organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1,1-Tri­chloro-2,2-bis­­(4-iodo­phen­yl)ethane

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 10 July 2012; accepted 16 July 2012; online 21 July 2012)

In the structure of the title compound, C14H9Cl3I2, which is the 4-iodo­phenyl analogue of the insecticide DDT [1,1,1-tri­chloro-2,2-bis­(4-chloro­phen­yl)ethane], isomorphism between the two compounds has been confirmed. In the mol­ecule, the dihedral angle between the planes of the two benzene rings is 65.8 (4)° which compares with 64.7 (7)° in DDT.

Related literature

For the determination of crystal data for the title compound and the p-bromo substituted DDT analogue, see: Schneider & Fankuchen (1946[Schneider, M. & Fankuchen, I. (1946). J. Am. Chem. Soc. 68, 2669-2670.]). For the structures of DDT and related analogues, see: DeLacy & Kennard (1972[DeLacy, T. P. & Kennard, C. H. L. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 2148-2152.]); Hovmöller et al. (1978[Hovmöller, S., Smith, G. & Kennard, C. H. L. (1978). Acta Cryst. B34, 3016-3021.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9Cl3I2

  • Mr = 537.36

  • Orthorhombic, P c a 21

  • a = 9.8117 (3) Å

  • b = 20.3445 (4) Å

  • c = 8.0486 (2) Å

  • V = 1606.61 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.40 mm−1

  • T = 200 K

  • 0.25 × 0.20 × 0.08 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.386, Tmax = 0.980

  • 5183 measured reflections

  • 2905 independent reflections

  • 2687 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.08

  • 2905 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.95 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1203 Friedel pairs

  • Flack parameter: −0.02 (4)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound is the p-iodophenyl analogue of the insecticide DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] which with the p-bromophenyl analogue provided crystal data (Schneider & Fankuchen, 1946) that indicated a probable isomorphous series [orthorhombic, space group Pca21, Z = 4: for the p-Cl analogue (DDT), a = 9.963 (1), b = 19.200 (2), c = 7.887 (1) Å, V = 1509.0 Å3 [from the crystal structure of DDT (DeLacy & Kennard, 1972); for the 4-bromophenyl analogue, a = 9.93, b = 19.68, c = 7.93 Å, V = 1549 Å3]. The structure of the title compound, for which the crystal data was also reported by Schneider & Fankuchen (1946), is reported herein.

With the title compound (Fig. 1), isomorphism with DDT as suggested from the crystal data has been confirmed on the basis of space group, cell parameters and the molecular structures. The dihedral angle between the two phenyl planes in this compound [65.8 (4)°] compares with 64.7 (7)° in the structure of DDT (DeLacy & Kennard, 1972). Stabilizing the ring conformation is an intramolecular aromatic C6A-H···Cl2 interaction [D···A = 3.335 (10) Å].

In the crystal, there are relatively short I4A···Cl1 and I4A···I4A contacts [3.777 (2) and 4.1502 (9) Å, respectively] but otherwise no other significant intermolecular interactions are present (Fig. 2).

Related literature top

For the determination of crystal data for the title compound and the p-bromo substituted DDT analogue, see: Schneider & Fankuchen (1946). For the structures of DDT and related analogues, see: DeLacy & Kennard (1972); Hovmöller et al. (1978).

Experimental top

The title compound was obtained as an analytical reference standard from the U.S.Public Health Service. The original crystal data was reported by Schneider & Fankuchen (1946). Small colourless plate-like crystals of the title compound, suitable for X-ray analysis, were obtained by room temperature evaporation of a solution in isopropyl alcohol.

Refinement top

Hydrogen atoms were included in the refinement at calculated positions [C—H = 0.93 Å (aromatic) or 0.98 Å (methine), with Uiso(H) = 1.2Ueq(C), using a riding-model approximation. The maximum difference electron density peak was 0.80 eÅ-3, adjacent to atom I4A.

Structure description top

The title compound is the p-iodophenyl analogue of the insecticide DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] which with the p-bromophenyl analogue provided crystal data (Schneider & Fankuchen, 1946) that indicated a probable isomorphous series [orthorhombic, space group Pca21, Z = 4: for the p-Cl analogue (DDT), a = 9.963 (1), b = 19.200 (2), c = 7.887 (1) Å, V = 1509.0 Å3 [from the crystal structure of DDT (DeLacy & Kennard, 1972); for the 4-bromophenyl analogue, a = 9.93, b = 19.68, c = 7.93 Å, V = 1549 Å3]. The structure of the title compound, for which the crystal data was also reported by Schneider & Fankuchen (1946), is reported herein.

With the title compound (Fig. 1), isomorphism with DDT as suggested from the crystal data has been confirmed on the basis of space group, cell parameters and the molecular structures. The dihedral angle between the two phenyl planes in this compound [65.8 (4)°] compares with 64.7 (7)° in the structure of DDT (DeLacy & Kennard, 1972). Stabilizing the ring conformation is an intramolecular aromatic C6A-H···Cl2 interaction [D···A = 3.335 (10) Å].

In the crystal, there are relatively short I4A···Cl1 and I4A···I4A contacts [3.777 (2) and 4.1502 (9) Å, respectively] but otherwise no other significant intermolecular interactions are present (Fig. 2).

For the determination of crystal data for the title compound and the p-bromo substituted DDT analogue, see: Schneider & Fankuchen (1946). For the structures of DDT and related analogues, see: DeLacy & Kennard (1972); Hovmöller et al. (1978).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title molecule, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A perspective view of the crystal packing of the title compound viewed along the a axis.
1,1,1-trichloro-2,2-bis(4-iodophenyl)ethane top
Crystal data top
C14H9Cl3I2F(000) = 1000
Mr = 537.36Dx = 2.222 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2427 reflections
a = 9.8117 (3) Åθ = 3.2–28.7°
b = 20.3445 (4) ŵ = 4.40 mm1
c = 8.0486 (2) ÅT = 200 K
V = 1606.61 (7) Å3Plate, colourless
Z = 40.25 × 0.20 × 0.08 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2905 independent reflections
Radiation source: Enhance (Mo) X-ray source2687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1012
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1325
Tmin = 0.386, Tmax = 0.980l = 99
5183 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0574P)2 + 5.2653P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2905 reflectionsΔρmax = 0.80 e Å3
172 parametersΔρmin = 0.95 e Å3
1 restraintAbsolute structure: Flack (1983), 1203 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
C14H9Cl3I2V = 1606.61 (7) Å3
Mr = 537.36Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 9.8117 (3) ŵ = 4.40 mm1
b = 20.3445 (4) ÅT = 200 K
c = 8.0486 (2) Å0.25 × 0.20 × 0.08 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2905 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2687 reflections with I > 2σ(I)
Tmin = 0.386, Tmax = 0.980Rint = 0.028
5183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.112Δρmax = 0.80 e Å3
S = 1.08Δρmin = 0.95 e Å3
2905 reflectionsAbsolute structure: Flack (1983), 1203 Friedel pairs
172 parametersAbsolute structure parameter: 0.02 (4)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I4A0.95323 (7)0.01062 (3)1.18735 (8)0.0400 (2)
I4B0.89471 (7)0.54100 (3)0.90275 (11)0.0422 (2)
Cl11.0549 (2)0.15878 (11)0.4415 (3)0.0316 (7)
Cl21.1944 (2)0.27227 (12)0.5751 (3)0.0359 (7)
Cl30.9773 (3)0.28835 (12)0.3400 (3)0.0366 (7)
C11.0324 (8)0.2408 (4)0.5112 (12)0.026 (3)
C1A0.9376 (8)0.1901 (4)0.7842 (11)0.022 (3)
C1B0.9112 (8)0.3126 (4)0.7238 (11)0.023 (3)
C20.9238 (8)0.2436 (4)0.6522 (10)0.020 (3)
C2A0.8197 (9)0.1581 (4)0.8344 (11)0.024 (2)
C2B0.9956 (8)0.3350 (4)0.8512 (12)0.027 (3)
C3A0.8211 (9)0.1073 (4)0.9512 (11)0.027 (3)
C3B0.9885 (8)0.3989 (4)0.9066 (15)0.031 (3)
C4A0.9450 (10)0.0899 (4)1.0187 (13)0.030 (3)
C4B0.8945 (9)0.4409 (5)0.8347 (13)0.029 (3)
C5A1.0643 (9)0.1209 (5)0.9744 (13)0.032 (3)
C5B0.8044 (8)0.4195 (4)0.7141 (12)0.029 (3)
C6A1.0600 (9)0.1711 (5)0.8569 (13)0.029 (3)
C6B0.8130 (8)0.3553 (4)0.6603 (12)0.027 (3)
H20.836400.235000.597400.0250*
H2A0.736800.170800.788500.0290*
H2B1.057700.306300.899500.0320*
H3A0.741200.086000.982300.0320*
H3B1.045700.413600.990900.0360*
H5A1.146700.108501.022300.0380*
H5B0.739400.447800.670100.0350*
H6A1.140300.192200.826500.0350*
H6B0.752300.340200.580200.0320*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I4A0.0686 (4)0.0249 (3)0.0266 (3)0.0085 (3)0.0032 (3)0.0055 (3)
I4B0.0629 (4)0.0206 (3)0.0430 (4)0.0046 (3)0.0038 (4)0.0056 (3)
Cl10.0378 (11)0.0244 (11)0.0326 (13)0.0046 (8)0.0019 (9)0.0051 (9)
Cl20.0264 (10)0.0380 (12)0.0433 (15)0.0087 (9)0.0074 (10)0.0060 (11)
Cl30.0510 (13)0.0299 (12)0.0290 (12)0.0033 (10)0.0040 (11)0.0078 (10)
C10.025 (4)0.019 (4)0.034 (5)0.001 (3)0.003 (4)0.001 (4)
C1A0.026 (4)0.020 (4)0.021 (5)0.000 (3)0.002 (3)0.002 (3)
C1B0.019 (3)0.031 (5)0.018 (5)0.003 (3)0.004 (3)0.000 (3)
C20.018 (4)0.022 (4)0.021 (5)0.004 (3)0.007 (3)0.003 (3)
C2A0.024 (4)0.022 (4)0.026 (4)0.001 (3)0.001 (4)0.001 (3)
C2B0.020 (4)0.025 (4)0.035 (5)0.005 (3)0.008 (4)0.002 (4)
C3A0.035 (4)0.021 (4)0.024 (5)0.007 (3)0.004 (4)0.003 (3)
C3B0.027 (4)0.034 (5)0.031 (5)0.001 (3)0.003 (4)0.002 (5)
C4A0.044 (5)0.020 (4)0.026 (5)0.003 (4)0.004 (4)0.006 (4)
C4B0.035 (5)0.020 (4)0.031 (5)0.002 (4)0.012 (4)0.001 (4)
C5A0.033 (5)0.032 (5)0.030 (5)0.005 (4)0.005 (4)0.002 (4)
C5B0.032 (4)0.024 (4)0.030 (6)0.003 (3)0.001 (4)0.004 (4)
C6A0.028 (4)0.024 (4)0.035 (6)0.003 (4)0.000 (4)0.003 (4)
C6B0.025 (4)0.024 (4)0.031 (6)0.002 (3)0.001 (4)0.002 (4)
Geometric parameters (Å, º) top
I4A—C4A2.110 (9)C3B—C4B1.384 (13)
I4B—C4B2.109 (10)C4A—C5A1.377 (13)
Cl1—C11.774 (9)C4B—C5B1.383 (13)
Cl2—C11.789 (8)C5A—C6A1.393 (15)
Cl3—C11.768 (9)C5B—C6B1.379 (12)
C1—C21.558 (12)C2—H20.9800
C1A—C21.527 (12)C2A—H2A0.9300
C1A—C2A1.388 (12)C2B—H2B0.9300
C1A—C6A1.391 (12)C3A—H3A0.9300
C1B—C21.523 (12)C3B—H3B0.9300
C1B—C2B1.395 (12)C5A—H5A0.9300
C1B—C6B1.394 (12)C5B—H5B0.9300
C2A—C3A1.397 (12)C6A—H6A0.9300
C2B—C3B1.376 (12)C6B—H6B0.9300
C3A—C4A1.378 (13)
Cl1—C1—Cl2108.5 (4)C3B—C4B—C5B121.7 (9)
Cl1—C1—Cl3107.8 (5)C4A—C5A—C6A119.1 (9)
Cl1—C1—C2110.5 (6)C4B—C5B—C6B118.7 (8)
Cl2—C1—Cl3107.5 (5)C1A—C6A—C5A121.1 (8)
Cl2—C1—C2112.7 (6)C1B—C6B—C5B121.2 (8)
Cl3—C1—C2109.8 (5)C1—C2—H2105.00
C2—C1A—C2A117.6 (7)C1A—C2—H2105.00
C2—C1A—C6A124.6 (8)C1B—C2—H2105.00
C2A—C1A—C6A117.8 (8)C1A—C2A—H2A119.00
C2—C1B—C2B122.1 (7)C3A—C2A—H2A119.00
C2—C1B—C6B119.5 (7)C1B—C2B—H2B119.00
C2B—C1B—C6B118.4 (8)C3B—C2B—H2B119.00
C1—C2—C1A114.8 (7)C2A—C3A—H3A121.00
C1—C2—C1B111.4 (7)C4A—C3A—H3A121.00
C1A—C2—C1B113.6 (7)C2B—C3B—H3B121.00
C1A—C2A—C3A122.3 (8)C4B—C3B—H3B121.00
C1B—C2B—C3B121.1 (8)C4A—C5A—H5A120.00
C2A—C3A—C4A117.7 (8)C6A—C5A—H5A120.00
C2B—C3B—C4B118.8 (9)C4B—C5B—H5B121.00
I4A—C4A—C3A118.9 (7)C6B—C5B—H5B121.00
I4A—C4A—C5A119.0 (7)C1A—C6A—H6A120.00
C3A—C4A—C5A122.0 (9)C5A—C6A—H6A119.00
I4B—C4B—C3B119.1 (7)C1B—C6B—H6B119.00
I4B—C4B—C5B119.1 (7)C5B—C6B—H6B119.00
Cl1—C1—C2—C1A44.3 (8)C6B—C1B—C2—C1A134.9 (8)
Cl1—C1—C2—C1B175.3 (6)C2—C1B—C2B—C3B175.7 (8)
Cl2—C1—C2—C1A77.2 (8)C6B—C1B—C2B—C3B4.0 (13)
Cl2—C1—C2—C1B53.8 (8)C2—C1B—C6B—C5B175.6 (8)
Cl3—C1—C2—C1A163.1 (6)C2B—C1B—C6B—C5B4.0 (13)
Cl3—C1—C2—C1B65.9 (8)C1A—C2A—C3A—C4A0.9 (13)
C2A—C1A—C2—C1135.2 (8)C1B—C2B—C3B—C4B0.7 (14)
C2A—C1A—C2—C1B94.9 (9)C2A—C3A—C4A—I4A177.3 (6)
C6A—C1A—C2—C144.5 (12)C2A—C3A—C4A—C5A0.1 (14)
C6A—C1A—C2—C1B85.4 (10)C2B—C3B—C4B—I4B174.4 (7)
C2—C1A—C2A—C3A178.4 (8)C2B—C3B—C4B—C5B2.7 (15)
C6A—C1A—C2A—C3A1.4 (13)I4A—C4A—C5A—C6A176.9 (7)
C2—C1A—C6A—C5A178.8 (9)C3A—C4A—C5A—C6A0.5 (15)
C2A—C1A—C6A—C5A1.0 (14)I4B—C4B—C5B—C6B174.5 (7)
C2B—C1B—C2—C186.2 (10)C3B—C4B—C5B—C6B2.7 (14)
C2B—C1B—C2—C1A45.5 (11)C4A—C5A—C6A—C1A0.1 (15)
C6B—C1B—C2—C193.5 (9)C4B—C5B—C6B—C1B0.8 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6A—H6A···Cl20.932.653.335 (10)131

Experimental details

Crystal data
Chemical formulaC14H9Cl3I2
Mr537.36
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)200
a, b, c (Å)9.8117 (3), 20.3445 (4), 8.0486 (2)
V3)1606.61 (7)
Z4
Radiation typeMo Kα
µ (mm1)4.40
Crystal size (mm)0.25 × 0.20 × 0.08
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.386, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5183, 2905, 2687
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.08
No. of reflections2905
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.95
Absolute structureFlack (1983), 1203 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: CrysAlis PRO (Agilent, 2012), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

 

Acknowledgements

The author acknowledges financial support from the Australian Research Council and the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDeLacy, T. P. & Kennard, C. H. L. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 2148–2152.  CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHovmöller, S., Smith, G. & Kennard, C. H. L. (1978). Acta Cryst. B34, 3016–3021.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSchneider, M. & Fankuchen, I. (1946). J. Am. Chem. Soc. 68, 2669–2670.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds