118.7 (4)
C6—C7—H7A109.0C13—C14—H14A120.6
C8—C7—H7A109.0C9—C14—H14A120.6
C6—C1—C2—C30.7 (6)C8—N1—C9—C1041.6 (6)
C1—C2—C3—C41.1 (6)C8—N1—C9—C14141.6 (4)
C1—C2—C3—Br1178.0 (3)C14—C9—C10—C110.7 (7)
C2—C3—C4—C51.2 (6)N1—C9—C10—C11177.4 (4)
Br1—C3—C4—C5177.8 (3)C9—C10—C11—C121.5 (8)
C3—C4—C5—C61.1 (6)C10—C11—C12—F1179.8 (5)
C4—C5—C6—C10.7 (6)C10—C11—C12—C131.4 (8)
C4—C5—C6—C7179.3 (4)F1—C12—C13—C14179.3 (4)
C2—C1—C6—C50.5 (6)C11—C12—C13—C140.5 (8)
C2—C1—C6—C7179.1 (4)F1—C12—C13—Cl10.8 (6)
C5—C6—C7—C895.2 (5)C11—C12—C13—Cl1179.6 (4)
C1—C6—C7—C886.3 (5)C12—C13—C14—C90.2 (7)
C9—N1—C8—O12.9 (6)Cl1—C13—C14—C9179.6 (3)
C9—N1—C8—C7179.2 (4)C10—C9—C14—C130.1 (6)
C6—C7—C8—O18.2 (6)N1—C9—C14—C13176.7 (4)
C6—C7—C8—N1174.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.881.972.844 (5)172
C2—H2A···O1ii0.952.583.321 (5)135
C10—H10A···Cl1iii0.952.673.583 (5)160
C11—H11A···F1iv0.952.523.443 (6)165
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y+1, z; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10BrClFNO
Mr342.59
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)4.9120 (5), 6.3131 (6), 42.517 (4)
V3)1318.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.32
Crystal size (mm)0.30 × 0.17 × 0.07
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.440, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
10866, 4737, 4358
Rint0.032
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.120, 1.15
No. of reflections4737
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 1.82
Absolute structureFlack (1983), 1929 Friedel pairs
Absolute structure parameter0.065 (14)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.88001.97002.844 (5)172.00
C2—H2A···O1ii0.95002.58003.321 (5)135.00
C10—H10A···Cl1iii0.95002.67003.583 (5)160.00
C11—H11A···F1iv0.95002.52003.443 (6)165.00
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y+1, z; (iv) x+1, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors would like to thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). BN also thanks the UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP–DRS-Phase 1 programme.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o1385.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2461.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds