metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(2-{[2-(di­methyl­ammonio)­eth­yl]imino­meth­yl}pyridine-κ2N,N′)bis­­(thio­cyanato-κN)manganese(II)]-μ-thio­cyanato-κ2N:S]

aZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China
*Correspondence e-mail: wangjun7203@126.com

(Received 16 July 2012; accepted 19 July 2012; online 28 July 2012)

In the title one-dimensional coordination polymer, [Mn(NCS)3(C10H16N3)]n, the MnII atom is coordinated by an N,N′-bidentate Schiff base and four thio­cyanate ligands in a distorted octa­hedral N5S geometry. Bridging thio­cyanate ligands inter­connect adjacent [Mn(NCS)2(C10H16N3)] units, giving rise to helical chains extending along the b axis. The chains are further linked through N—H⋯S hydrogen bonds, leading to a three-dimensional supra­molecular network.

Related literature

For the structure of CuII and PtI complexes of the same Schiff base, see: Hinman et al. (2000[Hinman, J. G., Baar, C. R., Jennings, M. C. & Puddephatt, R. J. (2000). Organometallics, 19, 563-570.]); Mukherjee et al. (2002[Mukherjee, P. S., Maji, T. K., Escuer, A., Vicente, R., Ribas, J., Rosair, G., Mautner, F. A. & Chaudhuri, N. R. (2002). Eur. J. Inorg. Chem. pp. 943-949.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(NCS)3(C10H16N3)]

  • Mr = 407.44

  • Orthorhombic, P b c a

  • a = 8.5603 (12) Å

  • b = 11.0699 (15) Å

  • c = 37.346 (5) Å

  • V = 3539.0 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 296 K

  • 0.25 × 0.19 × 0.11 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.770, Tmax = 0.888

  • 18847 measured reflections

  • 3660 independent reflections

  • 2397 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.098

  • S = 1.04

  • 3660 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯S1i 0.87 2.47 3.294 (3) 159
Symmetry code: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (Fig. 1) was obtained upon complexation of the Schiff base N,N-dimethyl-N'-[(pyridin-2-yl)methylene]ethane-1,2-diamine with Mn(ClO4)2 and KNCS. Similarly to what observed in a related platinium(II) complex (Hinman et al., 2000), due to the protonation of the amine nitrogen atom the Schiff base acts as a bidentate ligand instead as tridentate (Mukherjee et al., 2002). The Mn(II) ion is in a distorted octahedral coordination environment, provided by an N,N'-bidentate Schiff base and four NCS ligands. The µ2-isothiocyanato ligands interconnect the [Mn(NCS)2(C10H16N3)] units, giving rise to one-dimensional helical chains along the b axis. Adjacent helical chains are further connected via N—H···S hydrogen bonds (Table 1) into a three-dimensional supramolecular structure.

Related literature top

For the structure of CuII and PtI complexes of the same Schiff base, see: Hinman et al. (2000); Mukherjee et al. (2002).

Experimental top

A mixture of 2-pyridinecarboxaldehyde (0.107 g, 1 mmol) and N,N-dimethylethyldiamine (0.088 g, 1 mmol) in ethanol (5 ml) was refluxed for 2 h followed by addition of a solution of Mn(ClO4)2.6H2O (0.362 g, 1 mmol) and KNCS (0.291, 3 mmol) in a minimum amount of water. The resulting solution was refluxed for 30 min, then set aside at room temperature. Crystals of the title compound suitable for X-ray analysis were obtained after few days on slow evaporation of the solvent.

Refinement top

Hydrogen atoms were located in a difference Fourier map or placed at calculated positions (C—H = 0.95–0.99 Å; N—H = 0.87 Å), and were treated as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C, N) for amine and methyl H atoms.

Structure description top

The title compound (Fig. 1) was obtained upon complexation of the Schiff base N,N-dimethyl-N'-[(pyridin-2-yl)methylene]ethane-1,2-diamine with Mn(ClO4)2 and KNCS. Similarly to what observed in a related platinium(II) complex (Hinman et al., 2000), due to the protonation of the amine nitrogen atom the Schiff base acts as a bidentate ligand instead as tridentate (Mukherjee et al., 2002). The Mn(II) ion is in a distorted octahedral coordination environment, provided by an N,N'-bidentate Schiff base and four NCS ligands. The µ2-isothiocyanato ligands interconnect the [Mn(NCS)2(C10H16N3)] units, giving rise to one-dimensional helical chains along the b axis. Adjacent helical chains are further connected via N—H···S hydrogen bonds (Table 1) into a three-dimensional supramolecular structure.

For the structure of CuII and PtI complexes of the same Schiff base, see: Hinman et al. (2000); Mukherjee et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) 2.5-x, 0.5+y, z.
catena-Poly[[(2-{[2-(dimethylammonio)ethyl]iminomethyl}pyridine- κ2N,N')bis(thiocyanato-κN)manganese(II)]- µ-thiocyanato-κ2N:S] top
Crystal data top
[Mn(NCS)3(C10H16N3)]F(000) = 1672
Mr = 407.44Dx = 1.529 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3600 reflections
a = 8.5603 (12) Åθ = 1.2–28.0°
b = 11.0699 (15) ŵ = 1.11 mm1
c = 37.346 (5) ÅT = 296 K
V = 3539.0 (8) Å3Block, yellow
Z = 80.25 × 0.19 × 0.11 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3660 independent reflections
Radiation source: fine-focus sealed tube2397 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
φ and ω scanθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.770, Tmax = 0.888k = 1312
18847 measured reflectionsl = 4644
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.1816P]
where P = (Fo2 + 2Fc2)/3
3660 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Mn(NCS)3(C10H16N3)]V = 3539.0 (8) Å3
Mr = 407.44Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.5603 (12) ŵ = 1.11 mm1
b = 11.0699 (15) ÅT = 296 K
c = 37.346 (5) Å0.25 × 0.19 × 0.11 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3660 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2397 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.888Rint = 0.076
18847 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
3660 reflectionsΔρmin = 0.35 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8026 (4)1.0515 (3)0.29186 (7)0.0365 (7)
H10.87751.10750.28480.044*
C20.6523 (4)1.0652 (3)0.27924 (8)0.0427 (8)
H20.62631.12930.26430.051*
C30.5419 (4)0.9820 (3)0.28924 (8)0.0470 (9)
H3A0.43960.98850.28110.056*
C40.5847 (4)0.8885 (3)0.31150 (8)0.0390 (8)
H40.51150.83110.31850.047*
C50.7368 (4)0.8806 (3)0.32342 (7)0.0328 (7)
C60.7882 (4)0.7845 (3)0.34732 (8)0.0365 (8)
H60.71880.72370.35390.044*
C70.9714 (4)0.6847 (3)0.38312 (8)0.0400 (8)
H7A1.07260.65280.37620.048*
H7B0.89540.61980.38180.048*
C80.9784 (4)0.7345 (3)0.42070 (8)0.0381 (8)
H8A1.04090.80760.42070.046*
H8B0.87360.75610.42830.046*
C91.2174 (4)0.6312 (3)0.44276 (10)0.0601 (11)
H9A1.26930.70680.44690.090*
H9B1.23990.60360.41890.090*
H9C1.25380.57260.45980.090*
C101.0076 (5)0.6853 (4)0.48428 (8)0.0679 (12)
H10A1.05420.62970.50090.102*
H10B0.89630.68540.48740.102*
H10C1.04770.76500.48850.102*
C111.3790 (4)0.8798 (3)0.39279 (8)0.0358 (7)
C120.9167 (4)1.0407 (3)0.41865 (10)0.0411 (8)
C131.2401 (4)1.1848 (3)0.30617 (8)0.0351 (7)
Mn11.07355 (5)0.94723 (4)0.344285 (12)0.03482 (15)
N10.8468 (3)0.9621 (2)0.31373 (6)0.0312 (6)
N20.9266 (3)0.7830 (2)0.35923 (6)0.0335 (6)
N31.0459 (3)0.6475 (2)0.44693 (7)0.0398 (7)
N41.2709 (3)0.8875 (2)0.37436 (7)0.0469 (7)
N50.9625 (4)1.0375 (2)0.38952 (8)0.0500 (8)
N61.1752 (3)1.1042 (2)0.31952 (7)0.0447 (7)
H30.99960.58060.44120.067*
S11.53139 (11)0.87179 (8)0.41894 (2)0.0482 (3)
S20.85784 (14)1.04061 (10)0.46007 (2)0.0646 (3)
S31.32720 (10)1.29615 (7)0.28601 (2)0.0427 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (2)0.0343 (18)0.0352 (17)0.0006 (15)0.0050 (15)0.0024 (15)
C20.045 (2)0.042 (2)0.0411 (19)0.0111 (17)0.0011 (17)0.0056 (16)
C30.037 (2)0.060 (2)0.044 (2)0.0059 (18)0.0041 (17)0.0013 (18)
C40.0304 (19)0.044 (2)0.0424 (19)0.0054 (15)0.0004 (15)0.0008 (16)
C50.0332 (19)0.0328 (18)0.0325 (17)0.0029 (14)0.0030 (14)0.0017 (14)
C60.044 (2)0.0306 (18)0.0350 (17)0.0069 (14)0.0037 (16)0.0018 (14)
C70.050 (2)0.0276 (17)0.0426 (19)0.0029 (15)0.0033 (16)0.0048 (15)
C80.047 (2)0.0307 (18)0.0366 (18)0.0059 (15)0.0006 (16)0.0037 (14)
C90.048 (2)0.067 (3)0.065 (3)0.003 (2)0.009 (2)0.005 (2)
C100.094 (3)0.078 (3)0.032 (2)0.003 (2)0.002 (2)0.006 (2)
C110.0377 (19)0.0300 (18)0.0398 (19)0.0024 (14)0.0013 (16)0.0002 (15)
C120.038 (2)0.0301 (18)0.055 (2)0.0001 (15)0.0126 (18)0.0077 (17)
C130.0318 (19)0.0372 (19)0.0362 (17)0.0002 (14)0.0020 (15)0.0036 (15)
Mn10.0324 (3)0.0317 (3)0.0404 (3)0.0035 (2)0.0037 (2)0.0040 (2)
N10.0315 (15)0.0291 (14)0.0328 (14)0.0003 (11)0.0012 (11)0.0017 (12)
N20.0421 (17)0.0280 (14)0.0304 (14)0.0007 (12)0.0001 (12)0.0023 (11)
N30.0482 (19)0.0363 (15)0.0349 (14)0.0042 (13)0.0040 (13)0.0010 (12)
N40.0424 (18)0.0521 (18)0.0463 (17)0.0019 (14)0.0078 (15)0.0031 (14)
N50.058 (2)0.0441 (18)0.0483 (18)0.0010 (14)0.0039 (16)0.0054 (15)
N60.0447 (18)0.0370 (16)0.0525 (18)0.0050 (14)0.0026 (14)0.0029 (14)
S10.0476 (6)0.0432 (5)0.0538 (5)0.0057 (4)0.0176 (4)0.0027 (4)
S20.0818 (8)0.0664 (7)0.0455 (6)0.0123 (6)0.0038 (5)0.0092 (5)
S30.0478 (6)0.0360 (5)0.0442 (5)0.0086 (4)0.0037 (4)0.0034 (4)
Geometric parameters (Å, º) top
C1—N11.337 (3)C9—H9A0.9600
C1—C21.379 (4)C9—H9B0.9600
C1—H10.9300C9—H9C0.9600
C2—C31.371 (5)C10—N31.492 (4)
C2—H20.9300C10—H10A0.9600
C3—C41.377 (4)C10—H10B0.9600
C3—H3A0.9300C10—H10C0.9600
C4—C51.379 (4)C11—N41.157 (4)
C4—H40.9300C11—S11.632 (3)
C5—N11.354 (4)C12—N51.157 (4)
C5—C61.457 (4)C12—S21.627 (4)
C6—N21.266 (4)C13—N61.162 (4)
C6—H60.9300C13—S31.626 (3)
C7—N21.459 (3)Mn1—N42.133 (3)
C7—C81.509 (4)Mn1—N62.153 (3)
C7—H7A0.9700Mn1—N52.181 (3)
C7—H7B0.9700Mn1—N12.257 (2)
C8—N31.490 (4)Mn1—N22.280 (2)
C8—H8A0.9700Mn1—S3i2.8731 (10)
C8—H8B0.9700N3—H30.8675
C9—N31.487 (4)S3—Mn1ii2.8732 (10)
N1—C1—C2123.6 (3)H10A—C10—H10B109.5
N1—C1—H1118.2N3—C10—H10C109.5
C2—C1—H1118.2H10A—C10—H10C109.5
C3—C2—C1118.4 (3)H10B—C10—H10C109.5
C3—C2—H2120.8N4—C11—S1178.9 (3)
C1—C2—H2120.8N5—C12—S2177.5 (3)
C2—C3—C4119.0 (3)N6—C13—S3177.7 (3)
C2—C3—H3A120.5N4—Mn1—N698.99 (11)
C4—C3—H3A120.5N4—Mn1—N594.55 (11)
C3—C4—C5119.6 (3)N6—Mn1—N598.00 (10)
C3—C4—H4120.2N4—Mn1—N1165.80 (10)
C5—C4—H4120.2N6—Mn1—N194.10 (9)
N1—C5—C4121.9 (3)N5—Mn1—N189.04 (10)
N1—C5—C6116.1 (3)N4—Mn1—N293.50 (10)
C4—C5—C6122.0 (3)N6—Mn1—N2166.41 (10)
N2—C6—C5120.5 (3)N5—Mn1—N286.27 (10)
N2—C6—H6119.8N1—Mn1—N272.99 (9)
C5—C6—H6119.8N4—Mn1—S3i89.10 (8)
N2—C7—C8107.8 (2)N6—Mn1—S3i91.43 (7)
N2—C7—H7A110.1N5—Mn1—S3i169.22 (8)
C8—C7—H7A110.1N1—Mn1—S3i85.06 (6)
N2—C7—H7B110.1N2—Mn1—S3i83.38 (6)
C8—C7—H7B110.1C1—N1—C5117.3 (3)
H7A—C7—H7B108.5C1—N1—Mn1127.3 (2)
N3—C8—C7113.0 (2)C5—N1—Mn1114.49 (19)
N3—C8—H8A109.0C6—N2—C7118.1 (3)
C7—C8—H8A109.0C6—N2—Mn1114.85 (19)
N3—C8—H8B109.0C7—N2—Mn1126.8 (2)
C7—C8—H8B109.0C9—N3—C10110.4 (3)
H8A—C8—H8B107.8C9—N3—C8113.1 (3)
N3—C9—H9A109.5C10—N3—C8110.4 (3)
N3—C9—H9B109.5C9—N3—H3108.7
H9A—C9—H9B109.5C10—N3—H3111.8
N3—C9—H9C109.5C8—N3—H3102.2
H9A—C9—H9C109.5C11—N4—Mn1165.9 (3)
H9B—C9—H9C109.5C12—N5—Mn1152.9 (3)
N3—C10—H10A109.5C13—N6—Mn1175.2 (3)
N3—C10—H10B109.5C13—S3—Mn1ii103.08 (11)
N1—C1—C2—C30.8 (5)C5—C6—N2—Mn15.0 (4)
C1—C2—C3—C40.3 (5)C8—C7—N2—C6104.8 (3)
C2—C3—C4—C50.3 (5)C8—C7—N2—Mn169.3 (3)
C3—C4—C5—N10.3 (5)N4—Mn1—N2—C6177.1 (2)
C3—C4—C5—C6179.3 (3)N6—Mn1—N2—C626.1 (5)
N1—C5—C6—N23.2 (4)N5—Mn1—N2—C682.8 (2)
C4—C5—C6—N2176.4 (3)N1—Mn1—N2—C67.4 (2)
N2—C7—C8—N3171.4 (3)S3i—Mn1—N2—C694.2 (2)
C2—C1—N1—C50.8 (4)N4—Mn1—N2—C72.8 (2)
C2—C1—N1—Mn1167.9 (2)N6—Mn1—N2—C7159.5 (4)
C4—C5—N1—C10.2 (4)N5—Mn1—N2—C791.6 (2)
C6—C5—N1—C1179.9 (2)N1—Mn1—N2—C7178.3 (2)
C4—C5—N1—Mn1169.9 (2)S3i—Mn1—N2—C791.4 (2)
C6—C5—N1—Mn19.8 (3)C7—C8—N3—C972.4 (4)
N4—Mn1—N1—C1163.6 (4)C7—C8—N3—C10163.3 (3)
N6—Mn1—N1—C16.4 (2)N6—Mn1—N4—C1148.5 (11)
N5—Mn1—N1—C191.5 (2)N5—Mn1—N4—C1150.4 (11)
N2—Mn1—N1—C1177.9 (2)N1—Mn1—N4—C11154.6 (9)
S3i—Mn1—N1—C197.5 (2)N2—Mn1—N4—C11136.9 (11)
N4—Mn1—N1—C527.5 (5)S3i—Mn1—N4—C11139.8 (11)
N6—Mn1—N1—C5175.4 (2)N4—Mn1—N5—C1250.7 (6)
N5—Mn1—N1—C577.4 (2)N6—Mn1—N5—C12150.4 (6)
N2—Mn1—N1—C58.97 (19)N1—Mn1—N5—C12115.6 (6)
S3i—Mn1—N1—C593.54 (19)N2—Mn1—N5—C1242.5 (6)
C5—C6—N2—C7179.9 (2)S3i—Mn1—N5—C1258.8 (9)
Symmetry codes: (i) x+5/2, y1/2, z; (ii) x+5/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S1i0.872.473.294 (3)159
Symmetry code: (i) x+5/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Mn(NCS)3(C10H16N3)]
Mr407.44
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)8.5603 (12), 11.0699 (15), 37.346 (5)
V3)3539.0 (8)
Z8
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.25 × 0.19 × 0.11
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.770, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
18847, 3660, 2397
Rint0.076
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.098, 1.04
No. of reflections3660
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.35

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S1i0.872.473.294 (3)158.7
Symmetry code: (i) x+5/2, y1/2, z.
 

Acknowledgements

The work was supported by Zhongshan Polytechnic.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHinman, J. G., Baar, C. R., Jennings, M. C. & Puddephatt, R. J. (2000). Organometallics, 19, 563–570.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, P. S., Maji, T. K., Escuer, A., Vicente, R., Ribas, J., Rosair, G., Mautner, F. A. & Chaudhuri, N. R. (2002). Eur. J. Inorg. Chem. pp. 943–949.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds