organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Bi­thio­phene-3,3′-dicarbo­nitrile

aDepartment of Physics, Idhaya College for Women, Kumbakonam-1, India, bDepartment of Physics, Kunthavai Naachiar Government Arts College (W) (Autonomous), Thanjavur-7, India, and cOrganic Materials Lab, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

(Received 6 July 2012; accepted 17 July 2012; online 25 July 2012)

The complete mol­ecule of the title compound, C10H4N2S2, is generated by an inversion center situated at the mid-point of the bridging C—C bond. The bithio­phene ring system is planar [maximum deviation = 0.003 (2) Å] and the central C—C bond length is 1.450 (2) Å. There are no significant inter­molecular inter­actions in the crystal structure, which is stabilized by van der Waals inter­actions.

Related literature

For the importance of bithio­phene derivatives, see: Katz et al. (1995[Katz, H. E., Torsi, L. & Dodabalapur, A. (1995). Chem. Mater. 7, 2235-2237.]). For their applications, see: Deng et al. (2011[Deng, S. X., Krueger, G., Taranekar, P., Sriwichai, S., Zong, R. F., Thummel, R. P. & Advincula, R. C. (2011). Chem. Mater. 23, 3302-3311.]); Thomas et al. (2008[Thomas, K. R. J., Hsu, Y.-C., Lin, J. T., Lee, K.-M., Ho, K.-C., Lai, C.-H., Cheng, Y.-M. & Chou, P.-T. (2008). Chem. Mater. 20, 1830-1840.]). For background to the title compound, see: Demanze et al. (1996[Demanze, F., Yassar, A. & Garnier, F. (1996). Macromolecules, 2, 4267-4273.]); Pletnev et al. (2002[Pletnev, A. A., Tian, Q. & Larock, R. C. (2002). J. Org. Chem. 67, 9276-9287.]); For related structures, see: Benedict et al. (2004[Benedict, J. B., Kaminsky, W. & Tonzola, C. J. (2004). Acta Cryst. E60, o530-o531.]); Huang & Li (2011[Huang, L. & Li, H. (2011). Acta Cryst. E67, o3512.]); Pelletier et al. (1995[Pelletier, M., Brisse, F., Cloutier, R. & Leclerc, M. (1995). Acta Cryst. C51, 1394-1397.]); Li & Li (2009[Li, H. & Li, L. (2009). Acta Cryst. E65, o952.]); Teh et al. (2012[Teh, C. H., Mat Salleh, M., Mohamed Tahir, M. I., Daik, R. & Kassim, M. B. (2012). Acta Cryst. E68, o1976.]). For thio­phene C—S bond lengths, see: Howie & Wardell (2006[Howie, R. A. & Wardell, J. L. (2006). Acta Cryst. E62, o659-o661.]). For the normal bonding picture for bithio­phene, see: Khan et al. (2004[Khan, M. S., Al-Naamani, R. S., Ahrens, B. & Raithby, P. R. (2004). Acta Cryst. E60, o1202-o1203.]).

[Scheme 1]

Experimental

Crystal data
  • C10H4N2S2

  • Mr = 216.27

  • Monoclinic, P 21 /c

  • a = 3.9084 (1) Å

  • b = 9.8832 (4) Å

  • c = 12.0091 (5) Å

  • β = 93.900 (2)°

  • V = 462.81 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.881, Tmax = 0.900

  • 6689 measured reflections

  • 1802 independent reflections

  • 1409 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.105

  • S = 1.05

  • 1802 reflections

  • 64 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bithiophene derivatives are important compounds in the synthesis of oligothiophenes and polythiophenes which have attracted attention as materials showing interesting characteristics as conducting, nonlinear optical (NLO), and liquid crystalline materials (Katz et al., 1995). Oligothiophenes and their derivatives are useful precursors for the construction of organic materials suitable for application in electronic devices (Deng et al., 2011; Thomas et al., 2008) and the presence of an electron-withdrawing cyano group may offer a route to tune the electronic properties of the resulting materials. Our interest in these derivatives has led us to prepare the title compound which is known in the literature (Pletnev et al., 2002; Demanze et al., 1996) but was obtained as a side product during the attempted synthesis of other derivatives. We herein report on the direct synthesis and the crystal structure of the title compound.

The asymmetric unit of the title compound, comprises half a molecule with the full molecule generated by a crystallographic centre of inversion (Fig. 1). The bithiophene unit is planar to within 0.003 (2) Å. Within the bithiophene unit, the C1—C2 and C3—C4 bond-lengths [1.3838 (16) and 1.3487 (19) Å, respectively] are significantly shorter than bond C2—C3, 1.4173 (19) Å. This is consistent with the normal bonding picture for bithiophene (Khan et al., 2004).

One feature of the molecule is the difference between the S1—C1 and S1—C4 bond lengths [1.724 (1) and 1.700 (1) Å, respectively]. Howie and Wardell (2006) have noted a similar disparity in the S—C bond lengths. This generally agrees with those values found for related structures, such as 2,2'-[2,5-Bis(hexyloxy)-1,4-phenylene]-dithiophene (Teh et al., 2012) and 3,3',5,5'-Tetrabromo-2,2'-bithiophene (Li & Li, 2009).

The carbonitrile chain is almost linear, with the N1-C5-C2 bond angle being 177.43 (15)°. The geometric parameters are comparable with those observed in the related structures 3,3'-Bis(octyloxy)-2,2'-bithiophene at 195 K (Pelletier et al., 1995), 2,2'-(3,3'-Dihexyl-2,2'-bithiophene-5,5'-diyl) bis(4,4,5,5-tetramethyl-1,3,2-dioxa-borolane) [Huang & Li, 2011] and 3,3'-Didecyl-5,5,-bis(4-phenylquinolin-2-yl)-2,2'-bithienyl (Benedict et al., 2004).

There are no significant hydrogen-bonding interactions in the crystal structure, which is stabilized by van der Waals interactions.

Related literature top

For the importance of bithiophene derivatives, see: Katz et al. (1995). For their applications, see: Deng et al. (2011); Thomas et al. (2008). For background to the title compound, see: Demanze et al. (1996); Pletnev et al. (2002); For related structures, see: Benedict et al. (2004); Huang & Li (2011); Pelletier et al. (1995); Li & Li (2009); Teh et al. (2012). For thiophene C—S bond lengths, see: Howie & Wardell (2006). For the normal bonding picture for bithiophene, see: Khan et al. (2004).

Experimental top

Copper(I) cyanide (5.17 g, 57.72 mmol) was added to a solution of 3,3'-dibromo-2, 2'-bithiophene (6.23 g, 19.24 mmol) in 50 ml of DMF. This mixture was heated at 423 K for 32 h under nitrogen atmosphere. After cooling to room temperature, 50 ml of aqueous ammonia solution was added and allowed to stir for 4 h at room temperature. It was extracted with ethyl acetate and the combined organic layer washed with 3× 100 ml of water and dried over anhydrous sodium sulfate. On vacuum evaporation it produced a crude solid which was purified by column chromatography on silica gel using 4:1 mixture of hexanes and ethylacetate as eluant, to give a pale yellow solid; Yield 1.66 g (40%). Yellow block-like crystals were grown from an ethylacetate/hexane (1:4) mixture (M.p. 477 K). Spectroscopic data for the title compound are given in the archived CIF.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Structure description top

Bithiophene derivatives are important compounds in the synthesis of oligothiophenes and polythiophenes which have attracted attention as materials showing interesting characteristics as conducting, nonlinear optical (NLO), and liquid crystalline materials (Katz et al., 1995). Oligothiophenes and their derivatives are useful precursors for the construction of organic materials suitable for application in electronic devices (Deng et al., 2011; Thomas et al., 2008) and the presence of an electron-withdrawing cyano group may offer a route to tune the electronic properties of the resulting materials. Our interest in these derivatives has led us to prepare the title compound which is known in the literature (Pletnev et al., 2002; Demanze et al., 1996) but was obtained as a side product during the attempted synthesis of other derivatives. We herein report on the direct synthesis and the crystal structure of the title compound.

The asymmetric unit of the title compound, comprises half a molecule with the full molecule generated by a crystallographic centre of inversion (Fig. 1). The bithiophene unit is planar to within 0.003 (2) Å. Within the bithiophene unit, the C1—C2 and C3—C4 bond-lengths [1.3838 (16) and 1.3487 (19) Å, respectively] are significantly shorter than bond C2—C3, 1.4173 (19) Å. This is consistent with the normal bonding picture for bithiophene (Khan et al., 2004).

One feature of the molecule is the difference between the S1—C1 and S1—C4 bond lengths [1.724 (1) and 1.700 (1) Å, respectively]. Howie and Wardell (2006) have noted a similar disparity in the S—C bond lengths. This generally agrees with those values found for related structures, such as 2,2'-[2,5-Bis(hexyloxy)-1,4-phenylene]-dithiophene (Teh et al., 2012) and 3,3',5,5'-Tetrabromo-2,2'-bithiophene (Li & Li, 2009).

The carbonitrile chain is almost linear, with the N1-C5-C2 bond angle being 177.43 (15)°. The geometric parameters are comparable with those observed in the related structures 3,3'-Bis(octyloxy)-2,2'-bithiophene at 195 K (Pelletier et al., 1995), 2,2'-(3,3'-Dihexyl-2,2'-bithiophene-5,5'-diyl) bis(4,4,5,5-tetramethyl-1,3,2-dioxa-borolane) [Huang & Li, 2011] and 3,3'-Didecyl-5,5,-bis(4-phenylquinolin-2-yl)-2,2'-bithienyl (Benedict et al., 2004).

There are no significant hydrogen-bonding interactions in the crystal structure, which is stabilized by van der Waals interactions.

For the importance of bithiophene derivatives, see: Katz et al. (1995). For their applications, see: Deng et al. (2011); Thomas et al. (2008). For background to the title compound, see: Demanze et al. (1996); Pletnev et al. (2002); For related structures, see: Benedict et al. (2004); Huang & Li (2011); Pelletier et al. (1995); Li & Li (2009); Teh et al. (2012). For thiophene C—S bond lengths, see: Howie & Wardell (2006). For the normal bonding picture for bithiophene, see: Khan et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule showing the atom numbering. the displacement ellipsoids are drawn at the 50% probability level.
2,2'-Bithiophene-3,3'-dicarbonitrile top
Crystal data top
C10H4N2S2Z = 2
Mr = 216.27F(000) = 220
Monoclinic, P21/cDx = 1.552 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 3.9084 (1) Åθ = 2.7–33.5°
b = 9.8832 (4) ŵ = 0.53 mm1
c = 12.0091 (5) ÅT = 293 K
β = 93.900 (2)°Block, yellow
V = 462.81 (3) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1802 independent reflections
Radiation source: fine-focus sealed tube1409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω and φ scanθmax = 33.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 55
Tmin = 0.881, Tmax = 0.900k = 1514
6689 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.0819P]
where P = (Fo2 + 2Fc2)/3
1802 reflections(Δ/σ)max = 0.001
64 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H4N2S2V = 462.81 (3) Å3
Mr = 216.27Z = 2
Monoclinic, P21/cMo Kα radiation
a = 3.9084 (1) ŵ = 0.53 mm1
b = 9.8832 (4) ÅT = 293 K
c = 12.0091 (5) Å0.30 × 0.20 × 0.20 mm
β = 93.900 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1802 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1409 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.900Rint = 0.019
6689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 0.36 e Å3
1802 reflectionsΔρmin = 0.20 e Å3
64 parameters
Special details top

Experimental. Spectroscopic data for the title compund:

IR (KBr, cm-1) 2221.0 (ν CN); 1H NMR (CDCl3, 500.13 MHz) δ 7.37 (d, J = 5.36 Hz, 2H),7.53 (d, J = 5.36 Hz, 2H); 13C NMR (CDCl3, 125.75 MHz); δ 110.0, 114.5, 128.3, 130.4, 141.0 p.p.m.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28852 (8)0.68019 (3)0.41382 (2)0.04106 (12)
C10.4855 (3)0.57190 (12)0.51077 (9)0.0320 (2)
C20.6002 (3)0.64524 (13)0.60413 (9)0.0367 (2)
C50.7804 (4)0.59005 (15)0.70133 (10)0.0439 (3)
C40.3580 (4)0.81738 (13)0.49772 (12)0.0475 (3)
H40.28770.90460.47810.057*
C30.5265 (4)0.78545 (14)0.59594 (11)0.0458 (3)
H30.58720.84800.65170.055*
N10.9252 (4)0.55103 (16)0.77997 (11)0.0630 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0472 (2)0.03822 (18)0.03623 (18)0.00130 (11)0.00859 (12)0.00367 (11)
C10.0314 (4)0.0354 (5)0.0287 (5)0.0021 (4)0.0009 (3)0.0025 (4)
C20.0394 (6)0.0387 (6)0.0313 (5)0.0030 (5)0.0020 (4)0.0006 (4)
C50.0518 (7)0.0431 (6)0.0354 (6)0.0063 (5)0.0073 (5)0.0029 (5)
C40.0567 (8)0.0339 (6)0.0507 (7)0.0022 (5)0.0053 (6)0.0005 (5)
C30.0554 (8)0.0380 (6)0.0429 (7)0.0015 (5)0.0044 (5)0.0048 (5)
N10.0802 (10)0.0599 (8)0.0454 (6)0.0049 (7)0.0218 (6)0.0021 (6)
Geometric parameters (Å, º) top
S1—C41.7000 (14)C2—C51.4298 (16)
S1—C11.7240 (11)C5—N11.1351 (17)
C1—C21.3838 (16)C4—C31.3487 (19)
C1—C1i1.450 (2)C4—H40.9300
C2—C31.4173 (19)C3—H30.9300
C4—S1—C192.80 (6)N1—C5—C2177.43 (15)
C2—C1—C1i129.27 (13)C3—C4—S1112.37 (10)
C2—C1—S1109.09 (9)C3—C4—H4123.8
C1i—C1—S1121.63 (11)S1—C4—H4123.8
C1—C2—C3113.76 (11)C4—C3—C2111.98 (12)
C1—C2—C5125.17 (12)C4—C3—H3124.0
C3—C2—C5121.07 (11)C2—C3—H3124.0
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H4N2S2
Mr216.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)3.9084 (1), 9.8832 (4), 12.0091 (5)
β (°) 93.900 (2)
V3)462.81 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.881, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
6689, 1802, 1409
Rint0.019
(sin θ/λ)max1)0.777
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.105, 1.05
No. of reflections1802
No. of parameters64
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.20

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility, IIT Madras, Chennai, for the single-crystal X-ray data collection.

References

First citationBenedict, J. B., Kaminsky, W. & Tonzola, C. J. (2004). Acta Cryst. E60, o530–o531.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemanze, F., Yassar, A. & Garnier, F. (1996). Macromolecules, 2, 4267–4273.  CrossRef Web of Science Google Scholar
First citationDeng, S. X., Krueger, G., Taranekar, P., Sriwichai, S., Zong, R. F., Thummel, R. P. & Advincula, R. C. (2011). Chem. Mater. 23, 3302–3311.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHowie, R. A. & Wardell, J. L. (2006). Acta Cryst. E62, o659–o661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, L. & Li, H. (2011). Acta Cryst. E67, o3512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatz, H. E., Torsi, L. & Dodabalapur, A. (1995). Chem. Mater. 7, 2235–2237.  CrossRef CAS Web of Science Google Scholar
First citationKhan, M. S., Al-Naamani, R. S., Ahrens, B. & Raithby, P. R. (2004). Acta Cryst. E60, o1202–o1203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H. & Li, L. (2009). Acta Cryst. E65, o952.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPelletier, M., Brisse, F., Cloutier, R. & Leclerc, M. (1995). Acta Cryst. C51, 1394–1397.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPletnev, A. A., Tian, Q. & Larock, R. C. (2002). J. Org. Chem. 67, 9276–9287.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeh, C. H., Mat Salleh, M., Mohamed Tahir, M. I., Daik, R. & Kassim, M. B. (2012). Acta Cryst. E68, o1976.  CSD CrossRef IUCr Journals Google Scholar
First citationThomas, K. R. J., Hsu, Y.-C., Lin, J. T., Lee, K.-M., Ho, K.-C., Lai, C.-H., Cheng, Y.-M. & Chou, P.-T. (2008). Chem. Mater. 20, 1830–1840.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds