organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy­carbonyl-6-nitro­benzoic acid

aSchool of Chemistry and Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Xuzhou Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
*Correspondence e-mail: lzs@jsnu.edu.cn

(Received 20 June 2012; accepted 4 July 2012; online 10 July 2012)

In the title compound, C9H7NO6, the dihedral angles between the benzene ring and its three substituents are 29.99 (8)° for the nitro, 67.09 (8)° for the carb­oxy and 32.48 (10)° for the meth­oxy­carbonyl group. In the crystal, one classical O—H⋯O and two nonclassical C—H⋯O contacts link adjacent mol­ecules, forming a three-dimensional structure.

Related literature

For the bioactivity of the title compound, see: Xu & He (2010[Xu, H. & He, X. (2010). Bioorg. Med. Chem. Lett. 20, 4503-4506.]). For related structures, see: Glidewell et al. (2003[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o144-o146.]); Wang et al. (2006[Wang, Y., Feng, W., Xue, L. & Zheng, J. (2006). Chin. J. Struct. Chem. 25, 923-926.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7NO6

  • Mr = 225.16

  • Orthorhombic, P 21 21 21

  • a = 7.647 (3) Å

  • b = 8.145 (3) Å

  • c = 15.583 (6) Å

  • V = 970.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.27 × 0.22 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 6820 measured reflections

  • 1010 independent reflections

  • 982 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.077

  • S = 1.05

  • 1010 reflections

  • 151 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O5i 0.86 (1) 1.85 (1) 2.706 (2) 178 (3)
C9—H9C⋯O2ii 0.96 2.52 3.465 (3) 170
C9—H9B⋯O3iii 0.96 2.56 3.291 (3) 133
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-(Methoxycarbonyl)-6-nitrobenzoic acid is an important precursor to farm chemicals (Xu & He, 2010). The X-ray structures of 3-nitrophthalic acid (Glidewell et al., 2003) and its organic adduct (Wang et al., 2006) have been determined previously, however, to our knowledge, no structure of the title compound (I) has been reported. In the molecule of (I), Fig. 1, none of three substituents are coplanar with the benzene ring. The dihedral angles between benzene ring and these substituents are 29.99 (8)° for nitro group (N1/O1/O2), 67.09 (8)° for carboxylic acid (C7/O3/O4), and 32.48 (10)° for methoxycarbonyl (C8/O5/O6/C9), substituent respectively. This variation is likely to result from attempts to minimise steric hindrance between adjacent substituents. In the crystal structure, there are three hydrogen bonds, Table 1, one classical O4—H1···O5 and two nonclassical C9—H9B···O3 and C9—H9C···O2 contacts. These link adjacent molecules forming a three dimensional structure, Fig. 2.

Related literature top

For the bioactivity of the title compound, see: Xu & He (2010). For related structures, see: Glidewell et al. (2003); Wang et al. (2006).

Experimental top

A solution of 3-nitrophthalic acid (10.0 g) in acetic anhydride (15 ml) was refluxed for 1 h to obtain 3-nitrophthalic anhydride (8.0 g). Then the product was dissolved in 50 ml anhydrous methanol and stirred at room temperature for 2 h, after which 1 ml concentrated sulfuric acid was dropped into the mixture, refluxed for 24 h, cooled and filtered. The resulting solid was dimethyl 3-nitrophthalate. The filtrate was concentrated and then chromatographed over silica gel (mobile phase: n-hexane:acetone = 1:3). The title compound (I) was collected from mobile phase (1.0 g, m.p. 429–431 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a toluene solution.

Refinement top

The H atom bonded to O4 was located in a difference Fourier map and refined freely. All other H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(parent atom). In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Structure description top

2-(Methoxycarbonyl)-6-nitrobenzoic acid is an important precursor to farm chemicals (Xu & He, 2010). The X-ray structures of 3-nitrophthalic acid (Glidewell et al., 2003) and its organic adduct (Wang et al., 2006) have been determined previously, however, to our knowledge, no structure of the title compound (I) has been reported. In the molecule of (I), Fig. 1, none of three substituents are coplanar with the benzene ring. The dihedral angles between benzene ring and these substituents are 29.99 (8)° for nitro group (N1/O1/O2), 67.09 (8)° for carboxylic acid (C7/O3/O4), and 32.48 (10)° for methoxycarbonyl (C8/O5/O6/C9), substituent respectively. This variation is likely to result from attempts to minimise steric hindrance between adjacent substituents. In the crystal structure, there are three hydrogen bonds, Table 1, one classical O4—H1···O5 and two nonclassical C9—H9B···O3 and C9—H9C···O2 contacts. These link adjacent molecules forming a three dimensional structure, Fig. 2.

For the bioactivity of the title compound, see: Xu & He (2010). For related structures, see: Glidewell et al. (2003); Wang et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing for (I).
2-Methoxycarbonyl-6-nitrobenzoic acid top
Crystal data top
C9H7NO6Dx = 1.541 Mg m3
Mr = 225.16Melting point = 429–431 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6294 reflections
a = 7.647 (3) Åθ = 2.6–27.1°
b = 8.145 (3) ŵ = 0.13 mm1
c = 15.583 (6) ÅT = 296 K
V = 970.6 (7) Å3Block, colourless
Z = 40.27 × 0.22 × 0.16 mm
F(000) = 464
Data collection top
Bruker SMART CCD area-detector
diffractometer
982 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.0°, θmin = 3.0°
φ and ω scansh = 99
6820 measured reflectionsk = 89
1010 independent reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.1444P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1010 reflectionsΔρmax = 0.13 e Å3
151 parametersΔρmin = 0.13 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.058 (7)
Crystal data top
C9H7NO6V = 970.6 (7) Å3
Mr = 225.16Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.647 (3) ŵ = 0.13 mm1
b = 8.145 (3) ÅT = 296 K
c = 15.583 (6) Å0.27 × 0.22 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
982 reflections with I > 2σ(I)
6820 measured reflectionsRint = 0.021
1010 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0271 restraint
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.13 e Å3
1010 reflectionsΔρmin = 0.13 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O61.15166 (19)0.64183 (18)0.90968 (8)0.0467 (4)
O51.0302 (2)0.41107 (19)0.95864 (9)0.0504 (4)
O40.6725 (2)0.22147 (17)0.89827 (8)0.0481 (4)
O30.6525 (2)0.4616 (2)0.96756 (9)0.0503 (4)
C50.7676 (2)0.4546 (2)0.82508 (10)0.0319 (4)
O20.4446 (3)0.3360 (3)0.67750 (11)0.0790 (6)
C20.9167 (3)0.5774 (3)0.67363 (12)0.0481 (5)
H2A0.96770.61670.62350.058*
O10.4073 (2)0.4102 (3)0.80807 (11)0.0694 (5)
C60.6778 (2)0.4551 (2)0.74720 (11)0.0359 (4)
N10.4967 (3)0.3961 (2)0.74398 (12)0.0466 (4)
C81.0429 (2)0.5175 (2)0.90536 (11)0.0343 (4)
C70.6900 (2)0.3825 (2)0.90552 (11)0.0353 (4)
C40.9356 (2)0.5210 (2)0.82510 (10)0.0342 (4)
C91.2706 (3)0.6459 (3)0.98203 (13)0.0532 (6)
H9A1.35400.73270.97410.064*
H9B1.33100.54290.98610.064*
H9C1.20570.66491.03380.064*
C31.0080 (3)0.5825 (3)0.74992 (13)0.0430 (5)
H3A1.11970.62770.75100.052*
C10.7503 (3)0.5143 (2)0.67198 (11)0.0436 (5)
H1A0.68720.51120.62100.052*
H10.630 (4)0.178 (3)0.9437 (12)0.078 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0477 (8)0.0497 (8)0.0428 (7)0.0100 (7)0.0081 (6)0.0050 (6)
O50.0555 (8)0.0542 (8)0.0414 (7)0.0066 (7)0.0148 (7)0.0176 (7)
O40.0640 (9)0.0431 (7)0.0372 (7)0.0043 (7)0.0154 (7)0.0068 (6)
O30.0594 (9)0.0603 (9)0.0311 (7)0.0006 (8)0.0088 (6)0.0060 (6)
C50.0369 (8)0.0321 (8)0.0267 (8)0.0043 (7)0.0019 (7)0.0008 (7)
O20.0743 (11)0.1103 (15)0.0524 (9)0.0313 (12)0.0165 (9)0.0122 (10)
C20.0598 (12)0.0531 (12)0.0314 (9)0.0055 (10)0.0045 (9)0.0121 (8)
O10.0423 (8)0.1073 (15)0.0587 (9)0.0063 (10)0.0043 (8)0.0097 (10)
C60.0399 (9)0.0363 (9)0.0315 (8)0.0017 (8)0.0011 (8)0.0015 (7)
N10.0461 (8)0.0542 (10)0.0396 (8)0.0007 (8)0.0091 (7)0.0012 (8)
C80.0350 (8)0.0374 (9)0.0304 (8)0.0036 (8)0.0021 (7)0.0026 (8)
C70.0341 (8)0.0443 (10)0.0275 (8)0.0014 (8)0.0016 (8)0.0021 (8)
C40.0397 (9)0.0339 (8)0.0290 (8)0.0022 (8)0.0002 (7)0.0042 (7)
C90.0470 (11)0.0652 (13)0.0473 (10)0.0074 (11)0.0104 (9)0.0036 (10)
C30.0447 (9)0.0479 (11)0.0364 (8)0.0054 (9)0.0029 (7)0.0111 (8)
C10.0568 (11)0.0468 (10)0.0271 (8)0.0025 (9)0.0064 (8)0.0055 (8)
Geometric parameters (Å, º) top
O6—C81.312 (2)C2—H2A0.9300
O6—C91.449 (2)O1—N11.216 (3)
O5—C81.204 (2)C6—C11.383 (3)
O4—C71.323 (3)C6—N11.467 (3)
O4—H10.856 (10)C8—C41.496 (2)
O3—C71.197 (2)C4—C31.389 (3)
C5—C41.394 (3)C9—H9A0.9600
C5—C61.394 (2)C9—H9B0.9600
C5—C71.506 (2)C9—H9C0.9600
O2—N11.213 (2)C3—H3A0.9300
C2—C11.373 (3)C1—H1A0.9300
C2—C31.380 (3)
C8—O6—C9117.11 (15)O3—C7—C5123.81 (18)
C7—O4—H1112 (2)O4—C7—C5110.80 (15)
C4—C5—C6116.91 (16)C3—C4—C5120.48 (17)
C4—C5—C7120.96 (15)C3—C4—C8119.57 (17)
C6—C5—C7122.11 (16)C5—C4—C8119.86 (15)
C1—C2—C3119.78 (18)O6—C9—H9A109.5
C1—C2—H2A120.1O6—C9—H9B109.5
C3—C2—H2A120.1H9A—C9—H9B109.5
C1—C6—C5122.78 (18)O6—C9—H9C109.5
C1—C6—N1117.60 (17)H9A—C9—H9C109.5
C5—C6—N1119.58 (16)H9B—C9—H9C109.5
O2—N1—O1123.7 (2)C2—C3—C4120.93 (19)
O2—N1—C6118.15 (19)C2—C3—H3A119.5
O1—N1—C6118.16 (17)C4—C3—H3A119.5
O5—C8—O6124.84 (17)C2—C1—C6119.08 (18)
O5—C8—C4123.11 (17)C2—C1—H1A120.5
O6—C8—C4112.05 (14)C6—C1—H1A120.5
O3—C7—O4125.37 (18)
C4—C5—C6—C11.6 (3)C6—C5—C4—C30.7 (3)
C7—C5—C6—C1177.04 (16)C7—C5—C4—C3177.95 (18)
C4—C5—C6—N1176.33 (16)C6—C5—C4—C8177.14 (16)
C7—C5—C6—N15.0 (3)C7—C5—C4—C81.5 (2)
C1—C6—N1—O230.9 (3)O5—C8—C4—C3145.9 (2)
C5—C6—N1—O2151.0 (2)O6—C8—C4—C333.4 (2)
C1—C6—N1—O1149.0 (2)O5—C8—C4—C530.5 (3)
C5—C6—N1—O129.0 (3)O6—C8—C4—C5150.10 (16)
C9—O6—C8—O53.2 (3)C1—C2—C3—C41.5 (3)
C9—O6—C8—C4176.16 (16)C5—C4—C3—C20.8 (3)
C4—C5—C7—O367.3 (2)C8—C4—C3—C2175.65 (18)
C6—C5—C7—O3114.1 (2)C3—C2—C1—C60.6 (3)
C4—C5—C7—O4111.59 (18)C5—C6—C1—C20.9 (3)
C6—C5—C7—O467.0 (2)N1—C6—C1—C2177.02 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O5i0.86 (1)1.85 (1)2.706 (2)178 (3)
C9—H9C···O2ii0.962.523.465 (3)170
C9—H9B···O3iii0.962.563.291 (3)133
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x+3/2, y+1, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC9H7NO6
Mr225.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.647 (3), 8.145 (3), 15.583 (6)
V3)970.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.27 × 0.22 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6820, 1010, 982
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.077, 1.05
No. of reflections1010
No. of parameters151
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O5i0.856 (10)1.851 (11)2.706 (2)178 (3)
C9—H9C···O2ii0.962.523.465 (3)169.6
C9—H9B···O3iii0.962.563.291 (3)132.8
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x+3/2, y+1, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

The authors are grateful for Project Funding by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the National Natural Science Foundation of China (grant No. 20802061) and the Natural Science Foundation of Jiangsu Education Department (grant No. 02KJB150007).

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o144–o146.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Feng, W., Xue, L. & Zheng, J. (2006). Chin. J. Struct. Chem. 25, 923–926.  CAS Google Scholar
First citationXu, H. & He, X. (2010). Bioorg. Med. Chem. Lett. 20, 4503–4506.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds