organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(Z)-(3-{[(Z)-2-Hy­dr­oxy-3,5-di­iodo­benzyl­­idene]amino}­propyl­imino)­meth­yl]-4,6-di­iodo­phenol

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, cArdakan Branch, Islamic Azad University, Ardakan, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: zsrkk@yahoo.com, dmntahir_uos@yahoo.com

(Received 29 June 2012; accepted 14 July 2012; online 18 July 2012)

In the title compound, C17H14I4N2O2, there are two intra­molecular O—H⋯N hydrogen bonds, which make S(6) ring motifs. In the crystal, there are no significant inter­molecular inter­actions present.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to Schiff base ligands, see, for example: Kargar et al. (2011[Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.]); Kia et al. (2010[Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.]). For a related structure, see: Kargar et al. (2012[Kargar, H., Kia, R., Adabi Ardakani, A. & Tahir, M. N. (2012). Acta Cryst. E68, o2323.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14I4N2O2

  • Mr = 785.90

  • Monoclinic, P 21 /n

  • a = 4.5578 (3) Å

  • b = 16.5095 (11) Å

  • c = 27.2417 (18) Å

  • β = 91.736 (4)°

  • V = 2048.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.10 mm−1

  • T = 291 K

  • 0.30 × 0.14 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.262, Tmax = 0.482

  • 16049 measured reflections

  • 4458 independent reflections

  • 2832 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.059

  • S = 0.98

  • 4458 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.90 1.76 2.569 (5) 148
O2—H2⋯N2 0.89 1.75 2.564 (5) 150

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the crystal structures of Schiff base ligands (Kargar et al., 2011; Kia et al., 2010), we synthesizes and carried out the X-ray structure analysis of the title compound.

In the title compound, Fig. 1, a potential tetradentate Schiff base ligand, there are two intramolecular O—H···N hydrogen bonds (Table 1) that make S(6) ring motifs (Bernstein et al., 1995). The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those reported for a similar structure (Kargar et al., 2012).

In the crystal, there are no significant intermolecular interactions present.

Related literature top

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to Schiff base ligands, see, for example: Kargar et al. (2011); Kia et al. (2010). For a related structure, see: Kargar et al. (2012).

Experimental top

The title compound was synthesized by adding 3,5-dibromosalicylaldehyde (2 mmol) to a solution of propylenediamine (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Light-yellow prismatic single crystals of the title compound, suitable for X-ray structure determination, were obtained by recrystallization from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The OH H atoms were located in a difference Fourier map and were constrained to ride on the parent O atom with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.93 and 0.97 Å, with Uiso(H) = 1.2Ueq(C).

Structure description top

In continuation of our work on the crystal structures of Schiff base ligands (Kargar et al., 2011; Kia et al., 2010), we synthesizes and carried out the X-ray structure analysis of the title compound.

In the title compound, Fig. 1, a potential tetradentate Schiff base ligand, there are two intramolecular O—H···N hydrogen bonds (Table 1) that make S(6) ring motifs (Bernstein et al., 1995). The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those reported for a similar structure (Kargar et al., 2012).

In the crystal, there are no significant intermolecular interactions present.

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to Schiff base ligands, see, for example: Kargar et al. (2011); Kia et al. (2010). For a related structure, see: Kargar et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.
2-[(Z)-(3-{[(Z)-2-Hydroxy-3,5- diiodobenzylidene]amino}propylimino)methyl]-4,6-diiodophenol top
Crystal data top
C17H14I4N2O2F(000) = 1432
Mr = 785.90Dx = 2.548 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2453 reflections
a = 4.5578 (3) Åθ = 2.5–27.5°
b = 16.5095 (11) ŵ = 6.10 mm1
c = 27.2417 (18) ÅT = 291 K
β = 91.736 (4)°Needle, light-yellow
V = 2048.9 (2) Å30.30 × 0.14 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4458 independent reflections
Radiation source: fine-focus sealed tube2832 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 27.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 55
Tmin = 0.262, Tmax = 0.482k = 2117
16049 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0161P)2]
where P = (Fo2 + 2Fc2)/3
4458 reflections(Δ/σ)max = 0.002
226 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
C17H14I4N2O2V = 2048.9 (2) Å3
Mr = 785.90Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.5578 (3) ŵ = 6.10 mm1
b = 16.5095 (11) ÅT = 291 K
c = 27.2417 (18) Å0.30 × 0.14 × 0.14 mm
β = 91.736 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4458 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2832 reflections with I > 2σ(I)
Tmin = 0.262, Tmax = 0.482Rint = 0.047
16049 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 0.98Δρmax = 0.61 e Å3
4458 reflectionsΔρmin = 0.71 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.84612 (9)1.18172 (2)0.147565 (15)0.05342 (13)
I20.80900 (9)0.88529 (2)0.274765 (14)0.05293 (13)
I30.66705 (10)0.36716 (2)0.091322 (16)0.06029 (14)
I40.86332 (9)0.67131 (2)0.208721 (14)0.05504 (13)
O10.4461 (7)1.0651 (2)0.08517 (12)0.0406 (9)
H10.31771.03450.06880.061*
O20.4376 (7)0.7341 (2)0.12415 (12)0.0446 (9)
H20.29460.74970.10300.067*
N10.1123 (8)0.9443 (2)0.06648 (15)0.0350 (10)
N20.0681 (9)0.7303 (3)0.05131 (15)0.0395 (11)
C10.5088 (10)1.0271 (3)0.12709 (18)0.0303 (12)
C20.6977 (10)1.0640 (3)0.16025 (19)0.0322 (12)
C30.7811 (11)1.0236 (3)0.20139 (19)0.0377 (13)
H30.91051.04800.22260.045*
C40.6736 (11)0.9465 (3)0.21164 (17)0.0341 (13)
C50.4784 (10)0.9102 (3)0.18129 (18)0.0329 (12)
H50.40280.85930.18900.040*
C60.3933 (10)0.9501 (3)0.13875 (18)0.0294 (12)
C70.1787 (10)0.9141 (3)0.10729 (18)0.0342 (13)
H70.08570.86660.11750.041*
C80.1172 (11)0.9065 (3)0.03753 (18)0.0378 (13)
H8A0.24940.87670.05940.045*
H8B0.22990.94870.02200.045*
C90.0043 (11)0.8493 (3)0.00185 (18)0.0391 (14)
H9A0.15300.83400.02320.047*
H9B0.15190.87760.02170.047*
C100.1411 (11)0.7724 (3)0.01916 (18)0.0415 (14)
H10A0.31310.78670.03740.050*
H10B0.20300.73680.00750.050*
C110.1244 (10)0.6563 (3)0.04552 (19)0.0375 (13)
H110.02950.62830.02000.045*
C120.3351 (10)0.6128 (3)0.07772 (19)0.0351 (13)
C130.3936 (11)0.5311 (3)0.07004 (19)0.0407 (14)
H130.30150.50360.04410.049*
C140.5879 (11)0.4914 (3)0.1010 (2)0.0387 (13)
C150.7236 (11)0.5313 (3)0.14057 (19)0.0381 (13)
H150.85100.50320.16180.046*
C160.6701 (11)0.6115 (3)0.14830 (18)0.0352 (13)
C170.4795 (11)0.6551 (3)0.11703 (19)0.0347 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0713 (3)0.0303 (2)0.0585 (3)0.0101 (2)0.0011 (2)0.0040 (2)
I20.0675 (3)0.0569 (3)0.0348 (2)0.0083 (2)0.00783 (19)0.0078 (2)
I30.0820 (3)0.0365 (2)0.0627 (3)0.0121 (2)0.0063 (2)0.0041 (2)
I40.0633 (3)0.0545 (3)0.0467 (2)0.0014 (2)0.0092 (2)0.0021 (2)
O10.051 (2)0.033 (2)0.038 (2)0.0030 (17)0.0072 (18)0.0107 (18)
O20.057 (2)0.031 (2)0.046 (2)0.0008 (18)0.0050 (19)0.0028 (19)
N10.034 (3)0.037 (3)0.034 (3)0.001 (2)0.004 (2)0.003 (2)
N20.042 (3)0.038 (3)0.039 (3)0.001 (2)0.001 (2)0.002 (2)
C10.034 (3)0.023 (3)0.033 (3)0.010 (2)0.004 (3)0.001 (3)
C20.036 (3)0.019 (3)0.042 (3)0.001 (2)0.003 (3)0.004 (3)
C30.044 (3)0.032 (3)0.038 (3)0.001 (3)0.006 (3)0.010 (3)
C40.041 (3)0.033 (3)0.028 (3)0.006 (3)0.001 (3)0.002 (3)
C50.038 (3)0.031 (3)0.029 (3)0.001 (2)0.008 (3)0.002 (3)
C60.032 (3)0.023 (3)0.032 (3)0.001 (2)0.007 (2)0.002 (2)
C70.035 (3)0.031 (3)0.037 (3)0.005 (2)0.004 (3)0.001 (3)
C80.037 (3)0.042 (3)0.035 (3)0.002 (3)0.007 (3)0.002 (3)
C90.041 (3)0.046 (4)0.031 (3)0.011 (3)0.001 (3)0.001 (3)
C100.038 (3)0.046 (4)0.039 (3)0.004 (3)0.007 (3)0.005 (3)
C110.034 (3)0.044 (4)0.035 (3)0.001 (3)0.004 (3)0.000 (3)
C120.033 (3)0.036 (3)0.037 (3)0.001 (3)0.007 (3)0.007 (3)
C130.046 (4)0.039 (3)0.038 (3)0.002 (3)0.010 (3)0.005 (3)
C140.041 (3)0.026 (3)0.049 (4)0.004 (2)0.011 (3)0.003 (3)
C150.043 (3)0.037 (3)0.035 (3)0.004 (3)0.005 (3)0.003 (3)
C160.038 (3)0.031 (3)0.037 (3)0.002 (3)0.003 (3)0.006 (3)
C170.039 (3)0.030 (3)0.035 (3)0.004 (3)0.014 (3)0.000 (3)
Geometric parameters (Å, º) top
I1—C22.083 (5)C6—C71.447 (6)
I2—C42.103 (5)C7—H70.9300
I3—C142.100 (5)C8—C91.521 (6)
I4—C162.091 (5)C8—H8A0.9700
O1—C11.341 (5)C8—H8B0.9700
O1—H10.9004C9—C101.533 (6)
O2—C171.334 (5)C9—H9A0.9700
O2—H20.8944C9—H9B0.9700
N1—C71.264 (6)C10—H10A0.9700
N1—C81.468 (6)C10—H10B0.9700
N2—C111.260 (6)C11—C121.468 (7)
N2—C101.452 (6)C11—H110.9300
C1—C21.405 (6)C12—C131.392 (6)
C1—C61.409 (6)C12—C171.422 (7)
C2—C31.367 (6)C13—C141.372 (7)
C3—C41.390 (7)C13—H130.9300
C3—H30.9300C14—C151.392 (7)
C4—C51.370 (6)C15—C161.364 (6)
C5—C61.397 (6)C15—H150.9300
C5—H50.9300C16—C171.397 (7)
C1—O1—H1108.6C8—C9—H9A108.9
C17—O2—H2107.0C10—C9—H9A108.9
C7—N1—C8119.9 (4)C8—C9—H9B108.9
C11—N2—C10121.4 (4)C10—C9—H9B108.9
O1—C1—C2119.7 (4)H9A—C9—H9B107.7
O1—C1—C6121.7 (5)N2—C10—C9110.7 (4)
C2—C1—C6118.5 (5)N2—C10—H10A109.5
C3—C2—C1120.4 (4)C9—C10—H10A109.5
C3—C2—I1119.6 (4)N2—C10—H10B109.5
C1—C2—I1120.0 (4)C9—C10—H10B109.5
C2—C3—C4120.4 (5)H10A—C10—H10B108.1
C2—C3—H3119.8N2—C11—C12122.1 (5)
C4—C3—H3119.8N2—C11—H11118.9
C5—C4—C3120.7 (5)C12—C11—H11118.9
C5—C4—I2119.7 (4)C13—C12—C17120.1 (5)
C3—C4—I2119.6 (4)C13—C12—C11120.6 (5)
C4—C5—C6119.8 (5)C17—C12—C11119.3 (5)
C4—C5—H5120.1C14—C13—C12119.6 (5)
C6—C5—H5120.1C14—C13—H13120.2
C5—C6—C1120.0 (5)C12—C13—H13120.2
C5—C6—C7120.5 (4)C13—C14—C15120.9 (5)
C1—C6—C7119.4 (5)C13—C14—I3120.0 (4)
N1—C7—C6122.9 (5)C15—C14—I3119.1 (4)
N1—C7—H7118.6C16—C15—C14120.1 (5)
C6—C7—H7118.6C16—C15—H15119.9
N1—C8—C9113.1 (4)C14—C15—H15119.9
N1—C8—H8A109.0C15—C16—C17121.1 (5)
C9—C8—H8A109.0C15—C16—I4120.5 (4)
N1—C8—H8B109.0C17—C16—I4118.4 (4)
C9—C8—H8B109.0O2—C17—C16120.3 (5)
H8A—C8—H8B107.8O2—C17—C12121.6 (5)
C8—C9—C10113.3 (4)C16—C17—C12118.1 (5)
O1—C1—C2—C3175.1 (4)C11—N2—C10—C9127.5 (5)
C6—C1—C2—C33.9 (7)C8—C9—C10—N255.5 (6)
O1—C1—C2—I16.0 (6)C10—N2—C11—C12179.9 (4)
C6—C1—C2—I1174.9 (3)N2—C11—C12—C13179.5 (5)
C1—C2—C3—C41.8 (7)N2—C11—C12—C170.5 (8)
I1—C2—C3—C4177.0 (4)C17—C12—C13—C140.9 (8)
C2—C3—C4—C51.2 (7)C11—C12—C13—C14179.0 (5)
C2—C3—C4—I2179.4 (3)C12—C13—C14—C151.1 (8)
C3—C4—C5—C62.0 (7)C12—C13—C14—I3177.9 (4)
I2—C4—C5—C6178.6 (3)C13—C14—C15—C161.6 (8)
C4—C5—C6—C10.2 (7)I3—C14—C15—C16178.4 (4)
C4—C5—C6—C7177.6 (4)C14—C15—C16—C170.0 (8)
O1—C1—C6—C5175.9 (4)C14—C15—C16—I4178.2 (4)
C2—C1—C6—C53.1 (7)C15—C16—C17—O2177.7 (5)
O1—C1—C6—C76.3 (7)I4—C16—C17—O24.1 (6)
C2—C1—C6—C7174.7 (4)C15—C16—C17—C122.0 (7)
C8—N1—C7—C6177.2 (4)I4—C16—C17—C12176.3 (3)
C5—C6—C7—N1174.0 (4)C13—C12—C17—O2177.2 (5)
C1—C6—C7—N18.2 (7)C11—C12—C17—O22.9 (7)
C7—N1—C8—C996.3 (5)C13—C12—C17—C162.5 (7)
N1—C8—C9—C1068.6 (5)C11—C12—C17—C16177.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.901.762.569 (5)148
O2—H2···N20.891.752.564 (5)150

Experimental details

Crystal data
Chemical formulaC17H14I4N2O2
Mr785.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)4.5578 (3), 16.5095 (11), 27.2417 (18)
β (°) 91.736 (4)
V3)2048.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)6.10
Crystal size (mm)0.30 × 0.14 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.262, 0.482
No. of measured, independent and
observed [I > 2σ(I)] reflections
16049, 4458, 2832
Rint0.047
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.059, 0.98
No. of reflections4458
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.71

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.901.762.569 (5)148
O2—H2···N20.891.752.564 (5)150
 

Footnotes

Present address: Structural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

Acknowledgements

HK and AAA thank PNU for financial support. MNT thanks the GC University of Sargodha, Pakistan, for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R., Adabi Ardakani, A. & Tahir, M. N. (2012). Acta Cryst. E68, o2323.  CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds