organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′,6,6′-Tetra­chloro-2,2′-[(1E,1′E)-propane-1,3-diylbis(nitrilo­methanylyl­­idene)]diphenol

aDepartment of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: zsrkk@yahoo.com, dmntahir_uos@yahoo.com

(Received 16 June 2012; accepted 28 June 2012; online 4 July 2012)

The title compound, C17H14Cl4N2O2, is generated by crystallographic twofold symmetry. The two benzene rings are inclined to one another by 80.17 (10)°. There are two intra­molecular O—H⋯N hydrogen bonds, which make S(6) ring motifs. In the crystal, mol­ecules are linked by C—H⋯O and weak C—H⋯Cl inter­actions, forming a three-dimensional network.

Related literature

For standard bond lengths, see: Allen et al., (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related Schiff base ligands, see: Kargar et al. (2011[Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.]); Kia et al. (2010[Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14Cl4N2O2

  • Mr = 420.10

  • Orthorhombic, F d d 2

  • a = 24.9797 (14) Å

  • b = 31.666 (3) Å

  • c = 4.4495 (2) Å

  • V = 3519.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 291 K

  • 0.26 × 0.23 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.842, Tmax = 0.886

  • 7926 measured reflections

  • 1960 independent reflections

  • 1634 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.04

  • 1960 reflections

  • 115 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 842 Friedel pairs

  • Flack parameter: 0.08 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.84 2.574 (2) 147
C5—H2⋯O1i 0.93 2.43 3.336 (2) 166
C8—H5B⋯Cl1ii 0.97 2.89 3.851 (2) 169
Symmetry codes: (i) [x+{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{1\over 4}}]; (ii) [x+{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{5\over 4}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the crystal structure analyses of Schiff base ligands (Kargar et al., (2011); Kia et al., (2010), we synthesized the title compound and report herein on its crystal structure.

The title compound, Fig. 1, a potential tetradentate Schiff base ligand, possesses two-fold rotation symmetry, atom C9 is located on the 2-fold axis. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The two symmetry related benzene rings are inclined to one another by 80.17 (10) °. There are two intramolecular O—H···N hydrogen bonds which make S(6) ring motifs (Table 1; Bernstein et al., 1995).

In the crystal, molecules are linked by C—H···O and weak C—H···Cl interactions to form a three-dimensional network (Table 1 and Fig. 2).

Related literature top

For standard bond lengths, see: Allen et al., (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related Schiff base ligands, see: Kargar et al. (2011); Kia et al. (2010).

Experimental top

The title compound was synthesized by adding 3,5-dichlorosalicylaldehyde (2 mmol) to a solution of propylenediamine (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Light-yellow prismatic single crystals of the title compound, suitable for X-ray structure determination, were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O-H = 0.82 Å, C-H = 0.93 and 0.96 Å, with Uiso(H) = k × Ueq(O,C) where k = 1.5 for OH and CH3 H atoms and = 1.2 for other H atoms.

Structure description top

In continuation of our work on the crystal structure analyses of Schiff base ligands (Kargar et al., (2011); Kia et al., (2010), we synthesized the title compound and report herein on its crystal structure.

The title compound, Fig. 1, a potential tetradentate Schiff base ligand, possesses two-fold rotation symmetry, atom C9 is located on the 2-fold axis. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The two symmetry related benzene rings are inclined to one another by 80.17 (10) °. There are two intramolecular O—H···N hydrogen bonds which make S(6) ring motifs (Table 1; Bernstein et al., 1995).

In the crystal, molecules are linked by C—H···O and weak C—H···Cl interactions to form a three-dimensional network (Table 1 and Fig. 2).

For standard bond lengths, see: Allen et al., (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related Schiff base ligands, see: Kargar et al. (2011); Kia et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering [symmetry code for suffix A = -x, -y, z].
[Figure 2] Fig. 2. The crystal packing diagram of the title compound viewed down the c-axis, showing linking of molecules through C—H···O and weak C—H···Cl interactions (dashed lines).
4,4',6,6'-Tetrachloro-2,2'-[(1E,1'E)-propane-1,3- diylbis(nitrilomethanylylidene)]diphenol top
Crystal data top
C17H14Cl4N2O2F(000) = 1712
Mr = 420.10Dx = 1.586 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 1234 reflections
a = 24.9797 (14) Åθ = 2.5–27.5°
b = 31.666 (3) ŵ = 0.69 mm1
c = 4.4495 (2) ÅT = 291 K
V = 3519.6 (4) Å3Prism, light-yellow
Z = 80.26 × 0.23 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1960 independent reflections
Radiation source: fine-focus sealed tube1634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 27.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3232
Tmin = 0.842, Tmax = 0.886k = 4040
7926 measured reflectionsl = 55
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0306P)2 + 1.6825P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1960 reflectionsΔρmax = 0.14 e Å3
115 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 842 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (7)
Crystal data top
C17H14Cl4N2O2V = 3519.6 (4) Å3
Mr = 420.10Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 24.9797 (14) ŵ = 0.69 mm1
b = 31.666 (3) ÅT = 291 K
c = 4.4495 (2) Å0.26 × 0.23 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1960 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1634 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.886Rint = 0.028
7926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.14 e Å3
S = 1.03Δρmin = 0.16 e Å3
1960 reflectionsAbsolute structure: Flack (1983), 842 Friedel pairs
115 parametersAbsolute structure parameter: 0.08 (7)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.04810 (7)0.14212 (6)0.7828 (4)0.0378 (4)
C20.05597 (7)0.17577 (6)0.5854 (5)0.0405 (5)
C30.01420 (7)0.19985 (6)0.4810 (5)0.0429 (5)
H90.02030.22180.34660.052*
C40.03720 (8)0.19078 (6)0.5799 (5)0.0419 (5)
C50.04673 (7)0.15902 (6)0.7793 (5)0.0409 (5)
H20.08140.15380.84530.049*
C60.00437 (7)0.13440 (6)0.8845 (4)0.0374 (4)
C70.01466 (8)0.10036 (6)1.0958 (4)0.0401 (5)
H40.04890.09721.17530.048*
C80.00878 (9)0.03959 (6)1.3730 (4)0.0458 (5)
H5A0.03780.03511.51430.055*
H5B0.02340.04611.48630.055*
C90.00000.00001.1876 (7)0.0465 (7)
H6A0.03090.00431.05890.056*0.50
H6B0.03090.00431.05890.056*0.50
Cl10.12035 (2)0.187207 (19)0.46609 (15)0.05937 (17)
Cl20.09006 (2)0.220654 (18)0.43888 (16)0.06188 (18)
N10.02186 (7)0.07479 (5)1.1743 (4)0.0424 (4)
O10.08951 (5)0.11861 (4)0.8692 (4)0.0503 (4)
H10.07900.09990.98260.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0349 (9)0.0355 (9)0.0429 (12)0.0002 (8)0.0034 (8)0.0052 (9)
C20.0322 (9)0.0401 (10)0.0490 (12)0.0056 (8)0.0083 (8)0.0044 (9)
C30.0415 (10)0.0356 (9)0.0518 (13)0.0015 (8)0.0029 (10)0.0001 (10)
C40.0349 (10)0.0359 (10)0.0550 (13)0.0016 (8)0.0015 (9)0.0067 (9)
C50.0314 (9)0.0402 (10)0.0512 (13)0.0052 (8)0.0060 (8)0.0087 (9)
C60.0368 (9)0.0344 (9)0.0409 (11)0.0028 (7)0.0035 (8)0.0085 (9)
C70.0374 (10)0.0420 (11)0.0410 (11)0.0067 (8)0.0083 (8)0.0084 (9)
C80.0521 (12)0.0446 (11)0.0407 (12)0.0032 (9)0.0053 (9)0.0001 (10)
C90.0567 (17)0.0430 (15)0.0399 (15)0.0048 (13)0.0000.000
Cl10.0371 (3)0.0610 (3)0.0800 (4)0.0024 (2)0.0162 (3)0.0145 (3)
Cl20.0434 (3)0.0532 (3)0.0891 (5)0.0076 (2)0.0080 (3)0.0055 (3)
N10.0464 (9)0.0411 (9)0.0397 (9)0.0039 (7)0.0062 (8)0.0015 (8)
O10.0366 (7)0.0503 (9)0.0639 (10)0.0058 (6)0.0093 (6)0.0124 (7)
Geometric parameters (Å, º) top
C1—O11.331 (2)C6—C71.453 (3)
C1—C21.395 (3)C7—N11.269 (2)
C1—C61.408 (2)C7—H40.9300
C2—C31.373 (3)C8—N11.460 (3)
C2—Cl11.7318 (19)C8—C91.517 (3)
C3—C41.387 (3)C8—H5A0.9700
C3—H90.9300C8—H5B0.9700
C4—C51.362 (3)C9—C8i1.517 (3)
C4—Cl21.741 (2)C9—H6A0.9700
C5—C61.395 (3)C9—H6B0.9700
C5—H20.9300O1—H10.8200
O1—C1—C2119.98 (16)N1—C7—C6121.61 (17)
O1—C1—C6122.23 (17)N1—C7—H4119.2
C2—C1—C6117.79 (17)C6—C7—H4119.2
C3—C2—C1122.02 (17)N1—C8—C9109.52 (18)
C3—C2—Cl1119.06 (15)N1—C8—H5A109.8
C1—C2—Cl1118.92 (15)C9—C8—H5A109.8
C2—C3—C4118.75 (19)N1—C8—H5B109.8
C2—C3—H9120.6C9—C8—H5B109.8
C4—C3—H9120.6H5A—C8—H5B108.2
C5—C4—C3121.42 (18)C8i—C9—C8114.1 (3)
C5—C4—Cl2120.22 (15)C8i—C9—H6A108.7
C3—C4—Cl2118.35 (16)C8—C9—H6A108.7
C4—C5—C6119.90 (17)C8i—C9—H6B108.7
C4—C5—H2120.1C8—C9—H6B108.7
C6—C5—H2120.1H6A—C9—H6B107.6
C5—C6—C1120.07 (18)C7—N1—C8119.53 (17)
C5—C6—C7119.82 (17)C1—O1—H1109.5
C1—C6—C7120.10 (18)
O1—C1—C2—C3177.41 (19)C4—C5—C6—C7179.60 (17)
C6—C1—C2—C32.7 (3)O1—C1—C6—C5177.77 (18)
O1—C1—C2—Cl12.0 (2)C2—C1—C6—C52.4 (3)
C6—C1—C2—Cl1177.84 (15)O1—C1—C6—C71.3 (3)
C1—C2—C3—C41.2 (3)C2—C1—C6—C7178.59 (16)
Cl1—C2—C3—C4179.35 (16)C5—C6—C7—N1173.18 (19)
C2—C3—C4—C50.7 (3)C1—C6—C7—N15.9 (3)
C2—C3—C4—Cl2178.41 (15)N1—C8—C9—C8i174.57 (19)
C3—C4—C5—C61.0 (3)C6—C7—N1—C8176.32 (17)
Cl2—C4—C5—C6178.09 (15)C9—C8—N1—C797.64 (19)
C4—C5—C6—C10.5 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.842.574 (2)147
C5—H2···O1ii0.932.433.336 (2)166
C8—H5B···Cl1iii0.972.893.851 (2)169
Symmetry codes: (ii) x+1/4, y+1/4, z+1/4; (iii) x+1/4, y+1/4, z+5/4.

Experimental details

Crystal data
Chemical formulaC17H14Cl4N2O2
Mr420.10
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)291
a, b, c (Å)24.9797 (14), 31.666 (3), 4.4495 (2)
V3)3519.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.26 × 0.23 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.842, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
7926, 1960, 1634
Rint0.028
(sin θ/λ)max1)0.645
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.03
No. of reflections1960
No. of parameters115
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16
Absolute structureFlack (1983), 842 Friedel pairs
Absolute structure parameter0.08 (7)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.842.574 (2)147
C5—H2···O1i0.932.433.336 (2)166
C8—H5B···Cl1ii0.972.893.851 (2)169
Symmetry codes: (i) x+1/4, y+1/4, z+1/4; (ii) x+1/4, y+1/4, z+5/4.
 

Footnotes

Present address: Structural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11 37077 Göttingen, Germany.

Acknowledgements

HK and AAA thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds