organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2,2′-[2,2′-bi(1H-1,3-benzimidazole)-1,1′-di­yl]di­acetate

aKey Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: jcliu8@163.com

(Received 12 July 2012; accepted 16 July 2012; online 21 July 2012)

The whole mol­ecule of the title compound, C20H18N4O4, is generated by an inversion center. The benzimidazole ring mean plane make a dihedral angle of 89.4 (8)° with the plane passing through the acetate group (COO). In the crystal, mol­ecules are linked via weak C—H⋯O hydrogen bonds and ππ inter­actions [centroid–centroid distance = 3.743 (3) Å] involving inversion-related benzimidazole groups.

Related literature

For related structures, see: Al-Mohammed et al. (2012[Al-Mohammed, N. N., Alias, Y., Abdullah, Z. & Khaledi, H. (2012). Acta Cryst. E68, o571.]); Fu & Xu (2009[Fu, X. & Xu, G. (2009). Acta Cryst. E65, o1535.]); Xu & Wang (2008[Xu, G.-H. & Wang, W. (2008). Acta Cryst. E64, o1811.]). For the synthesis of 2,2′-bibenzimidazole, see: Tang et al. (2007[Tang, H.-J., Zhang, Z.-G., Cong, C.-J. & Zhang, K.-L. (2007). Huaxue Shiji, 29, 733-735.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N4O4

  • Mr = 378.38

  • Triclinic, [P \overline 1]

  • a = 6.904 (4) Å

  • b = 8.494 (5) Å

  • c = 8.643 (5) Å

  • α = 67.191 (5)°

  • β = 70.360 (5)°

  • γ = 87.172 (5)°

  • V = 438.1 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.33 × 0.31 × 0.29 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.971

  • 3034 measured reflections

  • 1600 independent reflections

  • 1172 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.127

  • S = 1.06

  • 1600 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O1i 0.97 2.59 3.364 (3) 137
C10—H10C⋯O1ii 0.96 2.55 3.481 (4) 164
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The whole molecule of the title compound (Fig.1) is generated by an inversion center. The benzimidazole system is essentially planar, with a dihedral angle of 0.8 (5)° between the planes of the benzene and imidazole rings. The benzimidazole ring make a dihedral angle of 89.4 (8)° with the plane passing through the acetate group (C9/O1/O2). This value is comparable to that observed in some similar structures (Al-Mohammed et al., 2012; Fu et al., 2009; Xu et al., 2008).

In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1 and Fig. 2) and ππ stacking interactions [Cg1···Cg2i = 3.743 (3) Å, where Cg1 is the centroid of ring N1/C1/C6/N2/C7; Cg2 is the centroid of ring C1-C6; symmetry code: (i) -x+1, -y+1, -z+1] stabilize the crystal structure.

Related literature top

For related structures, see: Al-Mohammed et al. (2012); Fu & Xu (2009); Xu & Wang (2008). For the synthesis of 2,2'-bibenzimidazole, see: Tang et al. (2007).

Experimental top

The synthesis of 2,2'-bibenzimidazole [systematic name: 1H,1'H-2,2'-bibenzo[d]imidazole] has been reported (Tang et al., 2007). A mixture of 2,2'-bibenzimidazole (11.71 g, 50 mmol) and NaOH (4.00 g, 100 mmol) in DMSO (40 mL) was stirred at 278 K for 2 h, and then methyl chloroacetate (10.85 g, 100 mmol) was added. The mixture was cooled to room temperature after stirring at 353 K for 24 h, and then poured into 200 mL of water. A yellow solid formed immediately, which was isolated by filtration. The crude product was then crystallized from methanol. Single crystals of the title compound, suitable for X-ray analysis, were obtained by slow evaporation of a solution in methanol.

Refinement top

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and = 1.2 for other H-atoms.

Structure description top

The whole molecule of the title compound (Fig.1) is generated by an inversion center. The benzimidazole system is essentially planar, with a dihedral angle of 0.8 (5)° between the planes of the benzene and imidazole rings. The benzimidazole ring make a dihedral angle of 89.4 (8)° with the plane passing through the acetate group (C9/O1/O2). This value is comparable to that observed in some similar structures (Al-Mohammed et al., 2012; Fu et al., 2009; Xu et al., 2008).

In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1 and Fig. 2) and ππ stacking interactions [Cg1···Cg2i = 3.743 (3) Å, where Cg1 is the centroid of ring N1/C1/C6/N2/C7; Cg2 is the centroid of ring C1-C6; symmetry code: (i) -x+1, -y+1, -z+1] stabilize the crystal structure.

For related structures, see: Al-Mohammed et al. (2012); Fu & Xu (2009); Xu & Wang (2008). For the synthesis of 2,2'-bibenzimidazole, see: Tang et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom numbering [symmetry code for suffix A: -x, -y+1, -z+1]. Displacement ellipsoids are drawn at the 30% probability level
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Weak C—H···O interaction are shown as dashed lines.
Dimethyl 2,2'-[2,2'-bi(1H-1,3-benzimidazole)-1,1'-diyl]diacetate top
Crystal data top
C20H18N4O4Z = 1
Mr = 378.38F(000) = 198
Triclinic, P1Dx = 1.434 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.904 (4) ÅCell parameters from 853 reflections
b = 8.494 (5) Åθ = 2.6–23.8°
c = 8.643 (5) ŵ = 0.10 mm1
α = 67.191 (5)°T = 296 K
β = 70.360 (5)°Block, brown
γ = 87.172 (5)°0.33 × 0.31 × 0.29 mm
V = 438.1 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1600 independent reflections
Radiation source: fine-focus sealed tube1172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.967, Tmax = 0.971k = 910
3034 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.0023P]
where P = (Fo2 + 2Fc2)/3
1600 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H18N4O4γ = 87.172 (5)°
Mr = 378.38V = 438.1 (4) Å3
Triclinic, P1Z = 1
a = 6.904 (4) ÅMo Kα radiation
b = 8.494 (5) ŵ = 0.10 mm1
c = 8.643 (5) ÅT = 296 K
α = 67.191 (5)°0.33 × 0.31 × 0.29 mm
β = 70.360 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
1600 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1172 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.971Rint = 0.027
3034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.06Δρmax = 0.14 e Å3
1600 reflectionsΔρmin = 0.25 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3492 (3)0.6658 (2)0.5117 (2)0.0382 (5)
C20.5275 (3)0.7663 (3)0.4646 (3)0.0485 (6)
H20.60330.83320.34600.058*
C30.5865 (4)0.7619 (3)0.6022 (3)0.0539 (6)
H30.70630.82710.57620.065*
C40.4722 (4)0.6624 (3)0.7808 (3)0.0533 (6)
H40.51730.66350.87040.064*
C50.2955 (3)0.5636 (3)0.8265 (3)0.0497 (6)
H50.21970.49790.94540.060*
C60.2327 (3)0.5645 (2)0.6892 (2)0.0397 (5)
C70.0742 (3)0.5291 (2)0.5281 (2)0.0385 (5)
C80.3089 (3)0.7314 (2)0.2179 (2)0.0433 (5)
H8A0.26740.65830.16960.052*
H8B0.45850.75040.16910.052*
C90.2220 (3)0.9010 (3)0.1547 (3)0.0435 (5)
C100.0081 (4)1.1015 (3)0.2334 (4)0.0720 (8)
H10A0.11621.19330.16120.108*
H10B0.07521.11950.33820.108*
H10C0.07641.09890.16590.108*
N10.2463 (2)0.64117 (18)0.41008 (19)0.0388 (4)
N20.0622 (3)0.4797 (2)0.6961 (2)0.0435 (5)
O10.2651 (3)0.9897 (2)0.00051 (19)0.0731 (6)
O20.0980 (2)0.94015 (17)0.28611 (18)0.0535 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0432 (12)0.0319 (10)0.0357 (10)0.0078 (9)0.0109 (9)0.0122 (8)
C20.0521 (14)0.0445 (12)0.0380 (11)0.0018 (10)0.0083 (10)0.0104 (9)
C30.0519 (14)0.0543 (13)0.0493 (13)0.0041 (11)0.0148 (11)0.0153 (11)
C40.0571 (15)0.0605 (14)0.0434 (12)0.0081 (12)0.0224 (11)0.0176 (11)
C50.0498 (14)0.0542 (13)0.0354 (11)0.0099 (11)0.0134 (10)0.0094 (9)
C60.0429 (13)0.0351 (10)0.0329 (10)0.0077 (9)0.0102 (9)0.0079 (8)
C70.0420 (12)0.0299 (10)0.0321 (10)0.0035 (9)0.0063 (8)0.0059 (8)
C80.0497 (13)0.0421 (11)0.0280 (10)0.0052 (10)0.0030 (9)0.0110 (8)
C90.0431 (13)0.0446 (12)0.0335 (10)0.0084 (9)0.0131 (9)0.0044 (9)
C100.082 (2)0.0443 (13)0.0862 (18)0.0167 (13)0.0383 (16)0.0158 (13)
N10.0442 (10)0.0304 (8)0.0302 (8)0.0015 (7)0.0059 (7)0.0058 (7)
N20.0454 (11)0.0396 (9)0.0321 (9)0.0036 (8)0.0079 (8)0.0049 (7)
O10.0739 (12)0.0779 (12)0.0375 (9)0.0000 (10)0.0172 (8)0.0073 (8)
O20.0684 (11)0.0384 (8)0.0470 (9)0.0120 (7)0.0185 (8)0.0119 (7)
Geometric parameters (Å, º) top
C1—N11.377 (3)C7—N11.379 (2)
C1—C21.381 (3)C7—C7i1.449 (4)
C1—C61.398 (3)C8—N11.448 (2)
C2—C31.368 (3)C8—C91.503 (3)
C2—H20.9300C8—H8A0.9700
C3—C41.398 (3)C8—H8B0.9700
C3—H30.9300C9—O11.194 (2)
C4—C51.367 (3)C9—O21.321 (2)
C4—H40.9300C10—O21.447 (3)
C5—C61.391 (3)C10—H10A0.9600
C5—H50.9300C10—H10B0.9600
C6—N21.383 (3)C10—H10C0.9600
C7—N21.320 (2)
N1—C1—C2131.59 (18)N1—C8—C9115.16 (16)
N1—C1—C6105.60 (18)N1—C8—H8A108.5
C2—C1—C6122.81 (19)C9—C8—H8A108.5
C3—C2—C1116.29 (19)N1—C8—H8B108.5
C3—C2—H2121.9C9—C8—H8B108.5
C1—C2—H2121.9H8A—C8—H8B107.5
C2—C3—C4122.0 (2)O1—C9—O2124.6 (2)
C2—C3—H3119.0O1—C9—C8121.8 (2)
C4—C3—H3119.0O2—C9—C8113.58 (15)
C5—C4—C3121.4 (2)O2—C10—H10A109.5
C5—C4—H4119.3O2—C10—H10B109.5
C3—C4—H4119.3H10A—C10—H10B109.5
C4—C5—C6117.83 (19)O2—C10—H10C109.5
C4—C5—H5121.1H10A—C10—H10C109.5
C6—C5—H5121.1H10B—C10—H10C109.5
N2—C6—C5130.18 (18)C1—N1—C7106.58 (15)
N2—C6—C1110.13 (17)C1—N1—C8123.60 (16)
C5—C6—C1119.7 (2)C7—N1—C8129.65 (17)
N2—C7—N1112.52 (18)C7—N2—C6105.16 (16)
N2—C7—C7i124.2 (2)C9—O2—C10116.11 (17)
N1—C7—C7i123.3 (2)
N1—C1—C2—C3179.33 (19)C2—C1—N1—C83.2 (3)
C6—C1—C2—C30.1 (3)C6—C1—N1—C8176.12 (16)
C1—C2—C3—C40.5 (3)N2—C7—N1—C10.7 (2)
C2—C3—C4—C50.3 (3)C7i—C7—N1—C1179.9 (2)
C3—C4—C5—C60.2 (3)N2—C7—N1—C8176.09 (18)
C4—C5—C6—N2179.3 (2)C7i—C7—N1—C84.8 (3)
C4—C5—C6—C10.5 (3)C9—C8—N1—C187.6 (2)
N1—C1—C6—N20.0 (2)C9—C8—N1—C787.1 (2)
C2—C1—C6—N2179.38 (19)N1—C7—N2—C60.7 (2)
N1—C1—C6—C5179.02 (17)C7i—C7—N2—C6179.9 (2)
C2—C1—C6—C50.4 (3)C5—C6—N2—C7178.5 (2)
N1—C8—C9—O1178.39 (19)C1—C6—N2—C70.4 (2)
N1—C8—C9—O21.1 (3)O1—C9—O2—C101.1 (3)
C2—C1—N1—C7178.9 (2)C8—C9—O2—C10179.49 (17)
C6—C1—N1—C70.42 (19)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1ii0.972.593.364 (3)137
C10—H10C···O1iii0.962.553.481 (4)164
Symmetry codes: (ii) x+1, y+2, z; (iii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC20H18N4O4
Mr378.38
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.904 (4), 8.494 (5), 8.643 (5)
α, β, γ (°)67.191 (5), 70.360 (5), 87.172 (5)
V3)438.1 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.33 × 0.31 × 0.29
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.967, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
3034, 1600, 1172
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 1.06
No. of reflections1600
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1i0.972.593.364 (3)137
C10—H10C···O1ii0.962.553.481 (4)164
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Gansu (No. 0710RJ ZA113).

References

First citationAl-Mohammed, N. N., Alias, Y., Abdullah, Z. & Khaledi, H. (2012). Acta Cryst. E68, o571.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFu, X. & Xu, G. (2009). Acta Cryst. E65, o1535.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, H.-J., Zhang, Z.-G., Cong, C.-J. & Zhang, K.-L. (2007). Huaxue Shiji, 29, 733–735.  CAS Google Scholar
First citationXu, G.-H. & Wang, W. (2008). Acta Cryst. E64, o1811.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds