metal-organic compounds
{4,4′,6,6′-Tetraiodo-2,2′-[propane-1,3-diylbis(nitrilomethanylylidene)]diphenolato-κ4O,N,N′,O′}nickel(II)
aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, cArdakan Branch, Islamic Azad University, Ardakan, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: zsrkk@yahoo.com, dmntahir_uos@yahoo.com
The 17H12I4N2O2)], comprises half of a Schiff base complex. The NiII and central C atom of the propyl chain are located on a twofold rotation axis. The geometry around the NiII atom is square planar, supported by the N2O2 donor atoms of the coordinated ligand. In the crystal, there are no significant intermolecular interactions present. The crystal studied was a non-merohedral twin with a refined twin component ratio of 0.944 (1):0.056 (1).
of the title compound, [Ni(CRelated literature
For standard bond lengths, see: Allen et al. (1987). For applications of in coordination chemistry, see, for example: Granovski et al. (1993); Blower et al. (1998). For the structure of the Schiff base ligand, see: Kargar et al. (2012a). For related structures, see, for example: Kargar et al. (2012b,c,d,e).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812032138/su2472sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812032138/su2472Isup2.hkl
The title compound was synthesized by adding 3,5-diiodo-salicylaldehyde-1,3-propanediamine (2 mmol) to a solution of NiCl2. 6H2O (2.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 1h. The resultant solution was filtered. Red single crystals of the title compound suitable for X-ray
were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 and 0.97 Å for CH and CH2 H-atoms, respectively, with Uiso (H) = 1.2 Ueq(C).
Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Blower et al., 1998). In continuation of our work on the
of Schiff base metal complexes (Kargar et al., 2012b,c,d,e), we determined the X-ray structure of the title compound.The
of the title compound, Fig. 1, comprises a Schiff base complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the bond lengths and angles of the related ligand (Kargar et al., 2012a) and related Ni-complexes (Kargar et al., 2012b,c,d,e). The NiII and C9 atom of the propyl segment are located on a two-fold rotation axis. The geometry around NiII atom is square-planar which is supported by the N2O2 donor atoms of the coordinated ligand.There are no significant intermolecular interactions in the crystal structure.
The crystal used was a non-merohedral twin with refined twin components ratio of 0.944 (1)/0.056 (1).
For standard bond lengths, see: Allen et al. (1987). For applications of
in coordination chemistry, see, for example: Granovski et al. (1993); Blower et al. (1998). For the structure of the Schiff base ligand, see: Kargar et al. (2012a). For related structures, see, for example: Kargar et al. (2012b,c,d,e).Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. A view of the molecular structure of the title molecule, showing 50% probability displacement ellipsoids and the atomic numbering [symmetry code for suffix A = -x, y, -z + 1/2]. |
[Ni(C17H12I4N2O2)] | F(000) = 1536 |
Mr = 842.60 | Dx = 2.783 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 526 reflections |
a = 26.1229 (18) Å | θ = 2.5–27.5° |
b = 10.7409 (7) Å | µ = 7.12 mm−1 |
c = 7.2387 (5) Å | T = 291 K |
β = 98.107 (3)° | Block, red |
V = 2010.8 (2) Å3 | 0.22 × 0.12 × 0.08 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 2188 independent reflections |
Radiation source: fine-focus sealed tube | 1755 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ω scans | θmax = 27.1°, θmin = 1.6° |
Absorption correction: multi-scan (TWINABS; Bruker, 2005) | h = −33→33 |
Tmin = 0.303, Tmax = 0.600 | k = −13→13 |
7463 measured reflections | l = −8→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0177P)2 + 2.2669P] where P = (Fo2 + 2Fc2)/3 |
2188 reflections | (Δ/σ)max = 0.001 |
120 parameters | Δρmax = 0.70 e Å−3 |
0 restraints | Δρmin = −0.55 e Å−3 |
[Ni(C17H12I4N2O2)] | V = 2010.8 (2) Å3 |
Mr = 842.60 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 26.1229 (18) Å | µ = 7.12 mm−1 |
b = 10.7409 (7) Å | T = 291 K |
c = 7.2387 (5) Å | 0.22 × 0.12 × 0.08 mm |
β = 98.107 (3)° |
Bruker SMART APEXII CCD area-detector diffractometer | 2188 independent reflections |
Absorption correction: multi-scan (TWINABS; Bruker, 2005) | 1755 reflections with I > 2σ(I) |
Tmin = 0.303, Tmax = 0.600 | Rint = 0.033 |
7463 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.70 e Å−3 |
2188 reflections | Δρmin = −0.55 e Å−3 |
120 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.0000 | 0.48944 (7) | 0.2500 | 0.02132 (18) | |
I1 | 0.090843 (12) | 0.89044 (3) | 0.36252 (5) | 0.03652 (10) | |
I2 | 0.279631 (12) | 0.60955 (3) | 0.20407 (5) | 0.04421 (11) | |
N1 | 0.05062 (13) | 0.3679 (3) | 0.3138 (5) | 0.0242 (8) | |
O1 | 0.04733 (11) | 0.6174 (2) | 0.3090 (4) | 0.0269 (7) | |
C1 | 0.09612 (15) | 0.6129 (4) | 0.2932 (6) | 0.0224 (9) | |
C2 | 0.12636 (16) | 0.7229 (4) | 0.3024 (6) | 0.0240 (9) | |
C3 | 0.17729 (16) | 0.7234 (4) | 0.2769 (6) | 0.0291 (10) | |
H3 | 0.1954 | 0.7980 | 0.2804 | 0.035* | |
C4 | 0.20183 (16) | 0.6119 (4) | 0.2457 (6) | 0.0291 (10) | |
C5 | 0.17586 (16) | 0.5018 (4) | 0.2474 (6) | 0.0276 (10) | |
H5 | 0.1930 | 0.4273 | 0.2327 | 0.033* | |
C6 | 0.12328 (15) | 0.5005 (4) | 0.2715 (6) | 0.0233 (10) | |
C7 | 0.09902 (16) | 0.3837 (4) | 0.3042 (6) | 0.0271 (10) | |
H7 | 0.1201 | 0.3136 | 0.3198 | 0.033* | |
C8 | 0.03503 (17) | 0.2492 (4) | 0.3903 (6) | 0.0292 (10) | |
H8A | 0.0173 | 0.2661 | 0.4967 | 0.035* | |
H8B | 0.0658 | 0.2012 | 0.4344 | 0.035* | |
C9 | 0.0000 | 0.1721 (5) | 0.2500 | 0.0298 (14) | |
H9A | −0.0212 | 0.1188 | 0.3165 | 0.036* | 0.50 |
H9B | 0.0212 | 0.1188 | 0.1835 | 0.036* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0199 (4) | 0.0179 (4) | 0.0259 (4) | 0.000 | 0.0026 (3) | 0.000 |
I1 | 0.03286 (18) | 0.02414 (16) | 0.0539 (2) | 0.00044 (13) | 0.01095 (15) | −0.00832 (15) |
I2 | 0.02416 (17) | 0.0449 (2) | 0.0661 (3) | 0.00048 (15) | 0.01512 (16) | 0.00269 (17) |
N1 | 0.0261 (19) | 0.0191 (19) | 0.026 (2) | −0.0019 (15) | 0.0007 (16) | 0.0025 (15) |
O1 | 0.0204 (15) | 0.0220 (15) | 0.0392 (19) | −0.0010 (12) | 0.0072 (13) | −0.0029 (13) |
C1 | 0.021 (2) | 0.024 (2) | 0.022 (2) | −0.0018 (18) | 0.0026 (18) | 0.0021 (18) |
C2 | 0.023 (2) | 0.024 (2) | 0.025 (2) | 0.0037 (18) | 0.0038 (19) | −0.0022 (18) |
C3 | 0.025 (2) | 0.029 (2) | 0.033 (3) | −0.007 (2) | 0.003 (2) | −0.002 (2) |
C4 | 0.019 (2) | 0.034 (3) | 0.034 (3) | 0.002 (2) | 0.0038 (19) | 0.000 (2) |
C5 | 0.024 (2) | 0.025 (2) | 0.033 (3) | 0.0070 (19) | 0.004 (2) | −0.0007 (19) |
C6 | 0.021 (2) | 0.022 (2) | 0.027 (2) | 0.0014 (18) | 0.0023 (19) | −0.0017 (18) |
C7 | 0.025 (2) | 0.024 (2) | 0.031 (3) | 0.0064 (19) | 0.001 (2) | 0.0020 (19) |
C8 | 0.032 (2) | 0.025 (2) | 0.030 (3) | 0.000 (2) | 0.000 (2) | 0.0072 (19) |
C9 | 0.036 (4) | 0.021 (3) | 0.033 (4) | 0.000 | 0.005 (3) | 0.000 |
Ni1—O1i | 1.858 (3) | C3—H3 | 0.9300 |
Ni1—O1 | 1.858 (3) | C4—C5 | 1.365 (6) |
Ni1—N1i | 1.869 (3) | C5—C6 | 1.409 (6) |
Ni1—N1 | 1.869 (3) | C5—H5 | 0.9300 |
I1—C2 | 2.098 (4) | C6—C7 | 1.440 (5) |
I2—C4 | 2.096 (4) | C7—H7 | 0.9300 |
N1—C7 | 1.287 (5) | C8—C9 | 1.514 (5) |
N1—C8 | 1.471 (5) | C8—H8A | 0.9700 |
O1—C1 | 1.296 (5) | C8—H8B | 0.9700 |
C1—C2 | 1.418 (5) | C9—C8i | 1.514 (5) |
C1—C6 | 1.421 (5) | C9—H9A | 0.9700 |
C2—C3 | 1.369 (5) | C9—H9B | 0.9700 |
C3—C4 | 1.391 (6) | ||
O1i—Ni1—O1 | 84.57 (17) | C4—C5—C6 | 120.3 (4) |
O1i—Ni1—N1i | 92.01 (13) | C4—C5—H5 | 119.8 |
O1—Ni1—N1i | 176.57 (13) | C6—C5—H5 | 119.8 |
O1i—Ni1—N1 | 176.57 (13) | C5—C6—C1 | 121.1 (4) |
O1—Ni1—N1 | 92.01 (13) | C5—C6—C7 | 119.3 (4) |
N1i—Ni1—N1 | 91.4 (2) | C1—C6—C7 | 118.9 (4) |
C7—N1—C8 | 117.4 (3) | N1—C7—C6 | 125.6 (4) |
C7—N1—Ni1 | 124.1 (3) | N1—C7—H7 | 117.2 |
C8—N1—Ni1 | 118.3 (3) | C6—C7—H7 | 117.2 |
C1—O1—Ni1 | 125.6 (3) | N1—C8—C9 | 113.2 (4) |
O1—C1—C2 | 120.9 (4) | N1—C8—H8A | 108.9 |
O1—C1—C6 | 123.7 (4) | C9—C8—H8A | 108.9 |
C2—C1—C6 | 115.5 (4) | N1—C8—H8B | 108.9 |
C3—C2—C1 | 122.9 (4) | C9—C8—H8B | 108.9 |
C3—C2—I1 | 119.4 (3) | H8A—C8—H8B | 107.7 |
C1—C2—I1 | 117.7 (3) | C8—C9—C8i | 113.7 (5) |
C2—C3—C4 | 119.8 (4) | C8—C9—H9A | 108.8 |
C2—C3—H3 | 120.1 | C8i—C9—H9A | 108.8 |
C4—C3—H3 | 120.1 | C8—C9—H9B | 108.8 |
C5—C4—C3 | 120.2 (4) | C8i—C9—H9B | 108.8 |
C5—C4—I2 | 118.9 (3) | H9A—C9—H9B | 107.7 |
C3—C4—I2 | 120.8 (3) | ||
N1i—Ni1—N1—C7 | 152.0 (4) | I2—C4—C5—C6 | −178.8 (3) |
N1i—Ni1—N1—C8 | −31.8 (2) | C4—C5—C6—C1 | 0.4 (6) |
O1i—Ni1—O1—C1 | −148.9 (4) | C4—C5—C6—C7 | −169.6 (4) |
N1—Ni1—O1—C1 | 31.2 (3) | O1—C1—C6—C5 | 177.4 (4) |
Ni1—O1—C1—C2 | 166.0 (3) | C2—C1—C6—C5 | −4.4 (6) |
Ni1—O1—C1—C6 | −15.9 (6) | O1—C1—C6—C7 | −12.5 (6) |
O1—C1—C2—C3 | −176.6 (4) | C2—C1—C6—C7 | 165.7 (4) |
C6—C1—C2—C3 | 5.2 (6) | C8—N1—C7—C6 | −166.2 (4) |
O1—C1—C2—I1 | 4.6 (5) | Ni1—N1—C7—C6 | 10.0 (6) |
C6—C1—C2—I1 | −173.7 (3) | C5—C6—C7—N1 | −174.2 (4) |
C1—C2—C3—C4 | −1.9 (7) | C1—C6—C7—N1 | 15.6 (7) |
I1—C2—C3—C4 | 177.0 (3) | C7—N1—C8—C9 | −116.1 (4) |
C2—C3—C4—C5 | −2.4 (7) | Ni1—N1—C8—C9 | 67.4 (4) |
C2—C3—C4—I2 | 179.5 (3) | N1—C8—C9—C8i | −32.1 (2) |
C3—C4—C5—C6 | 3.2 (7) |
Symmetry code: (i) −x, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C17H12I4N2O2)] |
Mr | 842.60 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 291 |
a, b, c (Å) | 26.1229 (18), 10.7409 (7), 7.2387 (5) |
β (°) | 98.107 (3) |
V (Å3) | 2010.8 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.12 |
Crystal size (mm) | 0.22 × 0.12 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (TWINABS; Bruker, 2005) |
Tmin, Tmax | 0.303, 0.600 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7463, 2188, 1755 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.641 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.055, 1.04 |
No. of reflections | 2188 |
No. of parameters | 120 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.70, −0.55 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Footnotes
‡Present address: Structural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
Acknowledgements
HK and AAA thank PNU for financial support. MNT thanks the GC University of Sargodha, Pakistan, for the research facility.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Blower, P. J. (1998). Transition Met. Chem. 23, 109–112. CrossRef CAS Google Scholar
Bruker (2005). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69. Google Scholar
Kargar, H., Kia, R., Abbasian, S. & Tahir, M. N. (2012e). Acta Cryst. E68, m193. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kargar, H., Kia, R., Adabi Ardakani, A. & Tahir, M. N. (2012a). Acta Cryst. E68, o2500. CSD CrossRef IUCr Journals Google Scholar
Kargar, H., Kia, R., Shakarami, T. & Tahir, M. N. (2012d). Acta Cryst. E68, m935. CSD CrossRef IUCr Journals Google Scholar
Kargar, H., Kia, R., Sharafi, Z. & Tahir, M. N. (2012c). Acta Cryst. E68, m82. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kargar, H., Kia, R. & Tahir, M. N. (2012b). Acta Cryst. E68, m753. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Blower et al., 1998). In continuation of our work on the crystal structure of Schiff base metal complexes (Kargar et al., 2012b,c,d,e), we determined the X-ray structure of the title compound.
The asymmetric unit of the title compound, Fig. 1, comprises a Schiff base complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the bond lengths and angles of the related ligand (Kargar et al., 2012a) and related Ni-complexes (Kargar et al., 2012b,c,d,e). The NiII and C9 atom of the propyl segment are located on a two-fold rotation axis. The geometry around NiII atom is square-planar which is supported by the N2O2 donor atoms of the coordinated ligand.
There are no significant intermolecular interactions in the crystal structure.
The crystal used was a non-merohedral twin with refined twin components ratio of 0.944 (1)/0.056 (1).