metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4,4′,6,6′-Tetra­iodo-2,2′-[propane-1,3-diylbis(nitrilo­methanylyl­­idene)]diphenolato-κ4O,N,N′,O′}nickel(II)

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, cArdakan Branch, Islamic Azad University, Ardakan, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: zsrkk@yahoo.com, dmntahir_uos@yahoo.com

(Received 30 June 2012; accepted 14 July 2012; online 18 July 2012)

The asymmetric unit of the title compound, [Ni(C17H12I4N2O2)], comprises half of a Schiff base complex. The NiII and central C atom of the propyl chain are located on a twofold rotation axis. The geometry around the NiII atom is square planar, supported by the N2O2 donor atoms of the coordinated ligand. In the crystal, there are no significant inter­molecular inter­actions present. The crystal studied was a non-merohedral twin with a refined twin component ratio of 0.944 (1):0.056 (1).

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For applications of Schiff bases in coordination chemistry, see, for example: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Blower et al. (1998[Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.]). For the structure of the Schiff base ligand, see: Kargar et al. (2012a[Kargar, H., Kia, R., Adabi Ardakani, A. & Tahir, M. N. (2012a). Acta Cryst. E68, o2500.]). For related structures, see, for example: Kargar et al. (2012b[Kargar, H., Kia, R. & Tahir, M. N. (2012b). Acta Cryst. E68, m753.],c[Kargar, H., Kia, R., Sharafi, Z. & Tahir, M. N. (2012c). Acta Cryst. E68, m82.],d[Kargar, H., Kia, R., Shakarami, T. & Tahir, M. N. (2012d). Acta Cryst. E68, m935.],e[Kargar, H., Kia, R., Abbasian, S. & Tahir, M. N. (2012e). Acta Cryst. E68, m193.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C17H12I4N2O2)]

  • Mr = 842.60

  • Monoclinic, C 2/c

  • a = 26.1229 (18) Å

  • b = 10.7409 (7) Å

  • c = 7.2387 (5) Å

  • β = 98.107 (3)°

  • V = 2010.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.12 mm−1

  • T = 291 K

  • 0.22 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (TWINABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.303, Tmax = 0.600

  • 7468 measured reflections

  • 2188 independent reflections

  • 1755 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.055

  • S = 1.04

  • 2188 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Blower et al., 1998). In continuation of our work on the crystal structure of Schiff base metal complexes (Kargar et al., 2012b,c,d,e), we determined the X-ray structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a Schiff base complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the bond lengths and angles of the related ligand (Kargar et al., 2012a) and related Ni-complexes (Kargar et al., 2012b,c,d,e). The NiII and C9 atom of the propyl segment are located on a two-fold rotation axis. The geometry around NiII atom is square-planar which is supported by the N2O2 donor atoms of the coordinated ligand.

There are no significant intermolecular interactions in the crystal structure.

The crystal used was a non-merohedral twin with refined twin components ratio of 0.944 (1)/0.056 (1).

Related literature top

For standard bond lengths, see: Allen et al. (1987). For applications of Schiff bases in coordination chemistry, see, for example: Granovski et al. (1993); Blower et al. (1998). For the structure of the Schiff base ligand, see: Kargar et al. (2012a). For related structures, see, for example: Kargar et al. (2012b,c,d,e).

Experimental top

The title compound was synthesized by adding 3,5-diiodo-salicylaldehyde-1,3-propanediamine (2 mmol) to a solution of NiCl2. 6H2O (2.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 1h. The resultant solution was filtered. Red single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 and 0.97 Å for CH and CH2 H-atoms, respectively, with Uiso (H) = 1.2 Ueq(C).

Structure description top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Blower et al., 1998). In continuation of our work on the crystal structure of Schiff base metal complexes (Kargar et al., 2012b,c,d,e), we determined the X-ray structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a Schiff base complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the bond lengths and angles of the related ligand (Kargar et al., 2012a) and related Ni-complexes (Kargar et al., 2012b,c,d,e). The NiII and C9 atom of the propyl segment are located on a two-fold rotation axis. The geometry around NiII atom is square-planar which is supported by the N2O2 donor atoms of the coordinated ligand.

There are no significant intermolecular interactions in the crystal structure.

The crystal used was a non-merohedral twin with refined twin components ratio of 0.944 (1)/0.056 (1).

For standard bond lengths, see: Allen et al. (1987). For applications of Schiff bases in coordination chemistry, see, for example: Granovski et al. (1993); Blower et al. (1998). For the structure of the Schiff base ligand, see: Kargar et al. (2012a). For related structures, see, for example: Kargar et al. (2012b,c,d,e).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, showing 50% probability displacement ellipsoids and the atomic numbering [symmetry code for suffix A = -x, y, -z + 1/2].
{4,4',6,6'-Tetraiodo-2,2'-[propane-1,3- diylbis(nitrilomethanylylidene)]diphenolato- κ4O,N,N',O'}nickel(II) top
Crystal data top
[Ni(C17H12I4N2O2)]F(000) = 1536
Mr = 842.60Dx = 2.783 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 526 reflections
a = 26.1229 (18) Åθ = 2.5–27.5°
b = 10.7409 (7) ŵ = 7.12 mm1
c = 7.2387 (5) ÅT = 291 K
β = 98.107 (3)°Block, red
V = 2010.8 (2) Å30.22 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2188 independent reflections
Radiation source: fine-focus sealed tube1755 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.1°, θmin = 1.6°
Absorption correction: multi-scan
(TWINABS; Bruker, 2005)
h = 3333
Tmin = 0.303, Tmax = 0.600k = 1313
7463 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0177P)2 + 2.2669P]
where P = (Fo2 + 2Fc2)/3
2188 reflections(Δ/σ)max = 0.001
120 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Ni(C17H12I4N2O2)]V = 2010.8 (2) Å3
Mr = 842.60Z = 4
Monoclinic, C2/cMo Kα radiation
a = 26.1229 (18) ŵ = 7.12 mm1
b = 10.7409 (7) ÅT = 291 K
c = 7.2387 (5) Å0.22 × 0.12 × 0.08 mm
β = 98.107 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2188 independent reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2005)
1755 reflections with I > 2σ(I)
Tmin = 0.303, Tmax = 0.600Rint = 0.033
7463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.04Δρmax = 0.70 e Å3
2188 reflectionsΔρmin = 0.55 e Å3
120 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.00000.48944 (7)0.25000.02132 (18)
I10.090843 (12)0.89044 (3)0.36252 (5)0.03652 (10)
I20.279631 (12)0.60955 (3)0.20407 (5)0.04421 (11)
N10.05062 (13)0.3679 (3)0.3138 (5)0.0242 (8)
O10.04733 (11)0.6174 (2)0.3090 (4)0.0269 (7)
C10.09612 (15)0.6129 (4)0.2932 (6)0.0224 (9)
C20.12636 (16)0.7229 (4)0.3024 (6)0.0240 (9)
C30.17729 (16)0.7234 (4)0.2769 (6)0.0291 (10)
H30.19540.79800.28040.035*
C40.20183 (16)0.6119 (4)0.2457 (6)0.0291 (10)
C50.17586 (16)0.5018 (4)0.2474 (6)0.0276 (10)
H50.19300.42730.23270.033*
C60.12328 (15)0.5005 (4)0.2715 (6)0.0233 (10)
C70.09902 (16)0.3837 (4)0.3042 (6)0.0271 (10)
H70.12010.31360.31980.033*
C80.03503 (17)0.2492 (4)0.3903 (6)0.0292 (10)
H8A0.01730.26610.49670.035*
H8B0.06580.20120.43440.035*
C90.00000.1721 (5)0.25000.0298 (14)
H9A0.02120.11880.31650.036*0.50
H9B0.02120.11880.18350.036*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0199 (4)0.0179 (4)0.0259 (4)0.0000.0026 (3)0.000
I10.03286 (18)0.02414 (16)0.0539 (2)0.00044 (13)0.01095 (15)0.00832 (15)
I20.02416 (17)0.0449 (2)0.0661 (3)0.00048 (15)0.01512 (16)0.00269 (17)
N10.0261 (19)0.0191 (19)0.026 (2)0.0019 (15)0.0007 (16)0.0025 (15)
O10.0204 (15)0.0220 (15)0.0392 (19)0.0010 (12)0.0072 (13)0.0029 (13)
C10.021 (2)0.024 (2)0.022 (2)0.0018 (18)0.0026 (18)0.0021 (18)
C20.023 (2)0.024 (2)0.025 (2)0.0037 (18)0.0038 (19)0.0022 (18)
C30.025 (2)0.029 (2)0.033 (3)0.007 (2)0.003 (2)0.002 (2)
C40.019 (2)0.034 (3)0.034 (3)0.002 (2)0.0038 (19)0.000 (2)
C50.024 (2)0.025 (2)0.033 (3)0.0070 (19)0.004 (2)0.0007 (19)
C60.021 (2)0.022 (2)0.027 (2)0.0014 (18)0.0023 (19)0.0017 (18)
C70.025 (2)0.024 (2)0.031 (3)0.0064 (19)0.001 (2)0.0020 (19)
C80.032 (2)0.025 (2)0.030 (3)0.000 (2)0.000 (2)0.0072 (19)
C90.036 (4)0.021 (3)0.033 (4)0.0000.005 (3)0.000
Geometric parameters (Å, º) top
Ni1—O1i1.858 (3)C3—H30.9300
Ni1—O11.858 (3)C4—C51.365 (6)
Ni1—N1i1.869 (3)C5—C61.409 (6)
Ni1—N11.869 (3)C5—H50.9300
I1—C22.098 (4)C6—C71.440 (5)
I2—C42.096 (4)C7—H70.9300
N1—C71.287 (5)C8—C91.514 (5)
N1—C81.471 (5)C8—H8A0.9700
O1—C11.296 (5)C8—H8B0.9700
C1—C21.418 (5)C9—C8i1.514 (5)
C1—C61.421 (5)C9—H9A0.9700
C2—C31.369 (5)C9—H9B0.9700
C3—C41.391 (6)
O1i—Ni1—O184.57 (17)C4—C5—C6120.3 (4)
O1i—Ni1—N1i92.01 (13)C4—C5—H5119.8
O1—Ni1—N1i176.57 (13)C6—C5—H5119.8
O1i—Ni1—N1176.57 (13)C5—C6—C1121.1 (4)
O1—Ni1—N192.01 (13)C5—C6—C7119.3 (4)
N1i—Ni1—N191.4 (2)C1—C6—C7118.9 (4)
C7—N1—C8117.4 (3)N1—C7—C6125.6 (4)
C7—N1—Ni1124.1 (3)N1—C7—H7117.2
C8—N1—Ni1118.3 (3)C6—C7—H7117.2
C1—O1—Ni1125.6 (3)N1—C8—C9113.2 (4)
O1—C1—C2120.9 (4)N1—C8—H8A108.9
O1—C1—C6123.7 (4)C9—C8—H8A108.9
C2—C1—C6115.5 (4)N1—C8—H8B108.9
C3—C2—C1122.9 (4)C9—C8—H8B108.9
C3—C2—I1119.4 (3)H8A—C8—H8B107.7
C1—C2—I1117.7 (3)C8—C9—C8i113.7 (5)
C2—C3—C4119.8 (4)C8—C9—H9A108.8
C2—C3—H3120.1C8i—C9—H9A108.8
C4—C3—H3120.1C8—C9—H9B108.8
C5—C4—C3120.2 (4)C8i—C9—H9B108.8
C5—C4—I2118.9 (3)H9A—C9—H9B107.7
C3—C4—I2120.8 (3)
N1i—Ni1—N1—C7152.0 (4)I2—C4—C5—C6178.8 (3)
N1i—Ni1—N1—C831.8 (2)C4—C5—C6—C10.4 (6)
O1i—Ni1—O1—C1148.9 (4)C4—C5—C6—C7169.6 (4)
N1—Ni1—O1—C131.2 (3)O1—C1—C6—C5177.4 (4)
Ni1—O1—C1—C2166.0 (3)C2—C1—C6—C54.4 (6)
Ni1—O1—C1—C615.9 (6)O1—C1—C6—C712.5 (6)
O1—C1—C2—C3176.6 (4)C2—C1—C6—C7165.7 (4)
C6—C1—C2—C35.2 (6)C8—N1—C7—C6166.2 (4)
O1—C1—C2—I14.6 (5)Ni1—N1—C7—C610.0 (6)
C6—C1—C2—I1173.7 (3)C5—C6—C7—N1174.2 (4)
C1—C2—C3—C41.9 (7)C1—C6—C7—N115.6 (7)
I1—C2—C3—C4177.0 (3)C7—N1—C8—C9116.1 (4)
C2—C3—C4—C52.4 (7)Ni1—N1—C8—C967.4 (4)
C2—C3—C4—I2179.5 (3)N1—C8—C9—C8i32.1 (2)
C3—C4—C5—C63.2 (7)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C17H12I4N2O2)]
Mr842.60
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)26.1229 (18), 10.7409 (7), 7.2387 (5)
β (°) 98.107 (3)
V3)2010.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)7.12
Crystal size (mm)0.22 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(TWINABS; Bruker, 2005)
Tmin, Tmax0.303, 0.600
No. of measured, independent and
observed [I > 2σ(I)] reflections
7463, 2188, 1755
Rint0.033
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.055, 1.04
No. of reflections2188
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.55

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Present address: Structural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

Acknowledgements

HK and AAA thank PNU for financial support. MNT thanks the GC University of Sargodha, Pakistan, for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem. 23, 109–112.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationKargar, H., Kia, R., Abbasian, S. & Tahir, M. N. (2012e). Acta Cryst. E68, m193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Adabi Ardakani, A. & Tahir, M. N. (2012a). Acta Cryst. E68, o2500.  CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Shakarami, T. & Tahir, M. N. (2012d). Acta Cryst. E68, m935.  CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Sharafi, Z. & Tahir, M. N. (2012c). Acta Cryst. E68, m82.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R. & Tahir, M. N. (2012b). Acta Cryst. E68, m753.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds