metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

Potassium morpholine-4-carbodi­thio­ate monohydrate

aInstituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense, 400, Caixa Postal 369, 13566-590 São Carlos, SP, Brazil
*Correspondence e-mail: mafud@usp.br

(Received 30 May 2012; accepted 28 June 2012; online 4 July 2012)

In the ionic title compound, K+·C5H8NOS2·H2O, the morpholine ring of the morpholine-4-carbodithio­ate anion has a chair conformation. The potassium cation is coordinated by four S and four O atoms in a bipyramidal reversed geometry. In the crystal, the three components are linked, generating infinite two-dimensional networks that lie parallel to the bc plane. These layers are linked via O—H⋯S hydrogen bonds, forming a three-dimensional structure.

Related literature

For the crystal structures of similar compounds, see: Oskarsson et al. (1979[Oskarsson, A., Ståhl, K., Svensson, C. & Ymen, I. (1979). Eur. Cryst. Meet, 5, 67.]); Albertsson et al. (1980[Albertsson, J., Oskarsson, Å., Ståhl, K., Svensson, C. & Ymén, I. (1980). Acta Cryst. B36, 3072-3078.]); Ymén (1982[Ymén, I. (1982). Acta Cryst. B38, 2671-2674.]); Mafud & Gambardella (2011a[Mafud, A. C. & Gambardella, M. T. P. (2011a). Acta Cryst. E67, m942.],b[Mafud, A. C. & Gambardella, M. T. P. (2011b). Acta Cryst. E67, o879.]); Mafud et al. (2011[Mafud, A. C., Sanches, E. A. & Gambardella, M. T. (2011). Acta Cryst. E67, o2008.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C5H8NOS2·H2O

  • Mr = 219.36

  • Monoclinic, P 21 /c

  • a = 6.7235 (10) Å

  • b = 17.260 (4) Å

  • c = 8.1904 (10) Å

  • β = 108.994 (10)°

  • V = 898.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 290 K

  • 0.45 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: refined from ΔF (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.512, Tmax = 0.818

  • 2779 measured reflections

  • 2618 independent reflections

  • 1615 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections every 120 min intensity decay: 10%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.130

  • S = 1.01

  • 2618 reflections

  • 106 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O⋯S1i 0.86 (4) 2.45 (4) 3.219 (3) 149 (3)
O2—H2O⋯S1ii 0.85 (3) 2.87 (5) 3.462 (3) 129 (4)
Symmetry codes: (i) [-x-1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x-1, -y, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, Fig. 1, is composed of a morpholinedithiocarbamate anion in contact with a potassium cation, which in turn is linked with a water molecule of crystallization. The crystal structure of similar compounds, for example Sodium 1-R-carbodithioate dihydrate, have been reported (Oskarsson et al., 1979; Albertsson et al., 1980; Ymén, 1982; Mafud & Gambardella et al., 2011a,b).

The six-membered morpholine ring has a chair conformation with Puckering parameters [Cremer & Pople, 1975)] Q = 0.548 (3) Å, θ = 173,3(3)°, φ2 = 2,6(3,4)°.

In the crystal, a polymeric structure is built by coordination of the potassium cation to four sulfur [K···S = 3.2670 (13) - 3.3797 (14) Å] and four oxygen [K···O = 2.828 (3) - 3.007 (3) Å] atoms, with a bi-pyramidal reversed geometry. This configuration generates close packed layers which remain cohesive in crystal stacking by van der Waals interactions. The distances of these contacts are slightly less than the sum of the van der Waals radii.

The crystal packing gives rise to a supramolecular structure, whose infinite two-dimensional network lies parallel to the bc plane (Fig. 2). These layers are linked via O-H···S hydrogen bonds (Table 1) to form a three-dimensional structure.

Related literature top

For the crystal structures of similar compounds, see: Oskarsson et al. (1979); Albertsson et al. (1980); Ymén (1982); Mafud & Gambardella (2011a,b); Mafud et al. (2011). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The potassium salts of DTC were prepared by direct reaction between amine and carbon disulfide (CS2) in the presence of a stoichiometric amount of potassium hydroxide in ethanol/water 1:1 (v:v). The reaction mixture was placed in the freezer for 12 h and then filtered through a Büchner funnel, washed with cold ether and the product recrystallized in an ethanol-water mixture 1:1 (v:v). The obtained solid was recrystallized from ethanol-water 1:1 (v/v) and dried in a vacuum oven at 323 K for 8 h. Colourless crystals, suitable for X-ray diffraction analysis, were obtained. On heating they sublimed and decomposed.

Refinement top

The H-atom positions of the water molecule were located in a difference Fourier map and were refined with Uiso(H) = 1.5Ueq(O); O—H = 0.86 (4) and 0.85 (3) Å. The C-bound H-atoms of the anion were included in calculated positions and treated as riding atoms: C—H = 0.97 Å, with Uiso(H) = 1.2Ueq(parent C-atom).

Structure description top

The title compound, Fig. 1, is composed of a morpholinedithiocarbamate anion in contact with a potassium cation, which in turn is linked with a water molecule of crystallization. The crystal structure of similar compounds, for example Sodium 1-R-carbodithioate dihydrate, have been reported (Oskarsson et al., 1979; Albertsson et al., 1980; Ymén, 1982; Mafud & Gambardella et al., 2011a,b).

The six-membered morpholine ring has a chair conformation with Puckering parameters [Cremer & Pople, 1975)] Q = 0.548 (3) Å, θ = 173,3(3)°, φ2 = 2,6(3,4)°.

In the crystal, a polymeric structure is built by coordination of the potassium cation to four sulfur [K···S = 3.2670 (13) - 3.3797 (14) Å] and four oxygen [K···O = 2.828 (3) - 3.007 (3) Å] atoms, with a bi-pyramidal reversed geometry. This configuration generates close packed layers which remain cohesive in crystal stacking by van der Waals interactions. The distances of these contacts are slightly less than the sum of the van der Waals radii.

The crystal packing gives rise to a supramolecular structure, whose infinite two-dimensional network lies parallel to the bc plane (Fig. 2). These layers are linked via O-H···S hydrogen bonds (Table 1) to form a three-dimensional structure.

For the crystal structures of similar compounds, see: Oskarsson et al. (1979); Albertsson et al. (1980); Ymén (1982); Mafud & Gambardella (2011a,b); Mafud et al. (2011). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the asymmetric unit of the title compound, with the numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The view along the c axis of the crystal packing of the title compound.
Potassium morpholine-4-carbodithioate monohydrate top
Crystal data top
K+·C5H8NOS2·H2OF(000) = 456
Mr = 219.36Dx = 1.621 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16 reflections
a = 6.7235 (10) Åθ = 9.8–18.3°
b = 17.260 (4) ŵ = 1.01 mm1
c = 8.1904 (10) ÅT = 290 K
β = 108.994 (10)°Prism, colourless
V = 898.7 (3) Å30.45 × 0.3 × 0.2 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
1615 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.027
Graphite monochromatorθmax = 30.0°, θmin = 2.4°
non–profiled ω/2θ scansh = 98
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 024
Tmin = 0.512, Tmax = 0.818l = 011
2779 measured reflections3 standard reflections every 120 min
2618 independent reflections intensity decay: 10%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0644P)2]
where P = (Fo2 + 2Fc2)/3
2618 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.50 e Å3
3 restraintsΔρmin = 0.61 e Å3
Crystal data top
K+·C5H8NOS2·H2OV = 898.7 (3) Å3
Mr = 219.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7235 (10) ŵ = 1.01 mm1
b = 17.260 (4) ÅT = 290 K
c = 8.1904 (10) Å0.45 × 0.3 × 0.2 mm
β = 108.994 (10)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
1615 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
Rint = 0.027
Tmin = 0.512, Tmax = 0.8183 standard reflections every 120 min
2779 measured reflections intensity decay: 10%
2618 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0473 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.50 e Å3
2618 reflectionsΔρmin = 0.61 e Å3
106 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.28085 (12)0.24637 (4)0.48217 (9)0.0366 (2)
S10.06278 (13)0.16683 (4)0.69255 (11)0.0320 (2)
S20.36659 (13)0.09853 (4)0.80129 (12)0.0336 (3)
O10.1501 (4)0.13219 (12)0.7743 (3)0.0366 (7)
O20.5955 (4)0.27515 (16)0.1617 (4)0.0496 (9)
N10.0172 (4)0.01514 (13)0.7295 (3)0.0261 (7)
C10.1003 (5)0.08662 (15)0.7399 (4)0.0240 (8)
C20.1460 (5)0.05521 (16)0.7583 (4)0.0293 (9)
C30.0660 (5)0.11438 (18)0.8574 (4)0.0334 (10)
C40.2719 (5)0.06303 (18)0.7624 (5)0.0348 (10)
C50.2096 (4)0.00131 (17)0.6581 (4)0.0289 (8)
H1O0.682 (6)0.3070 (18)0.093 (5)0.0740*
H2A0.142200.076900.648100.0350*
H2B0.290800.042300.822500.0350*
H2O0.645 (7)0.2294 (12)0.154 (6)0.0740*
H3A0.084500.094600.972300.0400*
H3B0.148500.161400.869400.0400*
H4A0.419800.075200.709100.0420*
H4B0.252300.043500.877700.0420*
H5A0.288500.045700.658900.0350*
H5B0.243800.018500.539400.0350*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0408 (4)0.0356 (4)0.0341 (4)0.0006 (3)0.0130 (3)0.0026 (3)
S10.0383 (4)0.0207 (3)0.0366 (4)0.0060 (3)0.0116 (3)0.0032 (3)
S20.0297 (4)0.0270 (4)0.0454 (5)0.0033 (3)0.0141 (3)0.0004 (3)
O10.0370 (12)0.0220 (10)0.0551 (15)0.0040 (9)0.0210 (11)0.0031 (10)
O20.0444 (15)0.0393 (14)0.0546 (17)0.0006 (12)0.0018 (13)0.0048 (13)
N10.0270 (12)0.0204 (11)0.0339 (14)0.0009 (9)0.0142 (10)0.0035 (10)
C10.0313 (14)0.0203 (13)0.0231 (14)0.0011 (11)0.0124 (11)0.0031 (11)
C20.0310 (15)0.0205 (13)0.0400 (18)0.0044 (11)0.0164 (14)0.0021 (12)
C30.0356 (17)0.0278 (15)0.0381 (18)0.0040 (12)0.0140 (14)0.0072 (13)
C40.0326 (16)0.0267 (15)0.051 (2)0.0004 (12)0.0218 (15)0.0025 (14)
C50.0267 (14)0.0255 (14)0.0349 (16)0.0005 (11)0.0108 (13)0.0004 (12)
Geometric parameters (Å, º) top
K1—O13.002 (2)N1—C21.465 (4)
K1—O22.828 (3)N1—C11.346 (4)
K1—S1i3.2670 (13)N1—C51.472 (4)
K1—S2i3.3630 (13)C2—C31.508 (4)
K1—S1ii3.3797 (14)C4—C51.508 (5)
K1—S2ii3.3708 (13)C2—H2A0.9700
K1—O1iii3.007 (3)C2—H2B0.9700
K1—O2iv2.967 (3)C3—H3A0.9700
S1—C11.730 (3)C3—H3B0.9700
S2—C11.707 (4)C4—H4A0.9700
O1—C31.423 (4)C4—H4B0.9700
O1—C41.433 (4)C5—H5A0.9700
O2—H2O0.85 (3)C5—H5B0.9700
O2—H1O0.86 (4)
O1—K1—O2142.34 (8)K1iv—O1—C3108.72 (17)
S1i—K1—O172.85 (5)K1iv—O1—C4110.7 (2)
S2i—K1—O199.11 (5)K1—O2—K1iii89.96 (8)
S1ii—K1—O190.44 (6)K1iii—O2—H2O100 (3)
S2ii—K1—O189.55 (5)K1—O2—H2O94 (3)
O1—K1—O1iii147.70 (8)H1O—O2—H2O112 (4)
O1—K1—O2iv66.04 (8)K1—O2—H1O149 (2)
S1i—K1—O2142.49 (6)K1iii—O2—H1O101 (3)
S2i—K1—O298.33 (6)C1—N1—C5123.9 (3)
S1ii—K1—O294.95 (6)C2—N1—C5112.7 (2)
S2ii—K1—O265.49 (6)C1—N1—C2122.6 (3)
O1iii—K1—O267.68 (8)S1—C1—N1120.0 (3)
O2—K1—O2iv92.48 (9)S2—C1—N1120.2 (2)
S1i—K1—S2i53.28 (3)S1—C1—S2119.81 (16)
S1i—K1—S1ii97.59 (3)N1—C2—C3110.6 (3)
S1i—K1—S2ii145.67 (4)O1—C3—C2112.1 (3)
S1i—K1—O1iii83.26 (5)O1—C4—C5111.7 (3)
S1i—K1—O2iv94.72 (6)N1—C5—C4110.7 (3)
S1ii—K1—S2i143.59 (3)N1—C2—H2A110.00
S2i—K1—S2ii161.01 (4)N1—C2—H2B109.00
S2i—K1—O1iii82.85 (5)C3—C2—H2A109.00
S2i—K1—O2iv64.28 (6)C3—C2—H2B110.00
S1ii—K1—S2ii52.27 (3)H2A—C2—H2B108.00
S1ii—K1—O1iii71.17 (5)O1—C3—H3A109.00
S1ii—K1—O2iv148.77 (6)O1—C3—H3B109.00
S2ii—K1—O1iii98.84 (5)C2—C3—H3A109.00
S2ii—K1—O2iv104.89 (6)C2—C3—H3B109.00
O1iii—K1—O2iv139.03 (8)H3A—C3—H3B108.00
K1v—S1—C187.47 (11)O1—C4—H4A109.00
K1ii—S1—C187.09 (11)O1—C4—H4B109.00
K1v—S1—K1ii76.09 (3)C5—C4—H4A109.00
K1v—S2—C184.71 (10)C5—C4—H4B109.00
K1ii—S2—C187.73 (10)H4A—C4—H4B108.00
K1v—S2—K1ii74.95 (2)N1—C5—H5A110.00
K1—O1—C3120.77 (19)N1—C5—H5B110.00
K1—O1—C4118.7 (2)C4—C5—H5A109.00
K1—O1—K1iv85.98 (6)C4—C5—H5B109.00
C3—O1—C4108.9 (2)H5A—C5—H5B108.00
O2—K1—O1—C3142.4 (2)O2—K1—S1ii—C1ii72.98 (12)
O2—K1—O1—C43.2 (3)O2—K1—S1ii—K1iii15.13 (6)
O2—K1—O1—K1iv108.20 (12)O1—K1—S2ii—C1ii71.26 (12)
S1i—K1—O1—C354.13 (19)O1—K1—S2ii—K1iii156.39 (6)
S1i—K1—O1—C4166.7 (2)O2—K1—S2ii—C1ii137.86 (12)
S1i—K1—O1—K1iv55.30 (5)O2—K1—S2ii—K1iii52.73 (7)
S2i—K1—O1—C3101.0 (2)O1—K1—O1iii—K1iii111.73 (12)
S2i—K1—O1—C4119.8 (2)O1—K1—O1iii—C3iii9.5 (2)
S2i—K1—O1—K1iv8.40 (6)O1—K1—O1iii—C4iii129.1 (2)
S1ii—K1—O1—C343.7 (2)O2—K1—O1iii—K1iii50.45 (8)
S1ii—K1—O1—C495.5 (2)O2—K1—O1iii—C3iii171.6 (2)
S1ii—K1—O1—K1iv153.11 (5)O2—K1—O1iii—C4iii68.8 (2)
S2ii—K1—O1—C396.0 (2)O1—K1—O2iv—K1iv52.11 (7)
S2ii—K1—O1—C443.2 (2)O2—K1—O2iv—K1iv159.92 (8)
S2ii—K1—O1—K1iv154.62 (6)K1v—S1—C1—S239.50 (18)
O1iii—K1—O1—C310.0 (3)K1v—S1—C1—N1140.0 (2)
O1iii—K1—O1—C4149.2 (2)K1ii—S1—C1—S236.69 (18)
O1iii—K1—O1—K1iv99.41 (13)K1ii—S1—C1—N1143.8 (2)
O2iv—K1—O1—C3157.5 (2)K1v—S2—C1—S138.31 (18)
O2iv—K1—O1—C463.4 (2)K1v—S2—C1—N1141.2 (3)
O2iv—K1—O1—K1iv48.08 (8)K1ii—S2—C1—S136.78 (18)
O1—K1—O2—K1iii113.36 (12)K1ii—S2—C1—N1143.7 (2)
S1i—K1—O2—K1iii93.11 (11)K1—O1—C3—C281.8 (3)
S2i—K1—O2—K1iii129.81 (6)C4—O1—C3—C260.9 (3)
S1ii—K1—O2—K1iii16.20 (6)K1iv—O1—C3—C2178.43 (19)
S2ii—K1—O2—K1iii60.59 (5)K1—O1—C4—C582.8 (3)
O1iii—K1—O2—K1iii51.11 (7)C3—O1—C4—C560.7 (3)
O2iv—K1—O2—K1iii165.83 (8)K1iv—O1—C4—C5179.8 (2)
O1—K1—S1i—C1i136.36 (13)C2—N1—C1—S1176.4 (2)
O1—K1—S1i—K1iv48.73 (6)C2—N1—C1—S24.1 (4)
O2—K1—S1i—C1i27.08 (16)C5—N1—C1—S18.1 (4)
O2—K1—S1i—K1iv114.71 (11)C5—N1—C1—S2172.4 (2)
O1—K1—S2i—C1i81.34 (12)C1—N1—C2—C3140.7 (3)
O1—K1—S2i—K1iv7.73 (6)C5—N1—C2—C349.8 (3)
O2—K1—S2i—C1i132.18 (12)C1—N1—C5—C4140.7 (3)
O2—K1—S2i—K1iv138.75 (7)C2—N1—C5—C450.0 (3)
O1—K1—S1ii—C1ii69.70 (12)N1—C2—C3—O155.7 (3)
O1—K1—S1ii—K1iii157.81 (5)O1—C4—C5—N155.5 (3)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y, z+1; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O···S1vi0.86 (4)2.45 (4)3.219 (3)149 (3)
O2—H2O···S1vii0.85 (3)2.87 (5)3.462 (3)129 (4)
Symmetry codes: (vi) x1, y+1/2, z+1/2; (vii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaK+·C5H8NOS2·H2O
Mr219.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)6.7235 (10), 17.260 (4), 8.1904 (10)
β (°) 108.994 (10)
V3)898.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.45 × 0.3 × 0.2
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
Absorption correctionPart of the refinement model (ΔF)
(Walker & Stuart, 1983)
Tmin, Tmax0.512, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
2779, 2618, 1615
Rint0.027
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.130, 1.01
No. of reflections2618
No. of parameters106
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.61

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O···S1i0.86 (4)2.45 (4)3.219 (3)149 (3)
O2—H2O···S1ii0.85 (3)2.87 (5)3.462 (3)129 (4)
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x1, y, z+1.
 

Acknowledgements

The author is grateful to the CNPq, National Counsel of Technological and Scientific Development, for supporting this study.

References

First citationAlbertsson, J., Oskarsson, Å., Ståhl, K., Svensson, C. & Ymén, I. (1980). Acta Cryst. B36, 3072–3078.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMafud, A. C. & Gambardella, M. T. P. (2011a). Acta Cryst. E67, m942.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMafud, A. C. & Gambardella, M. T. P. (2011b). Acta Cryst. E67, o879.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMafud, A. C., Sanches, E. A. & Gambardella, M. T. (2011). Acta Cryst. E67, o2008.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOskarsson, A., Ståhl, K., Svensson, C. & Ymen, I. (1979). Eur. Cryst. Meet, 5, 67.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYmén, I. (1982). Acta Cryst. B38, 2671–2674.  CSD CrossRef Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds