organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­phenyl-1-(quinolin-2-yl)-4,5-di­hydro-1H-pyrazol-5-ol

aFaculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link BE 1410, Negara Brunei Darussalam, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department and Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 27 June 2012; accepted 27 June 2012; online 4 July 2012)

In the title compound, C24H19N3O, the pyrazole ring is close to being planar (r.m.s. deviation of the five fitted atoms = 0.062 Å), and each of the N-bound quinoline ring [dihedral angle = 9.90 (7)°] and the C-bound phenyl ring in the 3-position is close to being coplanar [dihedral angle = 8.87 (9)°]. However, the phenyl ring in the 5-position forms a dihedral angle of 72.31 (9)°. The hy­droxy group forms an intra­molecular hydrogen bond to the quinoline N atom. In the crystal, mol­ecules are connected into supra­molecular layers two mol­ecules thick in the bc plane by C—H⋯O and C—H⋯π inter­actions.

Related literature

For applications of coordination complexes of hydrazones as organic light emitting diodes and supra­molecular magnetic clusters, see: Zhang et al. (2011[Zhang, W. H., Hu, J. J., Chi, Y., Young, D. J. & Hor, T. S. A. (2011). Organometallics, 30, 2137-2143.], 2012[Zhang, W. H., Zhang, X. H., Tan, A. L., Yong, M. A., Young, D. J. & Hor, T. S. A. (2012). Organometallics, 31, 553-559.]). For the synthesis of hydrazones, see: Gupta et al. (2007[Gupta, L. K., Bansal, U. & Chandra, S. (2007). Spectrochim. Acta Part A, 66, 972-975.]). For background to and the synthesis of the target mol­ecules, see: Najib et al. (2012a[Najib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, m571-m572.],b[Najib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, m897-m898.],c[Najib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012c). Acta Cryst. E68, o2138.])

[Scheme 1]

Experimental

Crystal data
  • C24H19N3O

  • Mr = 365.42

  • Monoclinic, C 2/c

  • a = 30.505 (2) Å

  • b = 7.8881 (4) Å

  • c = 16.5191 (12) Å

  • β = 113.718 (9)°

  • V = 3639.1 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.784, Tmax = 1.000

  • 12177 measured reflections

  • 4209 independent reflections

  • 3419 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.130

  • S = 1.07

  • 4209 reflections

  • 257 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and N1,C1,C6–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.87 (1) 2.15 (2) 2.8149 (19) 133 (3)
C3—H3⋯O1i 0.95 2.50 3.298 (2) 142
C11—H11ACg1ii 0.99 2.92 3.8528 (18) 157
C17—H17⋯Cg2iii 0.95 2.58 3.4426 (18) 151
C24—H24⋯Cg2ii 0.95 2.97 3.6239 (18) 127
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z-{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have previously prepared 3,5-dimethyl-1-(2'-quinolyl)-pyrazole (Najib et al., 2012c) and a related Cinchonine derived ligand (Zhang et al., 2011) for the synthesis of photoluminescent zinc (Najib et al., 2012a; Najib et al., 2012b) and iridium complexes (Zhang et al., 2012). These ligands are made by the condensation of the corresponding hydrazine (Najib et al., 2012a) with a β-diketone (Gupta et al., 2007). In our attempted synthesis of 3,5-diphenyl-1-(2'-quinolyl)-pyrazole using the same procedure, we were surprised to prepare the title compound, (I), presumably from initial condensation but only partial dehydration. The reluctance of this benzylic, tertiary alcohol to undergo dehydration may be due to the resulting unfavourable proximity of the phenyl and quinoline groups.

In (I), the pyrazolyl ring has an envelope configuration with the C10 atom being the flap atom. However, the distortion from planarity is relatively minor with the r.m.s. deviation = 0.062 Å and maximum deviations of 0.051 (1) Å for the N1 atom and -0.052 (2) Å for the C10 atom. The N2-bound quinolinyl ring (r.m.s. deviation = 0.009 Å) forms a dihedral angle of 9.90 (7)° with the pyrazolyl plane. The C12-bound phenyl ring is almost co-planar with the pyrazolyl plane [dihedral angle = 8.87 (9)°) whereas the C10-bound phenyl ring forms a dihedral angle of 72.31 (9)°. The latter projects to one side of the pyrazolyl plane and the hydroxy group to the other. The hydroxy group forms an intramolecular hydrogen bond to the quinolinyl-N1 atom, Table 1.

In the crystal packing, C—H···O interactions link molecules into centrosymmetric dimers via 18-membered {···HC3NCNCO}2 synthons, Table 1. These are connected into supramolecular layers two molecules thick in the bc plane via C—H···π interactions, Fig. 2 and Table 1. Layers stack along the a axis without specific interactions between them.

Related literature top

For applications of coordination complexes of hydrazones as organic light emitting diodes and supramolecular magnetic clusters, see: Zhang et al. (2011, 2012). For the synthesis of hydrazones, see: Gupta et al. (2007). For background to and the synthesis of the target molecules, see: Najib et al. (2012a,b,c)

Experimental top

Ethanol (25 ml) was added to a mixture of 2-hydrazinylquinoline (0.08 g) and dibenzoylmethane (0.23 g) and the resulting solution was refluxed for 48 h. The solvent was removed to obtain an orange residue that was recrystallized from toluene to yield 0.063 g of orange crystals. A second recrystallization from toluene produced 0.035 g (19.1%) of orange crystals. Melting point: 503 K. IR ν/cm-1: 3409, 3061, 3028, 1616, 1602, 1559, 1507, 1480, 1447, 1432, 1405, 1371, 1343, 1326, 1302, 1263, 1248, 1233, 1170, 1149, 1070, 1050, 856, 828, 756, 698, 692. 1H NMR 400 MHz (CDCl3) δ: 8.00 (1H, d), 7.80 (3H, m), 7.58 (3H, m), 7.42 (5H, m), 7.30 (1H, m), 7.21 (2H, m), 7.15(1H, m), 3.83 (1H, d), 3.50 (1H, d), 1.25 (1H, s).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The oxygen-bound H-atom was refined with O—H = 0.84±0.01 Å and free Uiso.

Structure description top

We have previously prepared 3,5-dimethyl-1-(2'-quinolyl)-pyrazole (Najib et al., 2012c) and a related Cinchonine derived ligand (Zhang et al., 2011) for the synthesis of photoluminescent zinc (Najib et al., 2012a; Najib et al., 2012b) and iridium complexes (Zhang et al., 2012). These ligands are made by the condensation of the corresponding hydrazine (Najib et al., 2012a) with a β-diketone (Gupta et al., 2007). In our attempted synthesis of 3,5-diphenyl-1-(2'-quinolyl)-pyrazole using the same procedure, we were surprised to prepare the title compound, (I), presumably from initial condensation but only partial dehydration. The reluctance of this benzylic, tertiary alcohol to undergo dehydration may be due to the resulting unfavourable proximity of the phenyl and quinoline groups.

In (I), the pyrazolyl ring has an envelope configuration with the C10 atom being the flap atom. However, the distortion from planarity is relatively minor with the r.m.s. deviation = 0.062 Å and maximum deviations of 0.051 (1) Å for the N1 atom and -0.052 (2) Å for the C10 atom. The N2-bound quinolinyl ring (r.m.s. deviation = 0.009 Å) forms a dihedral angle of 9.90 (7)° with the pyrazolyl plane. The C12-bound phenyl ring is almost co-planar with the pyrazolyl plane [dihedral angle = 8.87 (9)°) whereas the C10-bound phenyl ring forms a dihedral angle of 72.31 (9)°. The latter projects to one side of the pyrazolyl plane and the hydroxy group to the other. The hydroxy group forms an intramolecular hydrogen bond to the quinolinyl-N1 atom, Table 1.

In the crystal packing, C—H···O interactions link molecules into centrosymmetric dimers via 18-membered {···HC3NCNCO}2 synthons, Table 1. These are connected into supramolecular layers two molecules thick in the bc plane via C—H···π interactions, Fig. 2 and Table 1. Layers stack along the a axis without specific interactions between them.

For applications of coordination complexes of hydrazones as organic light emitting diodes and supramolecular magnetic clusters, see: Zhang et al. (2011, 2012). For the synthesis of hydrazones, see: Gupta et al. (2007). For background to and the synthesis of the target molecules, see: Najib et al. (2012a,b,c)

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular array in the bc plane in (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view of the unit-cell contents of (I) in projection down the b axis. The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
3,5-Diphenyl-1-(quinolin-2-yl)-4,5-dihydro-1H-pyrazol-5-ol top
Crystal data top
C24H19N3OF(000) = 1536
Mr = 365.42Dx = 1.334 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4159 reflections
a = 30.505 (2) Åθ = 2.4–27.5°
b = 7.8881 (4) ŵ = 0.08 mm1
c = 16.5191 (12) ÅT = 100 K
β = 113.718 (9)°Block, yellow
V = 3639.1 (4) Å30.35 × 0.30 × 0.25 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4209 independent reflections
Radiation source: fine-focus sealed tube3419 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.5°
ω scanh = 3039
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 910
Tmin = 0.784, Tmax = 1.000l = 2114
12177 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0534P)2 + 3.4025P]
where P = (Fo2 + 2Fc2)/3
4209 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.32 e Å3
Crystal data top
C24H19N3OV = 3639.1 (4) Å3
Mr = 365.42Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.505 (2) ŵ = 0.08 mm1
b = 7.8881 (4) ÅT = 100 K
c = 16.5191 (12) Å0.35 × 0.30 × 0.25 mm
β = 113.718 (9)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4209 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3419 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 1.000Rint = 0.033
12177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.30 e Å3
4209 reflectionsΔρmin = 0.32 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43944 (4)0.27304 (15)0.51758 (8)0.0265 (3)
H1o0.4449 (11)0.250 (4)0.5723 (9)0.087 (11)*
N10.40135 (5)0.26810 (16)0.64704 (9)0.0201 (3)
N20.36017 (5)0.33420 (17)0.50098 (9)0.0208 (3)
N30.32336 (5)0.29868 (16)0.42006 (9)0.0210 (3)
C10.40233 (6)0.20442 (18)0.72467 (10)0.0187 (3)
C20.44529 (6)0.2169 (2)0.80119 (11)0.0225 (3)
H20.47240.27080.79800.027*
C30.44810 (6)0.1519 (2)0.88010 (11)0.0241 (4)
H30.47720.16070.93110.029*
C40.40834 (6)0.0723 (2)0.88630 (11)0.0246 (4)
H40.41070.02750.94130.030*
C50.36626 (6)0.05912 (19)0.81328 (11)0.0232 (3)
H50.33950.00540.81790.028*
C60.36217 (6)0.12429 (18)0.73125 (10)0.0195 (3)
C70.31958 (6)0.1126 (2)0.65227 (11)0.0218 (3)
H70.29210.05800.65340.026*
C80.31823 (6)0.17893 (19)0.57593 (11)0.0213 (3)
H80.28990.17300.52320.026*
C90.36047 (6)0.25830 (19)0.57660 (10)0.0193 (3)
C100.40389 (6)0.3997 (2)0.49355 (11)0.0215 (3)
C110.38509 (6)0.4283 (2)0.39280 (10)0.0234 (4)
H11A0.38360.55070.37860.028*
H11B0.40560.37030.36770.028*
C120.33582 (5)0.35170 (19)0.35852 (10)0.0196 (3)
C130.42182 (5)0.56032 (19)0.54739 (10)0.0185 (3)
C140.47014 (6)0.6033 (2)0.57873 (11)0.0228 (3)
H140.49210.52910.56900.027*
C150.48632 (6)0.7545 (2)0.62411 (12)0.0275 (4)
H150.51920.78390.64490.033*
C160.45464 (6)0.8621 (2)0.63909 (11)0.0273 (4)
H160.46580.96490.67060.033*
C170.40668 (6)0.8200 (2)0.60811 (12)0.0283 (4)
H170.38480.89370.61840.034*
C180.39055 (6)0.6704 (2)0.56208 (11)0.0245 (4)
H180.35750.64290.54020.029*
C190.30291 (5)0.33954 (19)0.26559 (10)0.0194 (3)
C200.25909 (6)0.2537 (2)0.24096 (11)0.0213 (3)
H200.25150.19790.28460.026*
C210.22711 (6)0.2503 (2)0.15352 (11)0.0233 (3)
H210.19750.19190.13720.028*
C220.23785 (6)0.3313 (2)0.08928 (11)0.0240 (3)
H220.21540.33050.02940.029*
C230.28120 (6)0.4133 (2)0.11249 (11)0.0238 (4)
H230.28870.46740.06820.029*
C240.31400 (6)0.4175 (2)0.20006 (11)0.0223 (3)
H240.34390.47310.21540.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0252 (6)0.0256 (6)0.0271 (7)0.0021 (5)0.0087 (5)0.0023 (5)
N10.0211 (7)0.0193 (6)0.0190 (7)0.0010 (5)0.0071 (5)0.0013 (5)
N20.0180 (6)0.0245 (7)0.0171 (6)0.0051 (5)0.0042 (5)0.0010 (5)
N30.0198 (7)0.0213 (7)0.0175 (7)0.0006 (5)0.0031 (5)0.0006 (5)
C10.0216 (8)0.0162 (7)0.0194 (8)0.0011 (6)0.0094 (6)0.0018 (6)
C20.0209 (8)0.0239 (8)0.0231 (8)0.0005 (6)0.0094 (6)0.0018 (6)
C30.0253 (8)0.0263 (8)0.0188 (8)0.0043 (6)0.0068 (6)0.0015 (6)
C40.0344 (9)0.0197 (8)0.0218 (8)0.0042 (6)0.0134 (7)0.0031 (6)
C50.0286 (8)0.0165 (7)0.0272 (8)0.0003 (6)0.0140 (7)0.0001 (6)
C60.0229 (8)0.0140 (7)0.0232 (8)0.0012 (6)0.0108 (6)0.0015 (6)
C70.0221 (8)0.0187 (7)0.0273 (8)0.0026 (6)0.0128 (7)0.0016 (6)
C80.0189 (7)0.0198 (7)0.0233 (8)0.0015 (6)0.0066 (6)0.0020 (6)
C90.0214 (8)0.0170 (7)0.0194 (8)0.0003 (6)0.0083 (6)0.0009 (6)
C100.0210 (8)0.0222 (8)0.0217 (8)0.0031 (6)0.0088 (6)0.0024 (6)
C110.0227 (8)0.0258 (8)0.0197 (8)0.0047 (6)0.0065 (6)0.0027 (6)
C120.0205 (8)0.0173 (7)0.0202 (8)0.0012 (6)0.0074 (6)0.0004 (6)
C130.0210 (7)0.0196 (7)0.0146 (7)0.0023 (6)0.0067 (6)0.0003 (6)
C140.0199 (8)0.0245 (8)0.0239 (8)0.0003 (6)0.0085 (6)0.0036 (6)
C150.0212 (8)0.0278 (9)0.0292 (9)0.0051 (7)0.0057 (7)0.0041 (7)
C160.0335 (9)0.0216 (8)0.0233 (8)0.0019 (7)0.0077 (7)0.0040 (6)
C170.0310 (9)0.0256 (9)0.0308 (9)0.0052 (7)0.0150 (7)0.0023 (7)
C180.0200 (8)0.0264 (8)0.0273 (9)0.0005 (6)0.0096 (7)0.0010 (7)
C190.0193 (7)0.0180 (7)0.0186 (7)0.0039 (6)0.0051 (6)0.0017 (6)
C200.0214 (8)0.0220 (8)0.0202 (8)0.0001 (6)0.0081 (6)0.0006 (6)
C210.0182 (8)0.0256 (8)0.0245 (8)0.0021 (6)0.0069 (6)0.0015 (6)
C220.0229 (8)0.0256 (8)0.0198 (8)0.0010 (6)0.0048 (6)0.0010 (6)
C230.0260 (8)0.0249 (8)0.0207 (8)0.0015 (6)0.0097 (7)0.0012 (6)
C240.0201 (8)0.0218 (8)0.0246 (8)0.0019 (6)0.0086 (6)0.0020 (6)
Geometric parameters (Å, º) top
O1—C101.409 (2)C11—H11A0.9900
O1—H1o0.871 (10)C11—H11B0.9900
N1—C91.3220 (19)C12—C191.461 (2)
N1—C11.366 (2)C13—C181.382 (2)
N2—C91.382 (2)C13—C141.393 (2)
N2—N31.3850 (17)C14—C151.389 (2)
N2—C101.481 (2)C14—H140.9500
N3—C121.290 (2)C15—C161.381 (2)
C1—C21.411 (2)C15—H150.9500
C1—C61.421 (2)C16—C171.382 (2)
C2—C31.371 (2)C16—H160.9500
C2—H20.9500C17—C181.383 (2)
C3—C41.405 (2)C17—H170.9500
C3—H30.9500C18—H180.9500
C4—C51.367 (2)C19—C241.400 (2)
C4—H40.9500C19—C201.405 (2)
C5—C61.407 (2)C20—C211.380 (2)
C5—H50.9500C20—H200.9500
C6—C71.426 (2)C21—C221.386 (2)
C7—C81.350 (2)C21—H210.9500
C7—H70.9500C22—C231.381 (2)
C8—C91.429 (2)C22—H220.9500
C8—H80.9500C23—C241.389 (2)
C10—C131.518 (2)C23—H230.9500
C10—C111.543 (2)C24—H240.9500
C11—C121.503 (2)
C10—O1—H1o104 (2)C12—C11—H11B111.1
C9—N1—C1117.48 (13)C10—C11—H11B111.1
C9—N2—N3119.53 (12)H11A—C11—H11B109.1
C9—N2—C10123.18 (12)N3—C12—C19120.74 (14)
N3—N2—C10113.46 (12)N3—C12—C11113.60 (14)
C12—N3—N2108.27 (13)C19—C12—C11125.63 (14)
N1—C1—C2118.47 (14)C18—C13—C14118.91 (14)
N1—C1—C6122.77 (14)C18—C13—C10121.07 (14)
C2—C1—C6118.76 (14)C14—C13—C10119.93 (14)
C3—C2—C1120.37 (15)C15—C14—C13120.18 (15)
C3—C2—H2119.8C15—C14—H14119.9
C1—C2—H2119.8C13—C14—H14119.9
C2—C3—C4120.71 (15)C16—C15—C14120.13 (16)
C2—C3—H3119.6C16—C15—H15119.9
C4—C3—H3119.6C14—C15—H15119.9
C5—C4—C3120.08 (15)C15—C16—C17119.90 (16)
C5—C4—H4120.0C15—C16—H16120.1
C3—C4—H4120.0C17—C16—H16120.1
C4—C5—C6120.68 (16)C16—C17—C18119.89 (16)
C4—C5—H5119.7C16—C17—H17120.1
C6—C5—H5119.7C18—C17—H17120.1
C5—C6—C1119.40 (14)C13—C18—C17120.99 (15)
C5—C6—C7123.54 (15)C13—C18—H18119.5
C1—C6—C7117.06 (14)C17—C18—H18119.5
C8—C7—C6120.24 (15)C24—C19—C20119.05 (14)
C8—C7—H7119.9C24—C19—C12120.41 (14)
C6—C7—H7119.9C20—C19—C12120.51 (15)
C7—C8—C9118.28 (14)C21—C20—C19120.14 (15)
C7—C8—H8120.9C21—C20—H20119.9
C9—C8—H8120.9C19—C20—H20119.9
N1—C9—N2115.56 (14)C20—C21—C22120.45 (15)
N1—C9—C8124.12 (14)C20—C21—H21119.8
N2—C9—C8120.31 (14)C22—C21—H21119.8
O1—C10—N2110.25 (13)C23—C22—C21119.90 (15)
O1—C10—C13111.82 (12)C23—C22—H22120.1
N2—C10—C13111.52 (13)C21—C22—H22120.1
O1—C10—C11108.52 (13)C22—C23—C24120.55 (16)
N2—C10—C11100.60 (12)C22—C23—H23119.7
C13—C10—C11113.56 (13)C24—C23—H23119.7
C12—C11—C10103.23 (13)C23—C24—C19119.88 (15)
C12—C11—H11A111.1C23—C24—H24120.1
C10—C11—H11A111.1C19—C24—H24120.1
C9—N2—N3—C12165.92 (14)N2—C10—C11—C127.55 (15)
C10—N2—N3—C127.26 (17)C13—C10—C11—C12126.82 (14)
C9—N1—C1—C2178.59 (14)N2—N3—C12—C19176.76 (13)
C9—N1—C1—C62.3 (2)N2—N3—C12—C111.48 (18)
N1—C1—C2—C3178.78 (14)C10—C11—C12—N34.29 (18)
C6—C1—C2—C30.4 (2)C10—C11—C12—C19177.58 (14)
C1—C2—C3—C40.2 (2)O1—C10—C13—C18153.52 (15)
C2—C3—C4—C50.1 (2)N2—C10—C13—C1829.6 (2)
C3—C4—C5—C60.2 (2)C11—C10—C13—C1883.26 (19)
C4—C5—C6—C10.0 (2)O1—C10—C13—C1430.0 (2)
C4—C5—C6—C7179.05 (15)N2—C10—C13—C14153.99 (14)
N1—C1—C6—C5178.84 (14)C11—C10—C13—C1493.20 (18)
C2—C1—C6—C50.3 (2)C18—C13—C14—C150.1 (2)
N1—C1—C6—C70.3 (2)C10—C13—C14—C15176.68 (15)
C2—C1—C6—C7179.38 (14)C13—C14—C15—C160.6 (3)
C5—C6—C7—C8179.68 (15)C14—C15—C16—C170.6 (3)
C1—C6—C7—C81.3 (2)C15—C16—C17—C180.1 (3)
C6—C7—C8—C90.7 (2)C14—C13—C18—C170.9 (2)
C1—N1—C9—N2175.86 (13)C10—C13—C18—C17177.38 (15)
C1—N1—C9—C82.9 (2)C16—C17—C18—C130.9 (3)
N3—N2—C9—N1165.54 (13)N3—C12—C19—C24171.36 (14)
C10—N2—C9—N19.0 (2)C11—C12—C19—C246.6 (2)
N3—N2—C9—C815.6 (2)N3—C12—C19—C206.8 (2)
C10—N2—C9—C8172.13 (14)C11—C12—C19—C20175.19 (15)
C7—C8—C9—N11.5 (2)C24—C19—C20—C211.5 (2)
C7—C8—C9—N2177.26 (14)C12—C19—C20—C21176.65 (15)
C9—N2—C10—O152.69 (19)C19—C20—C21—C220.0 (2)
N3—N2—C10—O1105.08 (14)C20—C21—C22—C231.3 (3)
C9—N2—C10—C1372.15 (18)C21—C22—C23—C240.9 (3)
N3—N2—C10—C13130.07 (13)C22—C23—C24—C190.7 (2)
C9—N2—C10—C11167.12 (14)C20—C19—C24—C231.9 (2)
N3—N2—C10—C119.34 (16)C12—C19—C24—C23176.29 (14)
O1—C10—C11—C12108.17 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and N1,C1,C6–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.87 (1)2.15 (2)2.8149 (19)133 (3)
C3—H3···O1i0.952.503.298 (2)142
C11—H11A···Cg1ii0.992.923.8528 (18)157
C17—H17···Cg2iii0.952.583.4426 (18)151
C24—H24···Cg2ii0.952.973.6239 (18)127
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+3/2, z1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H19N3O
Mr365.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)30.505 (2), 7.8881 (4), 16.5191 (12)
β (°) 113.718 (9)
V3)3639.1 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.784, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12177, 4209, 3419
Rint0.033
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.130, 1.07
No. of reflections4209
No. of parameters257
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.32

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and N1,C1,C6–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.871 (10)2.15 (2)2.8149 (19)133 (3)
C3—H3···O1i0.952.503.298 (2)142
C11—H11A···Cg1ii0.992.923.8528 (18)157
C17—H17···Cg2iii0.952.583.4426 (18)151
C24—H24···Cg2ii0.952.973.6239 (18)127
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+3/2, z1/2; (iii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: david.young@ubd.edu.bn.

Acknowledgements

We gratefully acknowledge funding from the Brunei Research Council, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGupta, L. K., Bansal, U. & Chandra, S. (2007). Spectrochim. Acta Part A, 66, 972–975.  CrossRef Google Scholar
First citationNajib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, m571–m572.  CSD CrossRef IUCr Journals Google Scholar
First citationNajib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, m897–m898.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNajib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012c). Acta Cryst. E68, o2138.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W. H., Hu, J. J., Chi, Y., Young, D. J. & Hor, T. S. A. (2011). Organometallics, 30, 2137–2143.  Web of Science CrossRef CAS Google Scholar
First citationZhang, W. H., Zhang, X. H., Tan, A. L., Yong, M. A., Young, D. J. & Hor, T. S. A. (2012). Organometallics, 31, 553–559.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds