organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Cyano-1-methyl­pyridinium iodide

aDepartment of Physics, Loyola University, New Orleans, LA 70118, USA, bDepartment of Chemistry, Loyola University, New Orleans, LA 70118, USA, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: joelt@tulane.edu

(Received 2 July 2012; accepted 15 July 2012; online 21 July 2012)

In the crystal structure of the title compound, C7H7N2+·I, the cations form inversion-related dimers via weak pairwise C—H⋯N hydrogen bonds. In the dimers, the pyridinium rings are parallel to one another with their mean planes separated by a normal distance of ca 0.28 Å. Weak C—H⋯N inter­actions between adjacent dimers generate a layer lying parallel to (10-1). The remaining H atoms form C—H⋯I inter­actions, which link the layers into a three-dimensional structure.

Related literature

For the structure of 3-cyano-1-methyl­pyridinium iodide, see: Koplitz et al. (2003[Koplitz, L. V., Bay, K. D., DiGiovanni, N. & Mague, J. T. (2003). J. Chem. Crystallogr. 33, 391-402.]). For the structure of 1-methyl­pyridinium iodide, see: Lalancette et al. (1978[Lalancette, R. A., Furey, W., Costanzo, J. N., Hemmes, P. R. & Jordan, F. (1978). Acta Cryst. B34, 2950-2953.]). For related structures see: Mague et al. (2005[Mague, J. T., Ivie, R. M., Hartsock, R. W., Koplitz, L. V. & Spulak, M. (2005). Acta Cryst. E61, o851-o853.]); Koplitz et al. (2012[Koplitz, L. V., Mague, J. T., Kammer, M. N., McCormick, C. A., Renfro, H. E. & Vumbaco, D. J. (2012). Acta Cryst. E68, o1653.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7N2+·I

  • Mr = 246.05

  • Monoclinic, P 21 /n

  • a = 5.0734 (3) Å

  • b = 11.4528 (7) Å

  • c = 15.0751 (9) Å

  • β = 99.679 (1)°

  • V = 863.46 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.64 mm−1

  • T = 100 K

  • 0.14 × 0.07 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.614, Tmax = 0.836

  • 12786 measured reflections

  • 1792 independent reflections

  • 1572 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.048

  • S = 1.07

  • 1792 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N2i 0.95 2.58 3.434 (4) 149
C1—H1B⋯N2ii 0.98 2.71 3.513 (4) 140
C1—H1A⋯I1iii 0.98 3.04 3.999 (3) 166
C1—H1C⋯I1iv 0.98 3.06 3.870 (3) 141
C2—H2⋯I1v 0.95 2.99 3.796 (3) 144
C5—H5⋯I1vi 0.95 2.94 3.839 (3) 158
C6—H6⋯I1iii 0.95 3.01 3.916 (3) 161
Symmetry codes: (i) -x+2, -y, -z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Previously reported structures of four other cyano-1-methylpyridinium salts (Koplitz et al., 2003; Mague et al., 2005; Koplitz et al., 2012) include three layered compounds with all atoms, except the methyl H atoms, lying on crystallographic mirror planes. Interestingly, none of the iodide salts of the 4-, 3- and 2-cyano-1-methylpyridinium cation adopt this layer structure, possibly because the larger size and weaker hydrogen-bonding ability of iodide as compared with the smaller chloride and bromide ions provides a less restrictive set of interionic interactions.

The molecular structure of the title compound is illustrated in Fig. 1. In the crystal, the cations form inversion dimers via weak pairwise C2—H2···N2 hydrogen bonds (Table 1). In the dimers the pyridinium rings are parallel to one another with their mean planes separated by a normal distance of ca 0.28 Å. Weak C1—H1B···N2 interactions between adjacent dimers generate a layer lying parallel to (101), with the remaining hydrogen atoms forming C—H···I interactions (Table 1). The latter reinforce the construction of the layers as well as tying them together into a three-dimensional structure (Fig. 2).

In contrast to 3-cyano-1-methylpyridinium iodide (Koplitz et al., 2003) where each iodide ion interacts with three C—H groups, in the title compound each anion is linked by five C—H groups which may reflect the more linear shape of the cation in the present structure.

Related literature top

For the structure of 3-cyano-1-methylpyridinium iodide, see: Koplitz et al. (2003). For the structure of 1-methylpyridinium iodide, see: Lalancette et al. (1978). For related structures see: Mague et al. (2005); Koplitz et al. (2012).

Experimental top

4-Cyanopyridine (10.55 g) was dissolved in benzene (40 ml). Iodomethane (9.5 ml) was added to this solution slowly with stirring and the solution was refluxed for 75 minutes. A yellow solid was collected by vacuum filtration (M.p. 462 - 466 K). Addition of ethanol to the supernatant (ca 2:1 benzene:ethanol) resulted in the the growth overnight of thin plate-like yellow crystals of the title compound, suitable for X-ray diffraction.

Refinement top

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 and 0.98 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms and 1.2 for other H-atoms.

Structure description top

Previously reported structures of four other cyano-1-methylpyridinium salts (Koplitz et al., 2003; Mague et al., 2005; Koplitz et al., 2012) include three layered compounds with all atoms, except the methyl H atoms, lying on crystallographic mirror planes. Interestingly, none of the iodide salts of the 4-, 3- and 2-cyano-1-methylpyridinium cation adopt this layer structure, possibly because the larger size and weaker hydrogen-bonding ability of iodide as compared with the smaller chloride and bromide ions provides a less restrictive set of interionic interactions.

The molecular structure of the title compound is illustrated in Fig. 1. In the crystal, the cations form inversion dimers via weak pairwise C2—H2···N2 hydrogen bonds (Table 1). In the dimers the pyridinium rings are parallel to one another with their mean planes separated by a normal distance of ca 0.28 Å. Weak C1—H1B···N2 interactions between adjacent dimers generate a layer lying parallel to (101), with the remaining hydrogen atoms forming C—H···I interactions (Table 1). The latter reinforce the construction of the layers as well as tying them together into a three-dimensional structure (Fig. 2).

In contrast to 3-cyano-1-methylpyridinium iodide (Koplitz et al., 2003) where each iodide ion interacts with three C—H groups, in the title compound each anion is linked by five C—H groups which may reflect the more linear shape of the cation in the present structure.

For the structure of 3-cyano-1-methylpyridinium iodide, see: Koplitz et al. (2003). For the structure of 1-methylpyridinium iodide, see: Lalancette et al. (1978). For related structures see: Mague et al. (2005); Koplitz et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of the asymmetric unit of the title compound with atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, showing the interpenetrating sheets of cations [colour key: C = gray, H = orange, N = blue, I = purple; C—H···I interactions are depicted as dashed lines].
4-Cyano-1-methylpyridinium iodide top
Crystal data top
C7H7N2+·IF(000) = 464
Mr = 246.05Dx = 1.893 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8899 reflections
a = 5.0734 (3) Åθ = 2.3–28.6°
b = 11.4528 (7) ŵ = 3.64 mm1
c = 15.0751 (9) ÅT = 100 K
β = 99.679 (1)°Plates, yellow
V = 863.46 (9) Å30.14 × 0.07 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
1792 independent reflections
Radiation source: fine-focus sealed tube1572 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 26.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.614, Tmax = 0.836k = 1414
12786 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0159P)2 + 1.1195P]
where P = (Fo2 + 2Fc2)/3
1792 reflections(Δ/σ)max = 0.002
92 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C7H7N2+·IV = 863.46 (9) Å3
Mr = 246.05Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.0734 (3) ŵ = 3.64 mm1
b = 11.4528 (7) ÅT = 100 K
c = 15.0751 (9) Å0.14 × 0.07 × 0.05 mm
β = 99.679 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1792 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1572 reflections with I > 2σ(I)
Tmin = 0.614, Tmax = 0.836Rint = 0.040
12786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.07Δρmax = 0.88 e Å3
1792 reflectionsΔρmin = 0.47 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.95185 (3)0.378404 (15)0.854589 (12)0.02114 (7)
N10.6792 (5)0.3458 (2)0.18850 (15)0.0201 (5)
N20.7382 (5)0.0466 (2)0.07663 (17)0.0307 (6)
C10.6477 (6)0.4209 (3)0.26587 (19)0.0233 (6)
H1A0.50520.47790.24720.035*
H1B0.81590.46210.28710.035*
H1C0.60130.37260.31460.035*
C20.8704 (6)0.2626 (3)0.19989 (19)0.0218 (6)
H20.98580.25540.25620.026*
C30.8996 (6)0.1883 (3)0.13096 (19)0.0219 (6)
H31.03610.13060.13870.026*
C40.7265 (6)0.1986 (2)0.04961 (18)0.0207 (6)
C50.5356 (6)0.2869 (3)0.03797 (19)0.0243 (6)
H50.42010.29650.01810.029*
C60.5167 (6)0.3604 (3)0.10929 (19)0.0223 (6)
H60.38830.42150.10230.027*
C70.7369 (6)0.1158 (3)0.0225 (2)0.0244 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01891 (11)0.02214 (12)0.02205 (11)0.00126 (7)0.00256 (7)0.00040 (7)
N10.0211 (12)0.0212 (12)0.0191 (12)0.0000 (9)0.0065 (9)0.0021 (9)
N20.0343 (15)0.0328 (15)0.0257 (14)0.0058 (12)0.0071 (11)0.0015 (12)
C10.0265 (15)0.0239 (15)0.0201 (14)0.0037 (12)0.0055 (12)0.0008 (11)
C20.0190 (14)0.0260 (15)0.0204 (14)0.0032 (11)0.0035 (11)0.0053 (11)
C30.0197 (14)0.0238 (15)0.0237 (15)0.0060 (11)0.0078 (11)0.0048 (11)
C40.0250 (15)0.0217 (14)0.0171 (14)0.0001 (11)0.0082 (11)0.0021 (11)
C50.0229 (15)0.0301 (17)0.0190 (14)0.0041 (12)0.0010 (11)0.0021 (12)
C60.0219 (14)0.0228 (15)0.0219 (14)0.0053 (11)0.0029 (11)0.0033 (11)
C70.0253 (15)0.0256 (16)0.0234 (15)0.0017 (12)0.0073 (12)0.0027 (12)
Geometric parameters (Å, º) top
N1—C61.343 (4)C2—H20.9500
N1—C21.350 (4)C3—C41.388 (4)
N1—C11.480 (4)C3—H30.9500
N2—C71.139 (4)C4—C51.390 (4)
C1—H1A0.9800C4—C71.451 (4)
C1—H1B0.9800C5—C61.381 (4)
C1—H1C0.9800C5—H50.9500
C2—C31.370 (4)C6—H60.9500
C6—N1—C2121.4 (2)C2—C3—H3120.5
C6—N1—C1119.8 (2)C4—C3—H3120.5
C2—N1—C1118.7 (2)C3—C4—C5119.8 (3)
N1—C1—H1A109.5C3—C4—C7120.6 (3)
N1—C1—H1B109.5C5—C4—C7119.5 (3)
H1A—C1—H1B109.5C6—C5—C4118.8 (3)
N1—C1—H1C109.5C6—C5—H5120.6
H1A—C1—H1C109.5C4—C5—H5120.6
H1B—C1—H1C109.5N1—C6—C5120.3 (3)
N1—C2—C3120.6 (3)N1—C6—H6119.9
N1—C2—H2119.7C5—C6—H6119.9
C3—C2—H2119.7N2—C7—C4176.3 (3)
C2—C3—C4119.0 (3)
C6—N1—C2—C31.6 (4)C7—C4—C5—C6175.8 (3)
C1—N1—C2—C3177.5 (3)C2—N1—C6—C52.4 (4)
N1—C2—C3—C41.1 (4)C1—N1—C6—C5176.7 (3)
C2—C3—C4—C52.9 (4)C4—C5—C6—N10.5 (4)
C2—C3—C4—C7175.0 (3)C3—C4—C7—N276 (5)
C3—C4—C5—C62.2 (4)C5—C4—C7—N2102 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.952.583.434 (4)149
C1—H1B···N2ii0.982.713.513 (4)140
C1—H1A···I1iii0.983.043.999 (3)166
C1—H1C···I1iv0.983.063.870 (3)141
C2—H2···I1v0.952.993.796 (3)144
C5—H5···I1vi0.952.943.839 (3)158
C6—H6···I1iii0.953.013.916 (3)161
Symmetry codes: (i) x+2, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x1/2, y+1/2, z1/2; (v) x+1/2, y+1/2, z1/2; (vi) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC7H7N2+·I
Mr246.05
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)5.0734 (3), 11.4528 (7), 15.0751 (9)
β (°) 99.679 (1)
V3)863.46 (9)
Z4
Radiation typeMo Kα
µ (mm1)3.64
Crystal size (mm)0.14 × 0.07 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.614, 0.836
No. of measured, independent and
observed [I > 2σ(I)] reflections
12786, 1792, 1572
Rint0.040
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.048, 1.07
No. of reflections1792
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.47

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.952.583.434 (4)149
C1—H1B···N2ii0.982.713.513 (4)140
C1—H1A···I1iii0.983.043.999 (3)166
C1—H1C···I1iv0.983.063.870 (3)141
C2—H2···I1v0.952.993.796 (3)144
C5—H5···I1vi0.952.943.839 (3)158
C6—H6···I1iii0.953.013.916 (3)161
Symmetry codes: (i) x+2, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x1/2, y+1/2, z1/2; (v) x+1/2, y+1/2, z1/2; (vi) x1, y, z1.
 

Acknowledgements

We thank the Chemistry Department of Tulane University for support of the X-ray laboratory and the Louisiana Board of Regents through the Louisiana Educational Quality Support Fund [grant LEQSF (2003–2003)-ENH –TR-67) for the purchase of the APEX diffractometer]. MNK was supported by Louisiana Board of Regents grant LEQSF(2007–12)-ENH-PKSFI-PES-03 during the summer of 2011.

References

First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoplitz, L. V., Bay, K. D., DiGiovanni, N. & Mague, J. T. (2003). J. Chem. Crystallogr. 33, 391–402.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoplitz, L. V., Mague, J. T., Kammer, M. N., McCormick, C. A., Renfro, H. E. & Vumbaco, D. J. (2012). Acta Cryst. E68, o1653.  CSD CrossRef IUCr Journals Google Scholar
First citationLalancette, R. A., Furey, W., Costanzo, J. N., Hemmes, P. R. & Jordan, F. (1978). Acta Cryst. B34, 2950–2953.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMague, J. T., Ivie, R. M., Hartsock, R. W., Koplitz, L. V. & Spulak, M. (2005). Acta Cryst. E61, o851–o853.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds