organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(4-methyl­phen­yl)-5-oxo-5,6,7,8-tetra­hydro-4H-chromene-3-carbo­nitrile

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 26 June 2012; accepted 28 June 2012; online 4 July 2012)

The 4H-pyran ring of the title compound, C17H16N2O2, is nearly planar [maximum deviation = 0.077 (2) Å] and the cyclo­hexene ring adopts a flattened chair conformation [puckering parameters: QT = 0.435 (2) Å, θ = 122.0 (3)° and φ = 53.5 (3)°]. The 4H-pyran ring is almost perpendicular to the benzene ring [dihedral angle = 87.23 (8)°] and is almost coplanar with the mean plane of the cyclo­hexene ring [dihedral angle = 8.01 (8)°]. In the crystal, inversion-related mol­ecules are linked by pairs of inter­molecular N—H⋯N hydrogen bonds, forming inversion dimers with R22(12) ring motifs. These dimers are further connected by N—H⋯O and C—H⋯N hydrogen bonds, forming a layer structure extending parallel to (0-12). Mol­ecules within the layers inter­act with each other via C—H⋯π inter­actions.

Related literature

For the biological background to tetra­hydro-4-chromene and fused tetra­hydro-4-chromene compounds, see: Alvey et al. (2009[Alvey, L., Prado, S., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2009). Eur. J. Med. Chem. 44, 2497-2505.]); Symeonidis et al. (2009[Symeonidis, T., Chamilos, M., Hadjipavlou-Litina, D. J., Kallitsakis, M. & Litinas, K. E. (2009). Bioorg. Med. Chem. Lett. 19, 1139-1142.]); Narender & Gupta (2009[Narender, T. & Gupta, S. (2009). Bioorg. Med. Chem. Lett. 14, 3913-3916.]). For the synthesis of similar chromene compounds, see: Yadav et al. (2009[Yadav, J. S., Subba Reddy, B. V., Biswas, S. K. & Sengupta, S. (2009). Tetrahedron Lett. 50, 5798-5801.]); Mohamed et al. (2012a[Mohamed, S. K., Akkurt, M., Abdelhamid, A. A., Singh, K. & Allahverdiyev, M. A. (2012a). Acta Cryst. E68, o1414-o1415.],b[Mohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Albayati, M. R. (2012b). Acta Cryst. E68, o1965-o1966.],c[Mohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Younes, S. H. H. (2012c). Acta Cryst. E68, o2178-o2179.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N2O2

  • Mr = 280.32

  • Triclinic, [P \overline 1]

  • a = 8.5931 (9) Å

  • b = 8.7409 (14) Å

  • c = 11.0695 (19) Å

  • α = 72.626 (4)°

  • β = 70.088 (3)°

  • γ = 80.035 (6)°

  • V = 743.71 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.30 × 0.23 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.984

  • 8982 measured reflections

  • 2916 independent reflections

  • 1704 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.115

  • S = 0.91

  • 2916 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the 4H-pyran ring (O1/C8/C9/C11–C13) and the benzene ring (C1–C6), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.31 3.168 (2) 175
N2—H2B⋯O2ii 0.86 2.18 3.017 (2) 164
C2—H2⋯N1iii 0.93 2.53 3.277 (2) 138
C6—H6⋯Cg1 0.93 2.79 3.128 (2) 102
C7—H7ACg2iv 0.96 2.87 3.640 (2) 138
Symmetry codes: (i) -x, -y, -z+1; (ii) x-1, y, z; (iii) -x+1, -y, -z+1; (iv) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Tetrahydro-4-chromene are an extensive class of bioactive compounds with antimicrobial, antifungal and antioxident properties (Symeonidis et al., 2009; Narender & Gupta, 2009; Alvey, et al., 2009). In a continuation to our on-going study of the synthesis and biological characterization of a new series of tetrahydro-4-chromenes (Mohamed et al., 2012a,b,c), we report here the synthesis and crystal structure of the title compound (I).

As seen in Fig. 1, the C12–C17 cyclohexene ring of (I) is in a flattened chair conformation [puckering parameters (Cremer & Pople, 1975) are QT = 0.435 (2) Å, θ = 122.0 (3) ° and φ = 53.5 (3) °]. The O1/C8/C9/C11—C13 4H-pyran ring is nearly planar with a maximum deviation of 0.077 (2) Å for C8 and is almost perpendicular to the C1–C6 benzene ring [dihedral angle = 87.23 (8)°] and is almost co-planar with the mean plane of the cyclohexene ring [dihedral angle = 8.01 (8) °]. All bond lengths (Allen et al., 1987) and angles of (I) are within normal ranges and are comparable to similar structures (Yadav et al., 2009; Mohamed et al., 2012a,b,c).

In the crystal, a pair of intermolecular N—H···N hydrogen bonds link the main molecules into an inversion dimer, generating an R22(12) graph-set motif (Bernstein et al., 1995; Table 1, Fig. 2). The dimers are further connected by N—H···O and C—H···N hydrogen bonds, forming a layer of molecules parallel to (0 - 1 2) (Table 1, Fig. 2). In addition, the layers are interconnected by weak C—H···π interactions.

Related literature top

For the biological background to tetrahydro-4-chromene and fused tetrahydro-4-chromene compounds, see: Alvey et al. (2009); Symeonidis et al. (2009); Narender & Gupta (2009). For the synthesis of similar chromene compounds, see: Yadav et al. (2009); Mohamed et al. (2012a,b,c). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 168 mg (1 mmol) (4-methybenzylidene)propanedinitrile, 112 mg (1 mmol) cyclohexane-1,3-dione in presence of 61 mg ethanolamine as catalyst was refluxed in 40 ml ethanol. The reaction mixture was monitored by TLC till completion after 6 h. A solid product was deposited on cooling at room temperature and collected by filtration. The crude product was recrystallized from ethanol in excellent yield (89%). Single crystals suitable for X-ray analysis were grown upon slow evaporation of the solution of (I) in ethanol over two days [M.p.: 477 K].

Refinement top

H atoms were positioned geometrically and refined by using a riding model, with N—H = 0.86 Å and C—H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene) and 0.98 Å (methine), with Uiso(H) = 1.5Ueq(O) for methyl groups and Uiso(H) = 1.2Ueq(C, N) for others.

Structure description top

Tetrahydro-4-chromene are an extensive class of bioactive compounds with antimicrobial, antifungal and antioxident properties (Symeonidis et al., 2009; Narender & Gupta, 2009; Alvey, et al., 2009). In a continuation to our on-going study of the synthesis and biological characterization of a new series of tetrahydro-4-chromenes (Mohamed et al., 2012a,b,c), we report here the synthesis and crystal structure of the title compound (I).

As seen in Fig. 1, the C12–C17 cyclohexene ring of (I) is in a flattened chair conformation [puckering parameters (Cremer & Pople, 1975) are QT = 0.435 (2) Å, θ = 122.0 (3) ° and φ = 53.5 (3) °]. The O1/C8/C9/C11—C13 4H-pyran ring is nearly planar with a maximum deviation of 0.077 (2) Å for C8 and is almost perpendicular to the C1–C6 benzene ring [dihedral angle = 87.23 (8)°] and is almost co-planar with the mean plane of the cyclohexene ring [dihedral angle = 8.01 (8) °]. All bond lengths (Allen et al., 1987) and angles of (I) are within normal ranges and are comparable to similar structures (Yadav et al., 2009; Mohamed et al., 2012a,b,c).

In the crystal, a pair of intermolecular N—H···N hydrogen bonds link the main molecules into an inversion dimer, generating an R22(12) graph-set motif (Bernstein et al., 1995; Table 1, Fig. 2). The dimers are further connected by N—H···O and C—H···N hydrogen bonds, forming a layer of molecules parallel to (0 - 1 2) (Table 1, Fig. 2). In addition, the layers are interconnected by weak C—H···π interactions.

For the biological background to tetrahydro-4-chromene and fused tetrahydro-4-chromene compounds, see: Alvey et al. (2009); Symeonidis et al. (2009); Narender & Gupta (2009). For the synthesis of similar chromene compounds, see: Yadav et al. (2009); Mohamed et al. (2012a,b,c). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the dimers formed by pairs of N—H···N hydrogen bonds, with an R22(12) motif and the N—H···O and C—H···N hydrogen bonds connecting the dimers with each other, to form a two dimensional network. H atoms not involved in hydrogen bonds have been omitted for clarity.
2-Amino-4-(4-methylphenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3- carbonitrile top
Crystal data top
C17H16N2O2Z = 2
Mr = 280.32F(000) = 296
Triclinic, P1Dx = 1.252 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5931 (9) ÅCell parameters from 245 reflections
b = 8.7409 (14) Åθ = 3.2–18°
c = 11.0695 (19) ŵ = 0.08 mm1
α = 72.626 (4)°T = 296 K
β = 70.088 (3)°Prism, white
γ = 80.035 (6)°0.30 × 0.23 × 0.20 mm
V = 743.71 (19) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2916 independent reflections
Radiation source: fine-focus sealed tube1704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 0.81 pixels mm-1θmax = 26.0°, θmin = 2.0°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.975, Tmax = 0.984l = 1313
8982 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0535P)2]
where P = (Fo2 + 2Fc2)/3
2916 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H16N2O2γ = 80.035 (6)°
Mr = 280.32V = 743.71 (19) Å3
Triclinic, P1Z = 2
a = 8.5931 (9) ÅMo Kα radiation
b = 8.7409 (14) ŵ = 0.08 mm1
c = 11.0695 (19) ÅT = 296 K
α = 72.626 (4)°0.30 × 0.23 × 0.20 mm
β = 70.088 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2916 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1704 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.984Rint = 0.075
8982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 0.91Δρmax = 0.20 e Å3
2916 reflectionsΔρmin = 0.17 e Å3
191 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07181 (12)0.43638 (14)0.69952 (11)0.0628 (4)
O20.48905 (15)0.45532 (14)0.66064 (13)0.0747 (5)
N10.17338 (17)0.0029 (2)0.50277 (16)0.0766 (7)
N20.17035 (15)0.27899 (18)0.62146 (15)0.0698 (6)
C10.31349 (18)0.13607 (18)0.74881 (16)0.0458 (6)
C20.46472 (18)0.04982 (19)0.71440 (17)0.0543 (6)
C30.5138 (2)0.0768 (2)0.8064 (2)0.0625 (7)
C40.4143 (2)0.1234 (2)0.93584 (19)0.0590 (7)
C50.2636 (2)0.0370 (2)0.97073 (18)0.0657 (7)
C60.2129 (2)0.0905 (2)0.87951 (18)0.0600 (7)
C70.4678 (3)0.2645 (2)1.0359 (2)0.0882 (9)
C80.25982 (17)0.27363 (18)0.64590 (16)0.0469 (5)
C90.11699 (18)0.23365 (18)0.61288 (15)0.0478 (6)
C100.14572 (18)0.1067 (2)0.55221 (17)0.0546 (6)
C110.03611 (19)0.3100 (2)0.64164 (16)0.0510 (6)
C120.0570 (2)0.49540 (19)0.71581 (16)0.0532 (6)
C130.21195 (19)0.42714 (18)0.68865 (16)0.0501 (6)
C140.3443 (2)0.5090 (2)0.69385 (17)0.0606 (7)
C150.2972 (3)0.6633 (2)0.7339 (2)0.0896 (10)
C160.1214 (3)0.6772 (3)0.8221 (2)0.0916 (10)
C170.0012 (2)0.6426 (2)0.7642 (2)0.0730 (8)
H20.535000.077600.627500.0650*
H2A0.164800.202200.586100.0840*
H2B0.262600.335800.643800.0840*
H30.616900.132300.780200.0750*
H50.194100.065101.057900.0790*
H60.110000.146400.906100.0720*
H7A0.468000.229401.110200.1320*
H7B0.577500.307100.994700.1320*
H7C0.391900.346601.066300.1320*
H80.354300.292200.564200.0560*
H15A0.312200.752000.654400.1080*
H15B0.371400.673000.780000.1080*
H16A0.094600.785000.834700.1100*
H16B0.111200.602300.908600.1100*
H17A0.108700.628600.831600.0880*
H17B0.013800.733200.691000.0880*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0490 (6)0.0667 (8)0.0832 (9)0.0047 (6)0.0251 (6)0.0344 (7)
O20.0619 (8)0.0720 (9)0.0993 (11)0.0152 (7)0.0439 (7)0.0076 (8)
N10.0584 (9)0.0903 (12)0.1034 (14)0.0059 (8)0.0308 (9)0.0570 (11)
N20.0474 (8)0.0865 (11)0.0946 (12)0.0048 (7)0.0334 (8)0.0434 (10)
C10.0436 (8)0.0481 (10)0.0555 (11)0.0082 (7)0.0234 (8)0.0154 (8)
C20.0481 (9)0.0560 (11)0.0611 (12)0.0029 (8)0.0190 (8)0.0165 (9)
C30.0561 (10)0.0559 (11)0.0830 (15)0.0054 (8)0.0338 (10)0.0200 (11)
C40.0720 (12)0.0509 (11)0.0668 (14)0.0103 (9)0.0387 (11)0.0105 (10)
C50.0681 (12)0.0726 (13)0.0562 (12)0.0116 (10)0.0232 (9)0.0085 (10)
C60.0503 (9)0.0679 (12)0.0623 (13)0.0004 (8)0.0202 (9)0.0166 (10)
C70.1123 (17)0.0642 (13)0.0970 (16)0.0023 (12)0.0601 (13)0.0042 (12)
C80.0406 (8)0.0533 (10)0.0510 (10)0.0051 (7)0.0192 (7)0.0128 (8)
C90.0471 (9)0.0521 (10)0.0512 (10)0.0020 (7)0.0218 (7)0.0168 (9)
C100.0412 (9)0.0674 (12)0.0648 (12)0.0009 (8)0.0240 (8)0.0252 (10)
C110.0471 (9)0.0579 (11)0.0553 (11)0.0020 (8)0.0227 (8)0.0184 (9)
C120.0593 (10)0.0506 (10)0.0574 (11)0.0043 (8)0.0262 (8)0.0154 (9)
C130.0554 (10)0.0466 (10)0.0542 (11)0.0068 (8)0.0278 (8)0.0072 (8)
C140.0668 (12)0.0536 (11)0.0692 (13)0.0112 (9)0.0391 (10)0.0027 (9)
C150.1010 (16)0.0667 (14)0.129 (2)0.0138 (12)0.0598 (15)0.0332 (14)
C160.1157 (19)0.0743 (15)0.1070 (18)0.0041 (13)0.0471 (15)0.0426 (14)
C170.0797 (13)0.0606 (12)0.0857 (15)0.0013 (10)0.0297 (11)0.0281 (11)
Geometric parameters (Å, º) top
O1—C111.377 (2)C12—C131.334 (2)
O1—C121.383 (2)C13—C141.470 (3)
O2—C141.222 (2)C14—C151.492 (3)
N1—C101.146 (2)C15—C161.501 (3)
N2—C111.332 (2)C16—C171.516 (3)
N2—H2A0.8600C2—H20.9300
N2—H2B0.8600C3—H30.9300
C1—C81.518 (2)C5—H50.9300
C1—C21.378 (2)C6—H60.9300
C1—C61.386 (2)C7—H7A0.9600
C2—C31.378 (3)C7—H7B0.9600
C3—C41.374 (3)C7—H7C0.9600
C4—C71.515 (3)C8—H80.9800
C4—C51.375 (3)C15—H15A0.9700
C5—C61.382 (3)C15—H15B0.9700
C8—C91.514 (2)C16—H16A0.9700
C8—C131.500 (2)C16—H16B0.9700
C9—C101.407 (2)C17—H17A0.9700
C9—C111.347 (2)C17—H17B0.9700
C12—C171.483 (2)
C11—O1—C12118.57 (13)C15—C16—C17112.04 (18)
H2A—N2—H2B120.00C12—C17—C16110.62 (17)
C11—N2—H2A120.00C1—C2—H2119.00
C11—N2—H2B120.00C3—C2—H2119.00
C2—C1—C6117.40 (15)C2—C3—H3119.00
C6—C1—C8121.94 (15)C4—C3—H3119.00
C2—C1—C8120.65 (15)C4—C5—H5119.00
C1—C2—C3121.21 (16)C6—C5—H5119.00
C2—C3—C4121.73 (17)C1—C6—H6120.00
C3—C4—C7121.45 (17)C5—C6—H6120.00
C3—C4—C5117.22 (17)C4—C7—H7A109.00
C5—C4—C7121.33 (18)C4—C7—H7B110.00
C4—C5—C6121.66 (17)C4—C7—H7C110.00
C1—C6—C5120.78 (17)H7A—C7—H7B109.00
C9—C8—C13109.01 (13)H7A—C7—H7C109.00
C1—C8—C9111.87 (13)H7B—C7—H7C109.00
C1—C8—C13112.47 (13)C1—C8—H8108.00
C8—C9—C10117.75 (14)C9—C8—H8108.00
C8—C9—C11123.56 (15)C13—C8—H8108.00
C10—C9—C11118.67 (16)C14—C15—H15A109.00
N1—C10—C9178.20 (19)C14—C15—H15B109.00
N2—C11—C9127.76 (17)C16—C15—H15A109.00
O1—C11—N2110.71 (15)C16—C15—H15B109.00
O1—C11—C9121.53 (15)H15A—C15—H15B108.00
O1—C12—C17110.90 (15)C15—C16—H16A109.00
O1—C12—C13123.06 (15)C15—C16—H16B109.00
C13—C12—C17126.03 (17)C17—C16—H16A109.00
C8—C13—C12122.92 (16)C17—C16—H16B109.00
C8—C13—C14117.92 (15)H16A—C16—H16B108.00
C12—C13—C14119.08 (15)C12—C17—H17A110.00
C13—C14—C15117.94 (17)C12—C17—H17B109.00
O2—C14—C13120.64 (16)C16—C17—H17A110.00
O2—C14—C15121.34 (18)C16—C17—H17B109.00
C14—C15—C16113.52 (19)H17A—C17—H17B108.00
C11—O1—C12—C17173.14 (14)C1—C8—C9—C1064.06 (19)
C12—O1—C11—N2173.77 (14)C1—C8—C13—C1470.02 (19)
C12—O1—C11—C96.5 (2)C9—C8—C13—C1211.5 (2)
C11—O1—C12—C135.9 (2)C9—C8—C13—C14165.32 (14)
C8—C1—C2—C3179.03 (16)C8—C9—C11—N2177.03 (16)
C2—C1—C6—C50.2 (3)C10—C9—C11—O1179.21 (15)
C8—C1—C6—C5178.89 (16)C10—C9—C11—N21.1 (3)
C6—C1—C2—C30.0 (3)C8—C9—C11—O12.6 (2)
C2—C1—C8—C9110.95 (17)O1—C12—C13—C84.0 (3)
C2—C1—C8—C13125.98 (17)O1—C12—C13—C14172.80 (14)
C6—C1—C8—C968.1 (2)C17—C12—C13—C8177.11 (16)
C6—C1—C8—C1355.0 (2)C17—C12—C13—C146.1 (3)
C1—C2—C3—C40.4 (3)O1—C12—C17—C16162.42 (15)
C2—C3—C4—C50.8 (3)C13—C12—C17—C1618.6 (3)
C2—C3—C4—C7178.95 (18)C8—C13—C14—O22.0 (2)
C3—C4—C5—C60.6 (3)C8—C13—C14—C15178.87 (15)
C7—C4—C5—C6179.08 (18)C12—C13—C14—O2174.91 (16)
C4—C5—C6—C10.2 (3)C12—C13—C14—C151.9 (2)
C1—C8—C9—C11114.11 (17)O2—C14—C15—C16156.13 (19)
C13—C8—C9—C10170.93 (14)C13—C14—C15—C1627.0 (2)
C13—C8—C9—C1110.9 (2)C14—C15—C16—C1751.4 (2)
C1—C8—C13—C12113.18 (18)C15—C16—C17—C1246.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the 4H-pyran ring (O1/C8/C9/C11–C13) and the benzene ring (C1–C6), respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.313.168 (2)175
N2—H2B···O2ii0.862.183.017 (2)164
C2—H2···N1iii0.932.533.277 (2)138
C6—H6···Cg10.932.793.128 (2)102
C7—H7A···Cg2iv0.962.873.640 (2)138
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC17H16N2O2
Mr280.32
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.5931 (9), 8.7409 (14), 11.0695 (19)
α, β, γ (°)72.626 (4), 70.088 (3), 80.035 (6)
V3)743.71 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.23 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8982, 2916, 1704
Rint0.075
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 0.91
No. of reflections2916
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the 4H-pyran ring (O1/C8/C9/C11–C13) and the benzene ring (C1–C6), respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.313.168 (2)175
N2—H2B···O2ii0.862.183.017 (2)164
C2—H2···N1iii0.932.533.277 (2)138
C6—H6···Cg10.932.793.128 (2)102
C7—H7A···Cg2iv0.962.873.640 (2)138
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z+2.
 

Acknowledgements

This project was supported financially by the Higher Education Ministry of Egypt in collaboration with Manchester Metropolitan University. We thank Sargodha and Erciyes Universities for providing X-ray analysis and data refinement facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAlvey, L., Prado, S., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2009). Eur. J. Med. Chem. 44, 2497–2505.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Abdelhamid, A. A., Singh, K. & Allahverdiyev, M. A. (2012a). Acta Cryst. E68, o1414–o1415.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Albayati, M. R. (2012b). Acta Cryst. E68, o1965–o1966.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Younes, S. H. H. (2012c). Acta Cryst. E68, o2178–o2179.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNarender, T. & Gupta, S. (2009). Bioorg. Med. Chem. Lett. 14, 3913–3916.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSymeonidis, T., Chamilos, M., Hadjipavlou-Litina, D. J., Kallitsakis, M. & Litinas, K. E. (2009). Bioorg. Med. Chem. Lett. 19, 1139–1142.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYadav, J. S., Subba Reddy, B. V., Biswas, S. K. & Sengupta, S. (2009). Tetrahedron Lett. 50, 5798–5801.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds