metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{6-bromo-4-chloro-2-[(E)-(2-chloro­phenyl)­imino­meth­yl]­phenolato-κ2N,O}copper(II)

aDepartment of Chemistry, Xianyang Normal University, Xianyang, Shaanxi 712000, People's Republic of China
*Correspondence e-mail: xianyangzhangpin@163.com

(Received 22 April 2012; accepted 1 June 2012; online 25 July 2012)

In the title compound, [Cu(C13H7BrCl2NO)2], or CuL2 {where HL= 2-[(E)-(2-chloro­phenyl­imino)­meth­yl]-6-bromo-4-chloro­phenol}, the CuII atom is located on an inversion center and has a square-planar coordination. In the crystal, complex mol­ecules are linked via Cu⋯Cl inter­actions [2.9933 (11) Å], forming a two-dimensional network parallel to the bc plane. They are also Cl⋯Cl inter­actions [3.3709 (14) Å] present, which consolidate the two-dimensional network structure.

Related literature

For applications and properties of bidentate Schiff base ligands and their metal complexes, see: Akine et al. (2002[Akine, S., Taniguchi, T. & Nabeshima, T. (2002). Angew. Chem. Int. Ed. 41, 4670-4673.]); Schuetz et al. (2004[Schuetz, S. A., Silvernail, C. M. & Incarvito, C. D. (2004). Inorg. Chem. 43, 6203-6207.]); Singh et al. (1997[Singh, P., Das, S. S. & Baranwal, B. P. (1997). Transition Met. Chem. 22, 164-166.]); Qi et al. (2007[Qi, G. F., Yang, Z. Y. & Wang, B. D. (2007). Transition Met. Chem. 32, 233-239.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H7BrCl2NO)2]

  • Mr = 751.55

  • Monoclinic, P 21 /c

  • a = 11.064 (3) Å

  • b = 9.437 (2) Å

  • c = 13.277 (4) Å

  • β = 108.997 (3)°

  • V = 1310.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.32 mm−1

  • T = 153 K

  • 0.46 × 0.42 × 0.42 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.242, Tmax = 0.265

  • 10994 measured reflections

  • 3491 independent reflections

  • 2777 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.065

  • S = 1.00

  • 3491 reflections

  • 169 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bidentate Schiff base ligands of various types and their metal complexes have proved to be of significant interest in the areas of photoluminescence (Akine et al., 2002), catalysis (Schuetz et al., 2004), magnetism (Singh et al., 1997) and molecular architectures (Qi et al., 2007). The title complex was obtained from the reaction of 3-bromo-5-chlorosalicylaldehyde, 4-chlorobenzenamine and CuCl2.2H2O. We report herein on the synthesis and crystal structure of the title compound.

The molecular structure of the title complex, CuL2, is shown in Fig. 1. The central CuII atom lies on an inversion center and has a square-planar coordination geometry, through the formation of two Cu—N and two Cu—O bonds with two bidentate 2-((E)-(2- chlorophenylimino)methyl)-6-bromo-4-chlorophenol (HL) ligands. The dihedral angle between the phenyl ring (C1—C6) and the chelate ring (O1/Cu1/N1/C7/C6/C1) is only 6.2() °. The two benzene rings in each ligand are inclined to one another by 65.97 (10)°. Bond angles also show that the coordination geometry about the copper atom is a slightly distorted square planar structure, with O1—Cu1—N1, O1A—Cu1—O1 and O1—Cu1—N1A angles of 91.24 (7) °, 180 ° and 88.76 (7) °, respectively [symmetry code: (A) = -x+1, -y+1, -z+1]. The Cu1—O1 and Cu1—N1 bond lengths are 1.9076 (16) and 2.005 (2) Å, respectively.

In the crystal, molecules are linked via Cu1···Cli interactions with a distance of 2.9933 (11) Å [symmetry code: (i) x, -y+0.5, z-0.5] which results in the formation of a two-dimensional network parallel to the bc plane (Fig. 2). There are also Cl1···Cl2ii interactions present involving adjacent molecules [symmetry code: (ii) x+1, y, z+1] with distance 3.3709 (14) Å, which consolidate the two-dimensional network structure.

Related literature top

For applications and properties of bidentate Schiff base ligands and their metal complexes, see: Akine et al. (2002); Schuetz et al. (2004); Singh et al. (1997); Qi et al. (2007).

Experimental top

To an methanol solution (10 ml) containing 4-chlorobenzenamine (0.2 mmol, 25.4 mg) and 3-bromo-5-chlorosalicylaldehyde (0.2 mmol, 47.2 mg) was added CuCl2.2H2O (0.1 mmol, 17.1 mg) in methanol (10 ml). The mixture was stirred for 30 min and then filtered. The filtrate was left to stand undisturbed at room temperature. Dark-green prism-like crystals of the title complex was obtained by slow evaporation of the methanol solvent.

Refinement top

The C bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Structure description top

Bidentate Schiff base ligands of various types and their metal complexes have proved to be of significant interest in the areas of photoluminescence (Akine et al., 2002), catalysis (Schuetz et al., 2004), magnetism (Singh et al., 1997) and molecular architectures (Qi et al., 2007). The title complex was obtained from the reaction of 3-bromo-5-chlorosalicylaldehyde, 4-chlorobenzenamine and CuCl2.2H2O. We report herein on the synthesis and crystal structure of the title compound.

The molecular structure of the title complex, CuL2, is shown in Fig. 1. The central CuII atom lies on an inversion center and has a square-planar coordination geometry, through the formation of two Cu—N and two Cu—O bonds with two bidentate 2-((E)-(2- chlorophenylimino)methyl)-6-bromo-4-chlorophenol (HL) ligands. The dihedral angle between the phenyl ring (C1—C6) and the chelate ring (O1/Cu1/N1/C7/C6/C1) is only 6.2() °. The two benzene rings in each ligand are inclined to one another by 65.97 (10)°. Bond angles also show that the coordination geometry about the copper atom is a slightly distorted square planar structure, with O1—Cu1—N1, O1A—Cu1—O1 and O1—Cu1—N1A angles of 91.24 (7) °, 180 ° and 88.76 (7) °, respectively [symmetry code: (A) = -x+1, -y+1, -z+1]. The Cu1—O1 and Cu1—N1 bond lengths are 1.9076 (16) and 2.005 (2) Å, respectively.

In the crystal, molecules are linked via Cu1···Cli interactions with a distance of 2.9933 (11) Å [symmetry code: (i) x, -y+0.5, z-0.5] which results in the formation of a two-dimensional network parallel to the bc plane (Fig. 2). There are also Cl1···Cl2ii interactions present involving adjacent molecules [symmetry code: (ii) x+1, y, z+1] with distance 3.3709 (14) Å, which consolidate the two-dimensional network structure.

For applications and properties of bidentate Schiff base ligands and their metal complexes, see: Akine et al. (2002); Schuetz et al. (2004); Singh et al. (1997); Qi et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the numbering scheme. The displacement ellipsoids are drawn at the 30% probability level (symmetry code: (A) = -x + 1, -y + 1, -z + 1).
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The Cu—Cl interactions leading to the formation of the two-dimensional network are shown as dashed lines.
Bis{6-bromo-4-chloro-2-[(E)-(2- chlorophenyl)iminomethyl]phenolato-κ2N,O}copper(II) top
Crystal data top
[Cu(C13H7BrCl2NO)2]F(000) = 734
Mr = 751.55Dx = 1.904 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4339 reflections
a = 11.064 (3) Åθ = 2.1–29.1°
b = 9.437 (2) ŵ = 4.32 mm1
c = 13.277 (4) ÅT = 153 K
β = 108.997 (3)°Block, green
V = 1310.8 (6) Å30.46 × 0.42 × 0.42 mm
Z = 2
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3491 independent reflections
Radiation source: Rotating Anode2777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 28.5714 pixels mm-1θmax = 29.1°, θmin = 2.7°
phi and ω scansh = 1315
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 912
Tmin = 0.242, Tmax = 0.265l = 1818
10994 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.031P)2 + 0.160P]
where P = (Fo2 + 2Fc2)/3
3491 reflections(Δ/σ)max = 0.001
169 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cu(C13H7BrCl2NO)2]V = 1310.8 (6) Å3
Mr = 751.55Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.064 (3) ŵ = 4.32 mm1
b = 9.437 (2) ÅT = 153 K
c = 13.277 (4) Å0.46 × 0.42 × 0.42 mm
β = 108.997 (3)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3491 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
2777 reflections with I > 2σ(I)
Tmin = 0.242, Tmax = 0.265Rint = 0.033
10994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.00Δρmax = 0.53 e Å3
3491 reflectionsΔρmin = 0.49 e Å3
169 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.84869 (2)0.57837 (3)0.82867 (2)0.0231 (1)
Cu10.500000.500000.500000.0154 (1)
Cl10.56447 (5)0.30682 (6)1.04373 (4)0.0204 (2)
Cl20.17769 (6)0.39010 (9)0.25396 (6)0.0444 (2)
O10.60785 (15)0.52907 (17)0.64325 (12)0.0175 (5)
N10.35254 (17)0.4484 (2)0.54915 (14)0.0159 (5)
C10.5950 (2)0.4776 (2)0.73017 (17)0.0148 (6)
C20.6964 (2)0.4879 (2)0.82837 (18)0.0170 (7)
C30.6887 (2)0.4339 (2)0.92251 (17)0.0178 (6)
C40.5768 (2)0.3680 (2)0.92269 (17)0.0178 (7)
C50.4741 (2)0.3556 (2)0.83107 (17)0.0180 (7)
C60.4826 (2)0.4100 (2)0.73471 (17)0.0165 (7)
C70.3676 (2)0.4035 (2)0.64418 (18)0.0177 (7)
C80.2249 (2)0.4343 (2)0.47615 (17)0.0175 (6)
C90.1727 (2)0.3013 (3)0.44708 (18)0.0218 (7)
C100.0474 (2)0.2874 (3)0.38026 (19)0.0254 (8)
C110.0229 (2)0.4077 (3)0.34322 (19)0.0247 (7)
C120.0273 (2)0.5410 (3)0.3717 (2)0.0263 (8)
C130.1522 (2)0.5547 (3)0.43829 (19)0.0219 (7)
H30.759100.441800.986400.0210*
H50.397900.310700.832600.0220*
H70.295100.361700.655700.0210*
H90.222800.219200.473000.0260*
H100.010900.196300.360500.0300*
H120.023500.622700.345800.0320*
H130.188100.646100.458000.0260*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0173 (1)0.0301 (2)0.0214 (1)0.0056 (1)0.0054 (1)0.0027 (1)
Cu10.0132 (2)0.0197 (2)0.0126 (2)0.0016 (2)0.0033 (1)0.0003 (2)
Cl10.0253 (3)0.0211 (3)0.0134 (2)0.0044 (2)0.0045 (2)0.0031 (2)
Cl20.0161 (3)0.0692 (5)0.0384 (4)0.0005 (3)0.0041 (3)0.0151 (4)
O10.0160 (8)0.0240 (9)0.0119 (7)0.0035 (7)0.0038 (6)0.0001 (6)
N10.0124 (9)0.0185 (10)0.0163 (9)0.0004 (7)0.0041 (7)0.0005 (7)
C10.0163 (10)0.0123 (11)0.0157 (11)0.0000 (8)0.0051 (9)0.0008 (8)
C20.0168 (11)0.0155 (12)0.0187 (11)0.0007 (9)0.0056 (9)0.0023 (9)
C30.0176 (11)0.0172 (12)0.0156 (10)0.0007 (9)0.0015 (9)0.0011 (9)
C40.0221 (12)0.0156 (12)0.0148 (10)0.0007 (9)0.0047 (9)0.0013 (9)
C50.0187 (11)0.0179 (12)0.0168 (11)0.0023 (9)0.0051 (9)0.0004 (9)
C60.0161 (11)0.0169 (12)0.0149 (11)0.0004 (9)0.0029 (9)0.0001 (8)
C70.0166 (11)0.0181 (12)0.0183 (11)0.0019 (9)0.0056 (9)0.0006 (9)
C80.0139 (10)0.0251 (13)0.0140 (10)0.0019 (9)0.0052 (9)0.0000 (9)
C90.0199 (12)0.0233 (13)0.0204 (12)0.0033 (10)0.0040 (10)0.0019 (9)
C100.0246 (13)0.0267 (14)0.0237 (12)0.0097 (11)0.0062 (10)0.0032 (10)
C110.0114 (11)0.0438 (16)0.0174 (11)0.0013 (10)0.0027 (9)0.0051 (10)
C120.0179 (12)0.0345 (15)0.0250 (13)0.0084 (11)0.0050 (10)0.0012 (11)
C130.0203 (12)0.0219 (13)0.0232 (12)0.0004 (10)0.0066 (10)0.0000 (10)
Geometric parameters (Å, º) top
Br1—C21.888 (2)C4—C51.373 (3)
Cu1—O11.9076 (16)C5—C61.410 (3)
Cu1—N12.005 (2)C6—C71.439 (3)
Cu1—Cl1i2.9933 (11)C8—C91.383 (3)
Cu1—O1ii1.9076 (16)C8—C131.388 (3)
Cu1—N1ii2.005 (2)C9—C101.388 (3)
Cu1—Cl1iii2.9933 (11)C10—C111.374 (4)
Cl1—C41.754 (2)C11—C121.377 (4)
Cl2—C111.745 (3)C12—C131.383 (3)
O1—C11.302 (3)C3—H30.9500
N1—C71.289 (3)C5—H50.9500
N1—C81.435 (3)C7—H70.9500
C1—C21.420 (3)C9—H90.9500
C1—C61.416 (3)C10—H100.9500
C2—C31.378 (3)C12—H120.9500
C3—C41.386 (3)C13—H130.9500
O1—Cu1—N191.24 (7)C4—C5—C6119.5 (2)
Cl1i—Cu1—O194.96 (5)C1—C6—C5121.4 (2)
O1—Cu1—O1ii180.00C1—C6—C7122.24 (19)
O1—Cu1—N1ii88.76 (7)C5—C6—C7116.1 (2)
Cl1iii—Cu1—O185.04 (5)N1—C7—C6126.9 (2)
Cl1i—Cu1—N197.49 (6)N1—C8—C9120.15 (19)
O1ii—Cu1—N188.76 (7)N1—C8—C13119.69 (19)
N1—Cu1—N1ii180.00C9—C8—C13120.1 (2)
Cl1iii—Cu1—N182.51 (6)C8—C9—C10120.3 (2)
Cl1i—Cu1—O1ii85.04 (5)C9—C10—C11118.8 (3)
Cl1i—Cu1—N1ii82.51 (6)Cl2—C11—C10118.7 (2)
Cl1i—Cu1—Cl1iii180.00Cl2—C11—C12119.5 (2)
O1ii—Cu1—N1ii91.24 (7)C10—C11—C12121.7 (2)
Cl1iii—Cu1—O1ii94.96 (5)C11—C12—C13119.4 (2)
Cl1iii—Cu1—N1ii97.49 (6)C8—C13—C12119.7 (2)
Cu1iv—Cl1—C4103.02 (7)C2—C3—H3120.00
Cu1—O1—C1128.08 (15)C4—C3—H3120.00
Cu1—N1—C7122.60 (16)C4—C5—H5120.00
Cu1—N1—C8121.93 (14)C6—C5—H5120.00
C7—N1—C8114.56 (19)N1—C7—H7117.00
O1—C1—C2120.5 (2)C6—C7—H7117.00
O1—C1—C6123.8 (2)C8—C9—H9120.00
C2—C1—C6115.73 (19)C10—C9—H9120.00
Br1—C2—C1118.09 (16)C9—C10—H10121.00
Br1—C2—C3118.95 (17)C11—C10—H10121.00
C1—C2—C3123.0 (2)C11—C12—H12120.00
C2—C3—C4119.1 (2)C13—C12—H12120.00
Cl1—C4—C3119.02 (17)C8—C13—H13120.00
Cl1—C4—C5119.67 (17)C12—C13—H13120.00
C3—C4—C5121.3 (2)
N1—Cu1—O1—C122.33 (18)C6—C1—C2—C31.2 (3)
Cl1i—Cu1—O1—C1119.96 (17)O1—C1—C6—C5179.73 (19)
N1ii—Cu1—O1—C1157.67 (18)O1—C1—C6—C75.7 (3)
Cl1iii—Cu1—O1—C160.04 (17)C2—C1—C6—C50.7 (3)
O1—Cu1—N1—C722.22 (18)C2—C1—C6—C7173.92 (19)
O1—Cu1—N1—C8169.30 (16)Br1—C2—C3—C4179.69 (15)
Cl1i—Cu1—N1—C7117.39 (17)C1—C2—C3—C40.9 (3)
Cl1i—Cu1—N1—C874.13 (15)C2—C3—C4—Cl1177.01 (16)
O1ii—Cu1—N1—C7157.78 (18)C2—C3—C4—C50.1 (3)
O1ii—Cu1—N1—C810.70 (16)Cl1—C4—C5—C6177.47 (15)
Cl1iii—Cu1—N1—C762.61 (17)C3—C4—C5—C60.4 (3)
Cl1iii—Cu1—N1—C8105.88 (15)C4—C5—C6—C10.1 (3)
Cu1iv—Cl1—C4—C3124.36 (15)C4—C5—C6—C7174.99 (18)
Cu1iv—Cl1—C4—C558.52 (17)C1—C6—C7—N14.1 (3)
Cu1—O1—C1—C2167.99 (14)C5—C6—C7—N1178.9 (2)
Cu1—O1—C1—C612.4 (3)N1—C8—C9—C10177.1 (2)
Cu1—N1—C7—C613.8 (3)C13—C8—C9—C100.2 (3)
C8—N1—C7—C6176.95 (19)N1—C8—C13—C12177.1 (2)
Cu1—N1—C8—C9103.7 (2)C9—C8—C13—C120.2 (4)
Cu1—N1—C8—C1378.9 (2)C8—C9—C10—C110.5 (3)
C7—N1—C8—C965.6 (3)C9—C10—C11—Cl2176.83 (18)
C7—N1—C8—C13111.7 (2)C9—C10—C11—C120.8 (4)
O1—C1—C2—Br10.2 (3)Cl2—C11—C12—C13176.80 (19)
O1—C1—C2—C3179.21 (19)C10—C11—C12—C130.8 (4)
C6—C1—C2—Br1179.41 (14)C11—C12—C13—C80.5 (4)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(C13H7BrCl2NO)2]
Mr751.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)11.064 (3), 9.437 (2), 13.277 (4)
β (°) 108.997 (3)
V3)1310.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)4.32
Crystal size (mm)0.46 × 0.42 × 0.42
Data collection
DiffractometerRigaku AFC10/Saturn724+
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.242, 0.265
No. of measured, independent and
observed [I > 2σ(I)] reflections
10994, 3491, 2777
Rint0.033
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.065, 1.00
No. of reflections3491
No. of parameters169
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.49

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by Xianyang Normal University in Shaanxi Province of the People's Republic of China.

References

First citationAkine, S., Taniguchi, T. & Nabeshima, T. (2002). Angew. Chem. Int. Ed. 41, 4670–4673.  Web of Science CSD CrossRef CAS Google Scholar
First citationQi, G. F., Yang, Z. Y. & Wang, B. D. (2007). Transition Met. Chem. 32, 233–239.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchuetz, S. A., Silvernail, C. M. & Incarvito, C. D. (2004). Inorg. Chem. 43, 6203–6207.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, P., Das, S. S. & Baranwal, B. P. (1997). Transition Met. Chem. 22, 164–166.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds