organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(4-Chloro­phen­yl)(phen­yl)­meth­yl]­piperazin-1-ium picrate monohydrate

aSchool of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Repulic of China, bDepartment of Chemistry, G. Madegowda Institute of Technology, Bharathi Nagar 571 422, India, cDepartment of Sugar Technology, University of Mysore, Sir. M. V. PG Center, Tubinakere 571 402, India, dDepartment of Physics, School of Engineering and Technology, Jain University, Bangalore 562 112, India, and eCollege of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Repulic of China
*Correspondence e-mail: hongqili@dhu.edu.cn

(Received 22 June 2012; accepted 13 July 2012; online 18 July 2012)

The asymmetric unit of the title compound, C17H20ClN2+·C6H2N3O7·H2O, contains a piperazin-1-ium cation, a picrate anion and one solvent water mol­ecule. The piperazene ring is protonated at one N atom and adopts a highly distorted chair conformation with the chloro­pheny(phen­yl)methyl substituent on the second N atom in an equatorial position. The crystal structure is stabilized by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the biological activity of 1-benzyl­piperazine, see: Campbell et al. (1973[Campbell, H., Cline, W., Evans, M., Lloyd, J. & Peck, A. W. (1973). Eur. J. Clin. Pharmacol. 6, 170-176.]). For related structures, see: Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500-o501.]); Song et al. (2012[Song, Y., Chidan Kumar, C. S., Nethravathi, G. B., Naveen, S. & Li, H. (2012). Acta Cryst. E68, o1747.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20ClN2+·C6H2N3O7·H2O

  • Mr = 533.92

  • Monoclinic, C 2/c

  • a = 21.144 (2) Å

  • b = 8.2997 (8) Å

  • c = 28.528 (3) Å

  • β = 93.029 (1)°

  • V = 4999.3 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.985

  • 12567 measured reflections

  • 4417 independent reflections

  • 2996 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.175

  • S = 1.04

  • 4417 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1Wi 0.90 2.03 2.850 (4) 151
N2—H2B⋯O1ii 0.90 1.96 2.819 (3) 160
N2—H2B⋯O2ii 0.90 2.42 3.017 (4) 124
O1W—H1WA⋯O1 0.85 1.97 2.805 (3) 168
C16—H16B⋯O5iii 0.97 2.34 3.166 (4) 143
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x, y, z-1; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1-Benzylpiperazine was originally synthesized as a potential anthelmintic (Campbell et al., 1973) and its derivatives were found to possess excellent pharmacological activities. These include vasodilator, hypotensive and antiviral activity, the ability to increase cerebral blood flow and broad pharmacological action on central nervous system. In the course of our studies on the salts of piperazines (Jasinski et al., 2011; Song et al., 2012) and in view of the importance of piperazines, the paper reports the crystal and molecular structure of the title piperazin-1-ium salt.

The molecular structure and atom numbering scheme of the title compound are shown in Fig 1. In the title compound, the piperazine group is protonated at the N2 atom and adopts a highly distorted chair conformation with puckering parameters Q, θ and φ having values of 0.595 (3) °, 6.4 (3) ° and 342 (3) °, respectively. For an ideal chair conformation, θ has a value of 0 or 180°. The bond lengths (Allen et al., 1987) and bond angles are in good agreement with standard values. The crystal structure is stabilized by intermolecular O–H···O, N–H···O and C–H···O hydrogen bonds.

Related literature top

For the biological activity of 1-benzylpiperazine, see: Campbell et al. (1973). For related structures, see: Jasinski et al. (2011); Song et al. (2012). For bond-length data, see: Allen et al. (1987).

Experimental top

1-((4-Chlorophenyl)(phenyl)methyl)piperazine (2.88 g, 0.01 mol) and picric acid (2.99 g, 0.01 mol) were dissolved separately in methanol. Both the solutions were mixed together and stirred for a few minutes at room temperature. The precipitate was collected by filtration and purified by recrystallization from methanol. On recrystallization with DMF after 15 days, good quality single crystals were obtained by the slow evaporation method. (M.P.: 441–445 K).

Refinement top

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C—H distances in the range 0.92–0.98 Å and N—H = 0.86 Å; Uiso(H) values were set equal to 1.2Ueq(carrier atom).

Structure description top

1-Benzylpiperazine was originally synthesized as a potential anthelmintic (Campbell et al., 1973) and its derivatives were found to possess excellent pharmacological activities. These include vasodilator, hypotensive and antiviral activity, the ability to increase cerebral blood flow and broad pharmacological action on central nervous system. In the course of our studies on the salts of piperazines (Jasinski et al., 2011; Song et al., 2012) and in view of the importance of piperazines, the paper reports the crystal and molecular structure of the title piperazin-1-ium salt.

The molecular structure and atom numbering scheme of the title compound are shown in Fig 1. In the title compound, the piperazine group is protonated at the N2 atom and adopts a highly distorted chair conformation with puckering parameters Q, θ and φ having values of 0.595 (3) °, 6.4 (3) ° and 342 (3) °, respectively. For an ideal chair conformation, θ has a value of 0 or 180°. The bond lengths (Allen et al., 1987) and bond angles are in good agreement with standard values. The crystal structure is stabilized by intermolecular O–H···O, N–H···O and C–H···O hydrogen bonds.

For the biological activity of 1-benzylpiperazine, see: Campbell et al. (1973). For related structures, see: Jasinski et al. (2011); Song et al. (2012). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
4-[(4-Chlorophenyl)(phenyl)methyl]piperazin-1-ium 2,4,6-trinitrophenolate monohydrate top
Crystal data top
C17H20ClN2+·C6H2N3O7·H2OF(000) = 2224
Mr = 533.92Dx = 1.419 Mg m3
Monoclinic, C2/cMelting point = 441–445 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 21.144 (2) ÅCell parameters from 2514 reflections
b = 8.2997 (8) Åθ = 2.3–21.0°
c = 28.528 (3) ŵ = 0.21 mm1
β = 93.029 (1)°T = 296 K
V = 4999.3 (8) Å3Block, yellow
Z = 80.25 × 0.22 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
4417 independent reflections
Radiation source: fine-focus sealed tube2996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2520
Tmin = 0.949, Tmax = 0.985k = 98
12567 measured reflectionsl = 3133
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0837P)2 + 4.3115P]
where P = (Fo2 + 2Fc2)/3
4417 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C17H20ClN2+·C6H2N3O7·H2OV = 4999.3 (8) Å3
Mr = 533.92Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.144 (2) ŵ = 0.21 mm1
b = 8.2997 (8) ÅT = 296 K
c = 28.528 (3) Å0.25 × 0.22 × 0.07 mm
β = 93.029 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4417 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2996 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.985Rint = 0.026
12567 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.04Δρmax = 0.63 e Å3
4417 reflectionsΔρmin = 0.46 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4904 (2)0.8333 (6)0.18443 (11)0.0783 (11)
C20.5527 (2)0.8799 (4)0.19014 (11)0.0737 (10)
H20.56330.98730.19550.088*
C30.59944 (16)0.7637 (4)0.18770 (10)0.0606 (8)
H30.64180.79380.19150.073*
C40.58414 (13)0.6039 (4)0.17965 (9)0.0490 (7)
C50.52105 (16)0.5623 (5)0.17391 (12)0.0700 (9)
H50.51000.45530.16820.084*
C60.47386 (18)0.6774 (7)0.17651 (14)0.0917 (13)
H60.43140.64810.17290.110*
C70.63529 (13)0.4768 (3)0.17948 (9)0.0471 (7)
H70.61580.37400.16990.057*
C80.66452 (14)0.4592 (3)0.22959 (9)0.0472 (7)
C90.63449 (16)0.3611 (4)0.26056 (10)0.0609 (8)
H90.59910.30160.25030.073*
C100.65702 (19)0.3512 (4)0.30690 (11)0.0749 (10)
H100.63560.28840.32790.090*
C110.7106 (2)0.4329 (4)0.32234 (11)0.0766 (11)
H110.72590.42400.35340.092*
C120.74098 (18)0.5272 (4)0.29149 (11)0.0683 (9)
H120.77760.58200.30150.082*
C130.71784 (15)0.5421 (3)0.24554 (10)0.0572 (8)
H130.73850.60890.22510.069*
C140.65583 (14)0.5363 (4)0.09816 (9)0.0526 (7)
H14A0.62200.61540.09800.063*
H14B0.63790.43450.08740.063*
C150.70566 (15)0.5901 (4)0.06551 (10)0.0569 (8)
H15A0.68690.59890.03380.068*
H15B0.72130.69560.07500.068*
C160.78429 (15)0.4460 (4)0.11470 (10)0.0624 (8)
H16A0.80310.54430.12740.075*
H16B0.81700.36400.11480.075*
C170.73229 (14)0.3923 (4)0.14476 (10)0.0535 (7)
H17A0.71350.29370.13210.064*
H17B0.74950.37030.17630.064*
C180.89491 (14)0.6145 (3)0.98892 (9)0.0476 (7)
C190.92823 (13)0.7277 (3)1.01969 (9)0.0458 (6)
C200.98723 (13)0.7849 (3)1.01257 (9)0.0478 (7)
H201.00650.85631.03400.057*
C211.01856 (13)0.7372 (3)0.97362 (9)0.0463 (6)
C220.98998 (13)0.6302 (3)0.94120 (9)0.0473 (7)
H221.01110.59660.91510.057*
C230.93097 (14)0.5763 (3)0.94855 (8)0.0456 (6)
Cl10.43227 (7)0.9810 (2)0.18712 (4)0.1402 (6)
N10.68382 (10)0.5177 (2)0.14618 (7)0.0434 (5)
N20.75908 (12)0.4746 (3)0.06606 (8)0.0579 (7)
H2A0.74580.38080.05310.069*
H2B0.79000.51400.04880.069*
N30.89901 (14)0.7854 (3)1.06134 (9)0.0658 (7)
N41.08105 (12)0.7960 (3)0.96648 (9)0.0631 (7)
N50.90198 (15)0.4691 (3)0.91305 (9)0.0638 (7)
O10.84301 (10)0.5503 (3)0.99573 (7)0.0664 (6)
O20.84210 (16)0.7700 (4)1.06424 (12)0.1309 (14)
O30.92957 (14)0.8649 (4)1.08951 (9)0.1129 (11)
O41.10570 (11)0.8886 (3)0.99550 (9)0.0830 (7)
O51.10730 (11)0.7526 (4)0.93145 (9)0.0903 (8)
O60.93478 (15)0.3624 (3)0.89779 (9)0.0927 (9)
O70.84749 (14)0.4966 (4)0.89915 (9)0.0922 (9)
O1W0.74452 (12)0.3604 (3)0.95584 (11)0.0996 (9)
H1WA0.77560.42100.96380.100*
H1WB0.72190.40090.93330.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.076 (3)0.113 (3)0.0465 (18)0.037 (2)0.0071 (17)0.008 (2)
C20.104 (3)0.069 (2)0.0476 (18)0.020 (2)0.0063 (18)0.0020 (16)
C30.063 (2)0.066 (2)0.0534 (17)0.0055 (16)0.0062 (14)0.0042 (15)
C40.0517 (17)0.0633 (19)0.0323 (13)0.0009 (14)0.0060 (11)0.0012 (12)
C50.057 (2)0.086 (2)0.066 (2)0.0055 (18)0.0042 (16)0.0045 (18)
C60.053 (2)0.139 (4)0.083 (3)0.013 (2)0.0016 (19)0.021 (3)
C70.0550 (17)0.0479 (16)0.0390 (14)0.0083 (13)0.0066 (12)0.0017 (12)
C80.0609 (18)0.0451 (15)0.0362 (14)0.0050 (13)0.0099 (12)0.0016 (12)
C90.070 (2)0.0621 (19)0.0514 (17)0.0011 (16)0.0138 (15)0.0072 (15)
C100.102 (3)0.078 (2)0.0464 (18)0.010 (2)0.0210 (18)0.0172 (17)
C110.114 (3)0.074 (2)0.0407 (17)0.022 (2)0.0060 (18)0.0037 (17)
C120.092 (3)0.059 (2)0.0517 (19)0.0035 (18)0.0103 (17)0.0110 (16)
C130.076 (2)0.0493 (17)0.0459 (16)0.0060 (15)0.0015 (14)0.0000 (13)
C140.0597 (18)0.0622 (18)0.0360 (14)0.0025 (14)0.0050 (12)0.0029 (13)
C150.068 (2)0.0625 (19)0.0413 (15)0.0056 (15)0.0105 (13)0.0058 (13)
C160.0562 (19)0.077 (2)0.0551 (18)0.0061 (16)0.0105 (14)0.0074 (16)
C170.0615 (18)0.0558 (17)0.0437 (15)0.0042 (14)0.0074 (13)0.0004 (13)
C180.0596 (18)0.0456 (15)0.0377 (14)0.0050 (13)0.0036 (12)0.0050 (12)
C190.0569 (18)0.0463 (15)0.0349 (13)0.0004 (13)0.0105 (12)0.0017 (11)
C200.0556 (18)0.0469 (15)0.0407 (14)0.0011 (13)0.0000 (12)0.0056 (12)
C210.0450 (16)0.0524 (16)0.0416 (14)0.0024 (12)0.0037 (12)0.0032 (12)
C220.0587 (18)0.0481 (16)0.0357 (14)0.0051 (13)0.0066 (12)0.0004 (12)
C230.0615 (18)0.0420 (15)0.0332 (13)0.0034 (13)0.0002 (12)0.0011 (11)
Cl10.1339 (11)0.1911 (15)0.0945 (9)0.1027 (11)0.0038 (7)0.0031 (8)
N10.0497 (13)0.0483 (13)0.0329 (11)0.0007 (10)0.0079 (9)0.0009 (9)
N20.0628 (16)0.0653 (16)0.0474 (14)0.0124 (13)0.0204 (11)0.0090 (12)
N30.073 (2)0.0739 (18)0.0525 (15)0.0172 (15)0.0207 (14)0.0167 (13)
N40.0517 (16)0.0783 (18)0.0599 (16)0.0023 (13)0.0082 (13)0.0124 (14)
N50.083 (2)0.0657 (18)0.0430 (14)0.0191 (16)0.0051 (14)0.0043 (13)
O10.0707 (15)0.0780 (15)0.0518 (12)0.0294 (12)0.0165 (10)0.0060 (10)
O20.110 (2)0.157 (3)0.134 (3)0.068 (2)0.080 (2)0.084 (2)
O30.096 (2)0.176 (3)0.0682 (16)0.019 (2)0.0176 (14)0.0608 (19)
O40.0640 (15)0.1024 (19)0.0827 (16)0.0237 (14)0.0053 (12)0.0275 (15)
O50.0620 (15)0.131 (2)0.0809 (17)0.0089 (15)0.0277 (13)0.0341 (16)
O60.142 (3)0.0651 (15)0.0704 (16)0.0023 (16)0.0001 (16)0.0268 (13)
O70.0768 (18)0.135 (2)0.0642 (16)0.0288 (17)0.0021 (13)0.0199 (15)
O1W0.0735 (17)0.0920 (19)0.133 (2)0.0152 (14)0.0024 (16)0.0241 (17)
Geometric parameters (Å, º) top
C1—C61.356 (6)C15—H15B0.9700
C1—C21.376 (5)C16—N21.479 (4)
C1—Cl11.740 (4)C16—C171.497 (4)
C2—C31.384 (5)C16—H16A0.9700
C2—H20.9300C16—H16B0.9700
C3—C41.382 (4)C17—N11.463 (3)
C3—H30.9300C17—H17A0.9700
C4—C51.379 (4)C17—H17B0.9700
C4—C71.511 (4)C18—O11.244 (3)
C5—C61.386 (5)C18—C191.444 (4)
C5—H50.9300C18—C231.449 (4)
C6—H60.9300C19—C201.360 (4)
C7—N11.474 (3)C19—N31.449 (4)
C7—C81.534 (4)C20—C211.381 (4)
C7—H70.9800C20—H200.9300
C8—C131.378 (4)C21—C221.397 (4)
C8—C91.381 (4)C21—N41.433 (4)
C9—C101.384 (4)C22—C231.352 (4)
C9—H90.9300C22—H220.9300
C10—C111.372 (5)C23—N51.459 (4)
C10—H100.9300N2—H2A0.9000
C11—C121.364 (5)N2—H2B0.9000
C11—H110.9300N3—O31.202 (3)
C12—C131.380 (4)N3—O21.217 (4)
C12—H120.9300N4—O51.223 (3)
C13—H130.9300N4—O41.226 (3)
C14—N11.471 (3)N5—O61.219 (4)
C14—C151.510 (4)N5—O71.220 (4)
C14—H14A0.9700O1W—H1WA0.8501
C14—H14B0.9700O1W—H1WA0.8501
C15—N21.481 (4)O1W—H1WB0.8502
C15—H15A0.9700
C6—C1—C2121.6 (3)H15A—C15—H15B108.0
C6—C1—Cl1120.2 (4)N2—C16—C17110.2 (2)
C2—C1—Cl1118.2 (4)N2—C16—H16A109.6
C1—C2—C3118.7 (4)C17—C16—H16A109.6
C1—C2—H2120.6N2—C16—H16B109.6
C3—C2—H2120.6C17—C16—H16B109.6
C4—C3—C2121.0 (3)H16A—C16—H16B108.1
C4—C3—H3119.5N1—C17—C16109.9 (2)
C2—C3—H3119.5N1—C17—H17A109.7
C5—C4—C3118.5 (3)C16—C17—H17A109.7
C5—C4—C7120.9 (3)N1—C17—H17B109.7
C3—C4—C7120.6 (3)C16—C17—H17B109.7
C4—C5—C6121.0 (4)H17A—C17—H17B108.2
C4—C5—H5119.5O1—C18—C19126.1 (3)
C6—C5—H5119.5O1—C18—C23122.4 (2)
C1—C6—C5119.2 (4)C19—C18—C23111.4 (2)
C1—C6—H6120.4C20—C19—C18123.9 (2)
C5—C6—H6120.4C20—C19—N3116.2 (2)
N1—C7—C4111.4 (2)C18—C19—N3119.9 (3)
N1—C7—C8111.3 (2)C19—C20—C21120.2 (2)
C4—C7—C8108.5 (2)C19—C20—H20119.9
N1—C7—H7108.6C21—C20—H20119.9
C4—C7—H7108.6C20—C21—C22120.4 (3)
C8—C7—H7108.6C20—C21—N4120.1 (2)
C13—C8—C9118.6 (3)C22—C21—N4119.5 (2)
C13—C8—C7122.8 (2)C23—C22—C21118.6 (2)
C9—C8—C7118.5 (3)C23—C22—H22120.7
C8—C9—C10120.0 (3)C21—C22—H22120.7
C8—C9—H9120.0C22—C23—C18125.4 (2)
C10—C9—H9120.0C22—C23—N5116.8 (2)
C11—C10—C9120.9 (3)C18—C23—N5117.7 (3)
C11—C10—H10119.5C17—N1—C14107.3 (2)
C9—C10—H10119.5C17—N1—C7111.5 (2)
C12—C11—C10119.1 (3)C14—N1—C7111.4 (2)
C12—C11—H11120.5C16—N2—C15110.5 (2)
C10—C11—H11120.5C16—N2—H2A109.5
C11—C12—C13120.6 (3)C15—N2—H2A109.5
C11—C12—H12119.7C16—N2—H2B109.5
C13—C12—H12119.7C15—N2—H2B109.5
C8—C13—C12120.8 (3)H2A—N2—H2B108.1
C8—C13—H13119.6O3—N3—O2120.7 (3)
C12—C13—H13119.6O3—N3—C19119.5 (3)
N1—C14—C15110.2 (2)O2—N3—C19119.1 (3)
N1—C14—H14A109.6O5—N4—O4122.8 (3)
C15—C14—H14A109.6O5—N4—C21118.5 (3)
N1—C14—H14B109.6O4—N4—C21118.7 (2)
C15—C14—H14B109.6O6—N5—O7124.4 (3)
H14A—C14—H14B108.1O6—N5—C23117.7 (3)
N2—C15—C14111.0 (2)O7—N5—C23117.8 (3)
N2—C15—H15A109.4H1WA—O1W—H1WA0.0
C14—C15—H15A109.4H1WA—O1W—H1WB111.4
N2—C15—H15B109.4H1WA—O1W—H1WB111.4
C14—C15—H15B109.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1Wi0.902.032.850 (4)151
N2—H2B···O1ii0.901.962.819 (3)160
N2—H2B···O2ii0.902.423.017 (4)124
O1W—H1WA···O10.851.972.805 (3)168
C16—H16B···O5iii0.972.343.166 (4)143
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x, y, z1; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H20ClN2+·C6H2N3O7·H2O
Mr533.92
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)21.144 (2), 8.2997 (8), 28.528 (3)
β (°) 93.029 (1)
V3)4999.3 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.22 × 0.07
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.949, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
12567, 4417, 2996
Rint0.026
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.175, 1.04
No. of reflections4417
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.46

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1Wi0.902.032.850 (4)150.9
N2—H2B···O1ii0.901.962.819 (3)160.4
N2—H2B···O2ii0.902.423.017 (4)123.8
O1W—H1WA···O10.851.972.805 (3)168.0
C16—H16B···O5iii0.972.343.166 (4)143
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x, y, z1; (iii) x+2, y+1, z+1.
 

Acknowledgements

This work was supported in part by the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research. YS and HL acknowledge financial support by the Fundamental Research Funds for the Central Universities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, H., Cline, W., Evans, M., Lloyd, J. & Peck, A. W. (1973). Eur. J. Clin. Pharmacol. 6, 170–176.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500–o501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y., Chidan Kumar, C. S., Nethravathi, G. B., Naveen, S. & Li, H. (2012). Acta Cryst. E68, o1747.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds