metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(4-formyl­benzoato-κO1)bis­­(nicotinamide-κN1)zinc

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 19 July 2012; accepted 23 July 2012; online 28 July 2012)

In the title complex, [Zn(C8H5O3)2(C6H6N2O)2(H2O)2], the ZnII cation is located on an inversion center and is coordinated by two 4-formyl­benzoate (FB) anions, two nicotinamide (NA) ligands and two water mol­ecules. The four O atoms in the equatorial plane around the ZnII cation form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by the two N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxyl­ate group and the adjacent benzene ring is 24.13 (8)°, while the pyridine ring and the benzene ring are oriented at a dihedral angle of 88.52 (4)°. The coordinating water mol­ecule links with the carboxyl­ate group via an O—H⋯O hydrogen bond. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds, and a weak C—H⋯π inter­action link the mol­ecules into a two-dimensional network parallel to (010). These networks are linked via C—H⋯O and ππ inter­actions between inversion-related benzene rings [centroid–centroid distance = 3.8483 (7) Å], forming a three-dimensional supra­molecular structure.

Related literature

For literature on niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For information on the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Aydın et al. (2012[Aydın, Ö., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m521-m522.]); Hökelek et al. (2009[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m607-m608.]); Necefoğlu et al. (2011[Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m900-m901.]); Sertçelik et al. (2012a[Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012a). Acta Cryst. E68, m1010-m1011.],b[Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012b). Acta Cryst. E68, m1091-m1092.],c[Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012c). Acta Cryst. E68, m946-m947.],d[Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012d). Acta Cryst. E68, m1067-m1068.]); Sertçelik et al. (2009a[Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009a). Acta Cryst. E65, m389-m390.],b[Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009b). Acta Cryst. E65, m326-m327.],c[Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009c). Acta Cryst. E65, m324-m325.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H5O3)2(C6H6N2O)2(H2O)2]

  • Mr = 643.92

  • Triclinic, [P \overline 1]

  • a = 7.7861 (2) Å

  • b = 9.7877 (3) Å

  • c = 9.9087 (3) Å

  • α = 77.851 (3)°

  • β = 71.462 (2)°

  • γ = 86.720 (3)°

  • V = 699.87 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 100 K

  • 0.44 × 0.37 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.831

  • 12257 measured reflections

  • 3475 independent reflections

  • 3413 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.060

  • S = 1.06

  • 3475 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O2i 0.862 (17) 2.087 (17) 2.8789 (13) 152.4 (16)
N2—H22⋯O4ii 0.849 (17) 2.058 (18) 2.8904 (15) 166.4 (18)
O5—H51⋯O4iii 0.79 (2) 2.10 (2) 2.8597 (13) 161 (2)
O5—H52⋯O2iv 0.86 (2) 1.85 (2) 2.6845 (13) 163 (2)
C4—H4⋯O2iii 0.93 2.40 3.3245 (16) 173
C13—H13⋯O3v 0.93 2.47 3.3083 (17) 150
C6—H6⋯Cg2vi 0.93 2.72 3.6361 (14) 167
Symmetry codes: (i) x, y, z-1; (ii) -x-1, -y, -z-1; (iii) x+1, y, z; (iv) -x, -y, -z; (v) -x+1, -y+1, -z; (vi) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported on herein.

In the title mononuclear complex, ZnII cation is located on an inversion center and is coordinated by two 4-formylbenzoate (FB) anions, two nicotinamide (NA) ligands and two water molecules, all ligands coordinating in a monodentate manner (Fig. 1). The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C8H5O3)2(C6H6N2O)2(H2O)2] (Sertçelik et al., 2012a), [Cu(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Necefoğlu et al., 2011), [Co(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009a), [Co(C8H5O3)2(C6H6N2O)2(H2O)2] (Sertçelik et al., 2012b), [Co(C7H4IO2)2(C6H6N2O)2(H2O)2] (Aydın et al., 2012), [Ni(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009b), [Ni(C8H5O3)2(C6H6N2O)2(H2O)2] (Sertçelik et al., 2012c), [Mn(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009c), [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009) and [Zn(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2012d) have also been reported, where all the ligands coordinate to the metal atoms in a monodentate manner.

In the title complex, the four symmetry related O atoms (O1, O1', O5 and O5') in the equatorial plane around the ZnII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two symmetry related N atoms of the NA ligands (N1 and N1') in the axial positions. The near equalities of the C1—O1 [1.2614 (14) Å] and C1—O2 [1.2600 (14) Å] bonds in the carboxylate group indicate a delocalized bonding arrangement, rather than localized single and double bonds. The Zn—O bond lengths are 2.1047 (8) Å (for benzoate oxygens) and 2.1446 (8) Å (for water oxygens), and the Zn—N bond length is 2.1253 (10) Å, close to standard values (Allen et al., 1987). The Zn atom is displaced out of the mean-plane of the carboxylate group (O1/C1/O2) by -0.6114 (1) Å. The dihedral angle between the planar carboxylate group and the adjacent benzene ring A (C2—C7) is 24.13 (8)°. The benzene A (C2—C7) and the pyridine B (N1/C9—C13) rings are oriented at a dihedral angle of A/B = 88.52 (4)°. The coordinating water molecule links with the carboxylate group via an O—H···O hydrogen bond (Table 1).

In the crystal, N—H···O and O—H···O hydrogen bonds, and a weak C-H···π interaction (Table 1) link the molecules into a two-dimensional network parallel to plane (010). These networks are linked via C-H···O and ππ interactions [Cg1···Cg1i = 3.8483 (7) Å; symmetry code: (i) 1 - x, 1 - y, 2 - z, where Cg1 is the centroid of ring A (C2—C7)] to form a three-dimensional supramolecular structure.

Related literature top

For literature on niacin, see: Krishnamachari (1974). For information on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Aydın et al. (2012); Hökelek et al. (2009); Necefoğlu et al. (2011); Sertçelik et al. (2012a,b,c,d); Sertçelik et al. (2009a,b,c). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of ZnSO4.H2O (0.90 g, 5 mmol) in H2O (25 ml) and NA (1.22 g, 50 mmol) in H2O (100 ml) with sodium 4-formylbenzoate (1.72 g, 10 mmol) in H2O (100 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colourless single crystals.

Refinement top

Atoms H8 (for CH), H21 and H22 (for NH2) and H51 and H52 (for H2O) were located in a difference Fourier map and were refined freely. The C-bound H-atoms were positioned geometrically and constrained to ride on their parent atoms: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Structure description top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported on herein.

In the title mononuclear complex, ZnII cation is located on an inversion center and is coordinated by two 4-formylbenzoate (FB) anions, two nicotinamide (NA) ligands and two water molecules, all ligands coordinating in a monodentate manner (Fig. 1). The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C8H5O3)2(C6H6N2O)2(H2O)2] (Sertçelik et al., 2012a), [Cu(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Necefoğlu et al., 2011), [Co(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009a), [Co(C8H5O3)2(C6H6N2O)2(H2O)2] (Sertçelik et al., 2012b), [Co(C7H4IO2)2(C6H6N2O)2(H2O)2] (Aydın et al., 2012), [Ni(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009b), [Ni(C8H5O3)2(C6H6N2O)2(H2O)2] (Sertçelik et al., 2012c), [Mn(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009c), [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009) and [Zn(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2012d) have also been reported, where all the ligands coordinate to the metal atoms in a monodentate manner.

In the title complex, the four symmetry related O atoms (O1, O1', O5 and O5') in the equatorial plane around the ZnII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two symmetry related N atoms of the NA ligands (N1 and N1') in the axial positions. The near equalities of the C1—O1 [1.2614 (14) Å] and C1—O2 [1.2600 (14) Å] bonds in the carboxylate group indicate a delocalized bonding arrangement, rather than localized single and double bonds. The Zn—O bond lengths are 2.1047 (8) Å (for benzoate oxygens) and 2.1446 (8) Å (for water oxygens), and the Zn—N bond length is 2.1253 (10) Å, close to standard values (Allen et al., 1987). The Zn atom is displaced out of the mean-plane of the carboxylate group (O1/C1/O2) by -0.6114 (1) Å. The dihedral angle between the planar carboxylate group and the adjacent benzene ring A (C2—C7) is 24.13 (8)°. The benzene A (C2—C7) and the pyridine B (N1/C9—C13) rings are oriented at a dihedral angle of A/B = 88.52 (4)°. The coordinating water molecule links with the carboxylate group via an O—H···O hydrogen bond (Table 1).

In the crystal, N—H···O and O—H···O hydrogen bonds, and a weak C-H···π interaction (Table 1) link the molecules into a two-dimensional network parallel to plane (010). These networks are linked via C-H···O and ππ interactions [Cg1···Cg1i = 3.8483 (7) Å; symmetry code: (i) 1 - x, 1 - y, 2 - z, where Cg1 is the centroid of ring A (C2—C7)] to form a three-dimensional supramolecular structure.

For literature on niacin, see: Krishnamachari (1974). For information on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Aydın et al. (2012); Hökelek et al. (2009); Necefoğlu et al. (2011); Sertçelik et al. (2012a,b,c,d); Sertçelik et al. (2009a,b,c). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (') -x, -y, -z].
Diaquabis(4-formylbenzoato-κO1)bis(nicotinamide-κN1)zinc top
Crystal data top
[Zn(C8H5O3)2(C6H6N2O)2(H2O)2]Z = 1
Mr = 643.92F(000) = 332
Triclinic, P1Dx = 1.528 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7861 (2) ÅCell parameters from 9923 reflections
b = 9.7877 (3) Åθ = 2.7–28.5°
c = 9.9087 (3) ŵ = 0.94 mm1
α = 77.851 (3)°T = 100 K
β = 71.462 (2)°Block, colourless
γ = 86.720 (3)°0.44 × 0.37 × 0.20 mm
V = 699.87 (4) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3475 independent reflections
Radiation source: fine-focus sealed tube3413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 28.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.682, Tmax = 0.831k = 1313
12257 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.3774P]
where P = (Fo2 + 2Fc2)/3
3475 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Zn(C8H5O3)2(C6H6N2O)2(H2O)2]γ = 86.720 (3)°
Mr = 643.92V = 699.87 (4) Å3
Triclinic, P1Z = 1
a = 7.7861 (2) ÅMo Kα radiation
b = 9.7877 (3) ŵ = 0.94 mm1
c = 9.9087 (3) ÅT = 100 K
α = 77.851 (3)°0.44 × 0.37 × 0.20 mm
β = 71.462 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3475 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3413 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.831Rint = 0.019
12257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.43 e Å3
3475 reflectionsΔρmin = 0.31 e Å3
216 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.00000.00000.01128 (6)
O10.12362 (11)0.18202 (9)0.00926 (9)0.01501 (16)
O20.11031 (11)0.27782 (9)0.15725 (9)0.01613 (17)
O30.49521 (14)0.66936 (13)0.32150 (15)0.0404 (3)
O40.43332 (12)0.00146 (9)0.33495 (9)0.01797 (17)
O50.26589 (11)0.08294 (9)0.07850 (10)0.01534 (16)
H510.345 (3)0.042 (2)0.144 (2)0.033 (5)*
H520.238 (3)0.151 (2)0.110 (2)0.038 (5)*
N10.00282 (13)0.09203 (10)0.21362 (11)0.01310 (18)
N20.32692 (15)0.13245 (12)0.56057 (11)0.0178 (2)
H210.245 (2)0.1865 (18)0.6267 (19)0.025 (4)*
H220.411 (2)0.1018 (19)0.584 (2)0.027 (4)*
C10.05609 (15)0.26503 (11)0.09352 (12)0.0128 (2)
C20.18554 (15)0.35243 (11)0.12616 (12)0.0128 (2)
C30.36219 (15)0.30780 (12)0.11172 (13)0.0151 (2)
H30.40440.22940.07230.018*
C40.47558 (16)0.38054 (12)0.15623 (14)0.0169 (2)
H40.59320.35010.14790.020*
C50.41325 (16)0.49869 (12)0.21317 (14)0.0170 (2)
C60.23814 (16)0.54657 (13)0.22349 (15)0.0194 (2)
H60.19800.62730.25900.023*
C70.12464 (15)0.47344 (12)0.18077 (14)0.0168 (2)
H70.00750.50460.18830.020*
C80.53693 (18)0.57168 (15)0.26194 (17)0.0257 (3)
H80.665 (2)0.5325 (17)0.2463 (18)0.021 (4)*
C90.14410 (15)0.06794 (11)0.25551 (12)0.0132 (2)
H90.23910.01220.18890.016*
C100.15524 (15)0.12221 (11)0.39338 (12)0.0131 (2)
C110.01372 (16)0.20686 (13)0.49174 (13)0.0178 (2)
H110.01680.24540.58510.021*
C120.13251 (16)0.23309 (13)0.44870 (13)0.0192 (2)
H120.22840.28970.51270.023*
C130.13337 (15)0.17388 (12)0.30955 (13)0.0156 (2)
H130.23160.19130.28120.019*
C140.31742 (15)0.08240 (12)0.42808 (12)0.0140 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01063 (9)0.01353 (9)0.01123 (9)0.00014 (6)0.00480 (6)0.00367 (6)
O10.0147 (4)0.0165 (4)0.0146 (4)0.0020 (3)0.0042 (3)0.0051 (3)
O20.0119 (4)0.0183 (4)0.0189 (4)0.0008 (3)0.0044 (3)0.0056 (3)
O30.0237 (5)0.0457 (7)0.0640 (8)0.0008 (5)0.0123 (5)0.0392 (6)
O40.0172 (4)0.0235 (4)0.0141 (4)0.0062 (3)0.0064 (3)0.0016 (3)
O50.0122 (4)0.0179 (4)0.0160 (4)0.0007 (3)0.0034 (3)0.0050 (3)
N10.0130 (4)0.0147 (4)0.0129 (4)0.0003 (3)0.0053 (3)0.0036 (3)
N20.0183 (5)0.0233 (5)0.0135 (5)0.0057 (4)0.0080 (4)0.0014 (4)
C10.0140 (5)0.0127 (5)0.0120 (5)0.0013 (4)0.0060 (4)0.0002 (4)
C20.0128 (5)0.0131 (5)0.0125 (5)0.0018 (4)0.0042 (4)0.0018 (4)
C30.0141 (5)0.0136 (5)0.0184 (5)0.0005 (4)0.0052 (4)0.0050 (4)
C40.0125 (5)0.0170 (5)0.0227 (6)0.0010 (4)0.0068 (4)0.0054 (4)
C50.0141 (5)0.0176 (5)0.0207 (6)0.0026 (4)0.0053 (4)0.0066 (4)
C60.0159 (5)0.0164 (5)0.0274 (6)0.0003 (4)0.0050 (5)0.0108 (5)
C70.0124 (5)0.0162 (5)0.0227 (6)0.0011 (4)0.0055 (4)0.0062 (4)
C80.0166 (6)0.0289 (7)0.0367 (8)0.0025 (5)0.0086 (5)0.0162 (6)
C90.0127 (5)0.0141 (5)0.0138 (5)0.0011 (4)0.0048 (4)0.0033 (4)
C100.0135 (5)0.0144 (5)0.0128 (5)0.0001 (4)0.0052 (4)0.0041 (4)
C110.0190 (5)0.0219 (5)0.0118 (5)0.0034 (4)0.0052 (4)0.0005 (4)
C120.0154 (5)0.0230 (6)0.0170 (6)0.0064 (4)0.0032 (4)0.0007 (5)
C130.0129 (5)0.0175 (5)0.0175 (5)0.0015 (4)0.0055 (4)0.0043 (4)
C140.0145 (5)0.0158 (5)0.0140 (5)0.0001 (4)0.0061 (4)0.0053 (4)
Geometric parameters (Å, º) top
Zn1—O12.1047 (8)C3—H30.9300
Zn1—O1i2.1047 (8)C4—C31.3902 (16)
Zn1—O52.1446 (8)C4—C51.3883 (16)
Zn1—O5i2.1446 (8)C4—H40.9300
Zn1—N12.1253 (10)C5—C61.3955 (17)
Zn1—N1i2.1253 (10)C5—C81.4803 (17)
O1—C11.2614 (14)C6—H60.9300
O2—C11.2600 (14)C7—C61.3822 (16)
O3—C81.2032 (17)C7—H70.9300
O4—C141.2402 (14)C8—H81.022 (17)
O5—H510.79 (2)C9—C101.3859 (16)
O5—H520.86 (2)C9—H90.9300
N1—C91.3413 (14)C10—C111.3900 (16)
N1—C131.3437 (14)C10—C141.5011 (15)
N2—C141.3250 (16)C11—C121.3901 (17)
N2—H210.861 (18)C11—H110.9300
N2—H220.847 (19)C12—H120.9300
C1—C21.5082 (15)C13—C121.3806 (17)
C2—C31.3912 (15)C13—H130.9300
C2—C71.4009 (15)
O1—Zn1—O1i180.00 (2)C3—C4—H4120.0
O1—Zn1—O588.01 (3)C5—C4—C3119.98 (11)
O1i—Zn1—O591.99 (3)C5—C4—H4120.0
O1—Zn1—O5i91.99 (3)C4—C5—C6120.33 (11)
O1i—Zn1—O5i88.01 (3)C4—C5—C8118.35 (11)
O1—Zn1—N189.84 (3)C6—C5—C8121.32 (11)
O1i—Zn1—N190.16 (3)C5—C6—H6120.1
O1—Zn1—N1i90.16 (3)C7—C6—C5119.71 (11)
O1i—Zn1—N1i89.84 (3)C7—C6—H6120.1
O5i—Zn1—O5180.00 (5)C2—C7—H7119.9
N1—Zn1—O592.47 (3)C6—C7—C2120.18 (11)
N1i—Zn1—O587.53 (3)C6—C7—H7119.9
N1—Zn1—O5i87.53 (3)O3—C8—C5124.61 (12)
N1i—Zn1—O5i92.47 (3)O3—C8—H8119.0 (9)
N1i—Zn1—N1180.00 (6)C5—C8—H8116.4 (9)
C1—O1—Zn1126.47 (7)N1—C9—C10123.12 (10)
Zn1—O5—H51123.5 (14)N1—C9—H9118.4
Zn1—O5—H5298.4 (13)C10—C9—H9118.4
H52—O5—H51105.2 (18)C9—C10—C11118.07 (10)
C9—N1—Zn1119.49 (8)C9—C10—C14117.71 (10)
C9—N1—C13118.35 (10)C11—C10—C14124.20 (10)
C13—N1—Zn1122.16 (8)C10—C11—C12119.12 (11)
C14—N2—H21123.1 (12)C10—C11—H11120.4
C14—N2—H22117.9 (12)C12—C11—H11120.4
H22—N2—H21118.6 (17)C11—C12—H12120.5
O1—C1—C2117.40 (10)C13—C12—C11119.04 (11)
O2—C1—O1125.67 (10)C13—C12—H12120.5
O2—C1—C2116.89 (10)N1—C13—C12122.30 (11)
C3—C2—C1119.98 (10)N1—C13—H13118.8
C3—C2—C7119.82 (10)C12—C13—H13118.8
C7—C2—C1120.05 (10)O4—C14—N2122.62 (11)
C2—C3—H3120.0O4—C14—C10119.55 (10)
C4—C3—C2119.93 (10)N2—C14—C10117.79 (10)
C4—C3—H3120.0
O5—Zn1—O1—C1152.50 (9)C1—C2—C3—C4173.27 (11)
O5i—Zn1—O1—C127.50 (9)C7—C2—C3—C42.26 (17)
N1—Zn1—O1—C1115.03 (9)C1—C2—C7—C6173.98 (11)
N1i—Zn1—O1—C164.97 (9)C3—C2—C7—C61.55 (18)
O1—Zn1—N1—C9143.10 (8)C5—C4—C3—C20.88 (18)
O1i—Zn1—N1—C936.90 (8)C3—C4—C5—C61.22 (19)
O1—Zn1—N1—C1337.17 (9)C3—C4—C5—C8178.85 (12)
O1i—Zn1—N1—C13142.83 (9)C4—C5—C6—C71.9 (2)
O5—Zn1—N1—C9128.89 (8)C8—C5—C6—C7178.14 (12)
O5i—Zn1—N1—C951.11 (8)C4—C5—C8—O3174.99 (15)
O5—Zn1—N1—C1350.84 (9)C6—C5—C8—O35.1 (2)
O5i—Zn1—N1—C13129.16 (9)C2—C7—C6—C50.54 (19)
Zn1—O1—C1—O221.18 (16)N1—C9—C10—C110.77 (17)
Zn1—O1—C1—C2156.07 (7)N1—C9—C10—C14177.58 (10)
Zn1—N1—C9—C10179.02 (8)C9—C10—C11—C120.27 (17)
C13—N1—C9—C100.72 (17)C14—C10—C11—C12177.96 (11)
Zn1—N1—C13—C12179.57 (9)C9—C10—C14—O41.27 (16)
C9—N1—C13—C120.16 (17)C9—C10—C14—N2178.98 (10)
O1—C1—C2—C323.65 (15)C11—C10—C14—O4176.97 (11)
O1—C1—C2—C7160.83 (11)C11—C10—C14—N20.74 (17)
O2—C1—C2—C3153.83 (11)C10—C11—C12—C130.23 (19)
O2—C1—C2—C721.68 (16)N1—C13—C12—C110.30 (19)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the pyridine ring.
D—H···AD—HH···AD···AD—H···A
N2—H21···O2ii0.862 (17)2.087 (17)2.8789 (13)152.4 (16)
N2—H22···O4iii0.849 (17)2.058 (18)2.8904 (15)166.4 (18)
O5—H51···O4iv0.79 (2)2.10 (2)2.8597 (13)161 (2)
O5—H52···O2i0.86 (2)1.85 (2)2.6845 (13)163 (2)
C4—H4···O2iv0.932.403.3245 (16)173
C13—H13···O3v0.932.473.3083 (17)150
C6—H6···Cg2vi0.932.723.6361 (14)167
Symmetry codes: (i) x, y, z; (ii) x, y, z1; (iii) x1, y, z1; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C8H5O3)2(C6H6N2O)2(H2O)2]
Mr643.92
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.7861 (2), 9.7877 (3), 9.9087 (3)
α, β, γ (°)77.851 (3), 71.462 (2), 86.720 (3)
V3)699.87 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.44 × 0.37 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.682, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
12257, 3475, 3413
Rint0.019
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.060, 1.06
No. of reflections3475
No. of parameters216
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the pyridine ring.
D—H···AD—HH···AD···AD—H···A
N2—H21···O2i0.862 (17)2.087 (17)2.8789 (13)152.4 (16)
N2—H22···O4ii0.849 (17)2.058 (18)2.8904 (15)166.4 (18)
O5—H51···O4iii0.79 (2)2.10 (2)2.8597 (13)161 (2)
O5—H52···O2iv0.86 (2)1.85 (2)2.6845 (13)163 (2)
C4—H4···O2iii0.932.403.3245 (16)173
C13—H13···O3v0.932.473.3083 (17)150
C6—H6···Cg2vi0.932.723.6361 (14)167
Symmetry codes: (i) x, y, z1; (ii) x1, y, z1; (iii) x+1, y, z; (iv) x, y, z; (v) x+1, y+1, z; (vi) x, y+1, z+2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2012-FEF-12).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAydın, Ö., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m521–m522.  CSD CrossRef IUCr Journals Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m900–m901.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012a). Acta Cryst. E68, m1010–m1011.  CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012b). Acta Cryst. E68, m1091–m1092.  CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012c). Acta Cryst. E68, m946–m947.  CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012d). Acta Cryst. E68, m1067–m1068.  CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009a). Acta Cryst. E65, m389–m390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009b). Acta Cryst. E65, m326–m327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009c). Acta Cryst. E65, m324–m325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds