organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Methyl­phen­yl)-7-(2-methyl­prop­­oxy)-4H-chromen-4-one–6-chloro-2-(4-methyl­phen­yl)-7-(2-methyl­prop­­oxy)-4H-chromen-4-one (19/1)

aDepartment of Chemistry, Smt. S. M. Panchal Science College, Talod, Gujarat 383 215, India, and bDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India
*Correspondence e-mail: mmjotani@rediffmail.com

(Received 19 June 2012; accepted 24 July 2012; online 28 July 2012)

The title co-crystal, 0.95C20H20O3·0.05C20H19ClO3, arises as the chloride carried over during the synthesis shares a position with an aromatic H atom; the partial occupancies are 0.947 (2) and 0.053 (2) for H and Cl, respectively. The mol­ecular structure is stabilized by intra­molecular C—H⋯O contacts, forming pseudo five- and six-membered rings with S(5) and S(6) graph-set motifs, respectively. The crystal structure features ππ stacking inter­actions between the centroids of the central fused ring systems [centroid–centroid distance = 3.501 (2) Å].

Related literature

For background to flavones, see: Hollman et al. (1997[Hollman, P. C. H., van Trijp, J. M. P., Buysman, M. N. C. P., Van de Gaag, M. S., Mengelers, M. J. B., de Vries, J. H. M. & Katan, M. B. (1997). FEBS Lett. 418, 152-156.]); Yao et al. (2004[Yao, L. H., Jiang, Y. M., Shi, J., Tomas-Barberan, F. A., Datta, N., Singanusong, R. & Chen, S. S. (2004). Plant Foods Hum. Nutr. 59, 113-122.]). For the biological activity of flavones, see: Harborne & Williams (2000[Harborne, J. B. & Williams, C. A. (2000). Phytochemistry, 55, 481-504.]); Khan & Hasan (2003[Khan, M. S. Y. & Hasan, S. M. (2003). Indian J. Chem. Sect. B, 42, 1970-1974.]); Qin et al. (2008[Qin, C. X., Chen, X., Hughes, R. A., Williams, S. J. & Woodman, O. L. (2008). J. Med. Chem. 51, 1874-1884.]); Mota et al. (2009[Mota, K. S. L., Dias, G. E. N., Pinto, M. E. F., Luiz-Ferreira, A., Souza-Brito, A. R. M., Lima, C. A. H., Filho, J. M. B. & Batista, L. M. (2009). Molecules, 14, 979-1012.]); Prakash et al. (2009[Prakash, O., Kumar, R. & Sehrawat, R. (2009). Eur. J. Med. Chem. 44, 1763-1767.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • 0.95C20H20O3·0.05C20H19ClO3

  • Mr = 310.19

  • Triclinic, [P \overline 1]

  • a = 9.0371 (2) Å

  • b = 9.6216 (2) Å

  • c = 11.0308 (3) Å

  • α = 75.171 (2)°

  • β = 65.865 (2)°

  • γ = 69.833 (1)°

  • V = 814.20 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker, (2004). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.982

  • 18174 measured reflections

  • 3847 independent reflections

  • 2737 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.136

  • S = 1.06

  • 3847 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O3 0.93 2.38 2.702 (2) 100
C1—H1A⋯O1 0.96 2.58 2.900 (2) 100

Data collection: APEX2 (Bruker, 2004[Bruker, (2004). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker, (2004). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker, (2004). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Flavones can be considered as the derivatives of a parent compound 2-phenylchromen containing varying degrees of hydroxylation and methoxylation (Yao et al., 2004). Also, flavones and their derivatives at different oxidation level are well known naturally occurring oxygen-containing potent anti-oxidant heterocyclic compounds as they chelate ions, scavenge oxygen free radicals and prevent the oxidation of low density lipoprotein (Hollman et al., 1997). Both natural and synthetic flavones possess a wide spectrum of biological activities such as anti-bacterial, anti-fungal, anti-inflammatory, anti-cancer, etc. (Prakash et al., 2009; Mota et al., 2009; Qin et al., 2008; Khan & Hasan, 2003). The continuous search for the synthesis of new derivatives in this group due to their medicinal importance (Harborne & Williams, 2000) is the main motivation for the study of title flavone molecule. In view of their importance, the title compound, 2-(4-methylphenyl)-7-(2-methylpropoxy)-4H-chromen-4-one (I) was synthesized and its crystal structure studied.

The molecular structure of (I), Fig. 1, consists of a central chromen ring extended by a toluene ring on one side and a propoxy moiety on other side. The bicyclic chromen ring is almost coplanar with C8, C12 and C13 atoms have maximum respective deviations of -0.205 (16), 0.0185 (16) and 0.158 (15) Å with respect to least square plane through it. The fractional chlorine atom remains in the molecule of (I) during the synthesis and its presence is confirmed during the structural refinement as it shares a position with the aromatic hydrogen H19 atom; the partial occupancies are 0.947 (2) and 0.053 (2) for H19 and Cl1 atoms, respectively. In the absence of hydrogen bonds, the crystal structure of (I) is stabilized by intramolecular short C—H···O contacts forming pseudo five- and six-membered rings of S(5) and S(6) graph-set motif (Bernstein et al., 1995), Table 1, and by ππ stacking interactions between symmetry related fused chromen rings (Cg1—Cg2 (2 - x, -y, 1 - z) = 3.501 (2) Å; Cg1 = C5—C10 and Cg2 = O3/C9/C8/C11—C13), Fig. 2.

Related literature top

For background to flavones, see: Hollman et al. (1997); Yao et al. (2004). For the biological activity of flavones, see: Harborne & Williams (2000); Khan & Hasan (2003); Qin et al. (2008); Mota et al. (2009); Prakash et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

(2E)-1-[2-Hydroxy-4-(2-methylpropoxy)phenyl]-3-(4-methylphenyl)prop-2-ene-1-one (0.01 mol) was dissolved in DMSO (30 ml) and iodine, in crystalline powder form, was added. The mixture was then heated at about 140–145 °C for 1 h and the reaction was monitored by continuous TLC. The resulting solution was cooled and diluted with water after the completion of reaction. Excess iodine was removed by filtering and washing the product with 20% aqueous sodium bisulphite. The crude product was then purified by column chromatography using toluene-ethyl acetate (10:1) as the mobile phase and a silica gel as the stationary phase. The melting point was measured on an Electro thermal 9200 apparatus and is uncorrected (Yield: 68%, M.pt: 442 K). The colourless block-shaped crystals of the title compound were obtained by re-crystallization from its ethanol solution.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). A reflection affected by the beam stop, i.e. (0 0 1), was omitted from the final refinement.

Structure description top

Flavones can be considered as the derivatives of a parent compound 2-phenylchromen containing varying degrees of hydroxylation and methoxylation (Yao et al., 2004). Also, flavones and their derivatives at different oxidation level are well known naturally occurring oxygen-containing potent anti-oxidant heterocyclic compounds as they chelate ions, scavenge oxygen free radicals and prevent the oxidation of low density lipoprotein (Hollman et al., 1997). Both natural and synthetic flavones possess a wide spectrum of biological activities such as anti-bacterial, anti-fungal, anti-inflammatory, anti-cancer, etc. (Prakash et al., 2009; Mota et al., 2009; Qin et al., 2008; Khan & Hasan, 2003). The continuous search for the synthesis of new derivatives in this group due to their medicinal importance (Harborne & Williams, 2000) is the main motivation for the study of title flavone molecule. In view of their importance, the title compound, 2-(4-methylphenyl)-7-(2-methylpropoxy)-4H-chromen-4-one (I) was synthesized and its crystal structure studied.

The molecular structure of (I), Fig. 1, consists of a central chromen ring extended by a toluene ring on one side and a propoxy moiety on other side. The bicyclic chromen ring is almost coplanar with C8, C12 and C13 atoms have maximum respective deviations of -0.205 (16), 0.0185 (16) and 0.158 (15) Å with respect to least square plane through it. The fractional chlorine atom remains in the molecule of (I) during the synthesis and its presence is confirmed during the structural refinement as it shares a position with the aromatic hydrogen H19 atom; the partial occupancies are 0.947 (2) and 0.053 (2) for H19 and Cl1 atoms, respectively. In the absence of hydrogen bonds, the crystal structure of (I) is stabilized by intramolecular short C—H···O contacts forming pseudo five- and six-membered rings of S(5) and S(6) graph-set motif (Bernstein et al., 1995), Table 1, and by ππ stacking interactions between symmetry related fused chromen rings (Cg1—Cg2 (2 - x, -y, 1 - z) = 3.501 (2) Å; Cg1 = C5—C10 and Cg2 = O3/C9/C8/C11—C13), Fig. 2.

For background to flavones, see: Hollman et al. (1997); Yao et al. (2004). For the biological activity of flavones, see: Harborne & Williams (2000); Khan & Hasan (2003); Qin et al. (2008); Mota et al. (2009); Prakash et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing 50% probability displacement ellipsoids. The hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Crystal packing showing ππ stacking interactions indicated by dashed lines. H atoms are omitted for clarity.
2-(4-Methylphenyl)-7-(2-methylpropoxy)-4H-chromen-4-one– 6-chloro-2-(4-methylphenyl)-7-(2-methylpropoxy)-4H-chromen-4-one (19/1) top
Crystal data top
0.95C20H20O3·0.05C20H19ClO3Z = 2
Mr = 310.19F(000) = 329.6
Triclinic, P1Dx = 1.265 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.0371 (2) ÅCell parameters from 5339 reflections
b = 9.6216 (2) Åθ = 3.0–25.0°
c = 11.0308 (3) ŵ = 0.09 mm1
α = 75.171 (2)°T = 293 K
β = 65.865 (2)°Block, colourless
γ = 69.833 (1)°0.30 × 0.20 × 0.20 mm
V = 814.20 (4) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3847 independent reflections
Radiation source: fine-focus sealed tube2737 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ scanθmax = 27.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.973, Tmax = 0.982k = 1212
18174 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.1669P]
where P = (Fo2 + 2Fc2)/3
3847 reflections(Δ/σ)max = 0.005
219 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
0.95C20H20O3·0.05C20H19ClO3γ = 69.833 (1)°
Mr = 310.19V = 814.20 (4) Å3
Triclinic, P1Z = 2
a = 9.0371 (2) ÅMo Kα radiation
b = 9.6216 (2) ŵ = 0.09 mm1
c = 11.0308 (3) ÅT = 293 K
α = 75.171 (2)°0.30 × 0.20 × 0.20 mm
β = 65.865 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3847 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2737 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.026
18174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
3847 reflectionsΔρmin = 0.17 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.96616 (14)0.37259 (11)0.75225 (11)0.0496 (3)
O20.73241 (16)0.33677 (12)0.64615 (12)0.0611 (3)
O30.72302 (13)0.01688 (10)0.47020 (10)0.0427 (3)
C10.9533 (3)0.6722 (2)0.8857 (2)0.0753 (6)
H1B1.00790.76850.92230.113*
H1C0.84650.67390.88810.113*
H1A0.93600.59810.93770.113*
C21.0620 (2)0.63483 (17)0.74312 (17)0.0502 (4)
H21.07250.70990.69240.060*
C31.2383 (2)0.6446 (2)0.7309 (3)0.0807 (7)
H3C1.30390.62160.63840.121*
H3A1.29000.74400.76450.121*
H3B1.23270.57460.78200.121*
C40.9825 (2)0.48407 (16)0.67936 (16)0.0464 (4)
H4A1.05260.46550.58620.056*
H4B0.87260.48150.68280.056*
C50.90580 (18)0.22724 (16)0.70937 (15)0.0412 (3)
C60.9127 (2)0.12487 (17)0.77583 (16)0.0471 (4)
H60.95670.15900.84430.057*0.9470 (18)
C70.8550 (2)0.02482 (17)0.74021 (16)0.0467 (4)
H70.86010.09190.78510.056*
C80.78841 (17)0.07948 (16)0.63740 (14)0.0398 (3)
C90.78410 (17)0.02488 (15)0.57358 (14)0.0373 (3)
C100.84152 (17)0.17760 (15)0.60726 (14)0.0397 (3)
H100.83690.24470.56230.048*
C110.72965 (19)0.23849 (16)0.59441 (15)0.0446 (4)
C120.67062 (19)0.27121 (16)0.48452 (16)0.0455 (4)
H120.63140.37070.45200.055*
C130.66968 (17)0.16449 (15)0.42691 (15)0.0406 (3)
C140.61702 (18)0.18806 (16)0.31181 (15)0.0425 (3)
C150.5271 (2)0.32770 (17)0.26928 (16)0.0485 (4)
H150.49860.40810.31420.058*
C160.4797 (2)0.34794 (17)0.16082 (17)0.0507 (4)
H160.42030.44270.13340.061*
C170.5174 (2)0.23220 (18)0.09144 (16)0.0489 (4)
C180.6088 (3)0.09398 (19)0.13338 (19)0.0627 (5)
H180.63810.01410.08770.075*
C190.6579 (2)0.07170 (18)0.24164 (19)0.0587 (5)
H190.71910.02270.26780.070*
C200.4595 (2)0.2551 (2)0.02344 (18)0.0628 (5)
H20A0.53740.29370.10390.094*
H20B0.34980.32490.00520.094*
H20C0.45430.16150.03480.094*
Cl10.9913 (10)0.1791 (10)0.9090 (9)0.060 (3)0.0530 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0659 (7)0.0342 (6)0.0515 (7)0.0061 (5)0.0312 (6)0.0029 (5)
O20.0839 (9)0.0380 (6)0.0665 (8)0.0159 (6)0.0280 (7)0.0138 (5)
O30.0506 (6)0.0282 (5)0.0497 (6)0.0065 (4)0.0231 (5)0.0029 (4)
C10.1004 (16)0.0513 (11)0.0633 (12)0.0210 (11)0.0291 (12)0.0109 (9)
C20.0599 (10)0.0339 (8)0.0580 (10)0.0101 (7)0.0277 (8)0.0004 (7)
C30.0635 (12)0.0462 (10)0.132 (2)0.0063 (9)0.0503 (13)0.0042 (11)
C40.0549 (9)0.0370 (8)0.0483 (9)0.0088 (7)0.0225 (7)0.0050 (7)
C50.0415 (8)0.0339 (7)0.0433 (8)0.0072 (6)0.0135 (7)0.0037 (6)
C60.0529 (9)0.0455 (9)0.0457 (9)0.0121 (7)0.0212 (7)0.0062 (7)
C70.0517 (9)0.0428 (9)0.0487 (9)0.0137 (7)0.0164 (7)0.0121 (7)
C80.0381 (7)0.0348 (7)0.0422 (8)0.0108 (6)0.0075 (6)0.0079 (6)
C90.0356 (7)0.0344 (7)0.0382 (8)0.0092 (6)0.0102 (6)0.0039 (6)
C100.0424 (8)0.0325 (7)0.0428 (8)0.0091 (6)0.0142 (7)0.0055 (6)
C110.0455 (8)0.0356 (8)0.0477 (9)0.0117 (6)0.0086 (7)0.0099 (6)
C120.0479 (9)0.0287 (7)0.0521 (9)0.0057 (6)0.0146 (7)0.0045 (6)
C130.0376 (7)0.0305 (7)0.0459 (8)0.0066 (6)0.0111 (6)0.0021 (6)
C140.0424 (8)0.0321 (7)0.0478 (9)0.0083 (6)0.0149 (7)0.0010 (6)
C150.0510 (9)0.0331 (8)0.0560 (10)0.0065 (7)0.0190 (8)0.0040 (7)
C160.0494 (9)0.0361 (8)0.0589 (10)0.0077 (7)0.0224 (8)0.0062 (7)
C170.0473 (9)0.0475 (9)0.0483 (9)0.0161 (7)0.0169 (7)0.0039 (7)
C180.0868 (13)0.0410 (9)0.0661 (12)0.0078 (9)0.0392 (11)0.0094 (8)
C190.0780 (12)0.0320 (8)0.0685 (11)0.0000 (8)0.0408 (10)0.0060 (7)
C200.0691 (12)0.0642 (12)0.0582 (11)0.0207 (9)0.0303 (9)0.0033 (9)
Cl10.053 (5)0.061 (6)0.059 (5)0.016 (4)0.016 (4)0.001 (4)
Geometric parameters (Å, º) top
O1—C51.3503 (17)C7—H70.9300
O1—C41.4333 (17)C8—C91.3844 (19)
O2—C111.2348 (17)C8—C111.457 (2)
O3—C131.3589 (16)C9—C101.3852 (19)
O3—C91.3762 (17)C10—H100.9300
C1—C21.503 (3)C11—C121.439 (2)
C1—H1B0.9600C12—C131.343 (2)
C1—H1C0.9600C12—H120.9300
C1—H1A0.9600C13—C141.470 (2)
C2—C41.513 (2)C14—C191.383 (2)
C2—C31.514 (2)C14—C151.386 (2)
C2—H20.9800C15—C161.377 (2)
C3—H3C0.9600C15—H150.9300
C3—H3A0.9600C16—C171.380 (2)
C3—H3B0.9600C16—H160.9300
C4—H4A0.9700C17—C181.380 (2)
C4—H4B0.9700C17—C201.499 (2)
C5—C101.379 (2)C18—C191.380 (2)
C5—C61.401 (2)C18—H180.9300
C6—C71.364 (2)C19—H190.9300
C6—Cl11.772 (9)C20—H20A0.9600
C6—H60.9300C20—H20B0.9600
C7—C81.400 (2)C20—H20C0.9600
C5—O1—C4118.87 (11)O3—C9—C8121.81 (12)
C13—O3—C9119.23 (11)O3—C9—C10115.07 (12)
C2—C1—H1B109.5C8—C9—C10123.12 (13)
C2—C1—H1C109.5C5—C10—C9118.11 (13)
H1B—C1—H1C109.5C5—C10—H10120.9
C2—C1—H1A109.5C9—C10—H10120.9
H1B—C1—H1A109.5O2—C11—C12122.81 (14)
H1C—C1—H1A109.5O2—C11—C8123.12 (14)
C1—C2—C4112.08 (15)C12—C11—C8114.06 (12)
C1—C2—C3112.10 (17)C13—C12—C11122.91 (13)
C4—C2—C3110.95 (14)C13—C12—H12118.5
C1—C2—H2107.1C11—C12—H12118.5
C4—C2—H2107.1C12—C13—O3121.86 (13)
C3—C2—H2107.1C12—C13—C14126.37 (13)
C2—C3—H3C109.5O3—C13—C14111.77 (12)
C2—C3—H3A109.5C19—C14—C15118.04 (14)
H3C—C3—H3A109.5C19—C14—C13120.87 (13)
C2—C3—H3B109.5C15—C14—C13121.09 (14)
H3C—C3—H3B109.5C16—C15—C14120.31 (14)
H3A—C3—H3B109.5C16—C15—H15119.8
O1—C4—C2107.95 (12)C14—C15—H15119.8
O1—C4—H4A110.1C15—C16—C17122.14 (14)
C2—C4—H4A110.1C15—C16—H16118.9
O1—C4—H4B110.1C17—C16—H16118.9
C2—C4—H4B110.1C16—C17—C18117.17 (15)
H4A—C4—H4B108.4C16—C17—C20121.40 (15)
O1—C5—C10124.33 (13)C18—C17—C20121.43 (16)
O1—C5—C6115.33 (13)C19—C18—C17121.49 (16)
C10—C5—C6120.34 (13)C19—C18—H18119.3
C7—C6—C5120.05 (14)C17—C18—H18119.3
C7—C6—Cl1116.7 (3)C18—C19—C14120.84 (15)
C5—C6—Cl1123.2 (3)C18—C19—H19119.6
C7—C6—H6120.0C14—C19—H19119.6
C5—C6—H6120.0C17—C20—H20A109.5
C6—C7—C8121.26 (13)C17—C20—H20B109.5
C6—C7—H7119.4H20A—C20—H20B109.5
C8—C7—H7119.4C17—C20—H20C109.5
C9—C8—C7117.11 (13)H20A—C20—H20C109.5
C9—C8—C11120.11 (13)H20B—C20—H20C109.5
C7—C8—C11122.75 (13)
C5—O1—C4—C2176.62 (13)C7—C8—C11—O20.8 (2)
C1—C2—C4—O162.80 (18)C9—C8—C11—C120.0 (2)
C3—C2—C4—O163.37 (19)C7—C8—C11—C12178.16 (14)
C4—O1—C5—C107.0 (2)O2—C11—C12—C13179.05 (15)
C4—O1—C5—C6172.61 (13)C8—C11—C12—C130.1 (2)
O1—C5—C6—C7179.97 (14)C11—C12—C13—O30.9 (2)
C10—C5—C6—C70.3 (2)C11—C12—C13—C14177.83 (14)
O1—C5—C6—Cl11.0 (4)C9—O3—C13—C121.8 (2)
C10—C5—C6—Cl1179.3 (3)C9—O3—C13—C14177.06 (12)
C5—C6—C7—C80.1 (2)C12—C13—C14—C19164.68 (16)
Cl1—C6—C7—C8179.2 (3)O3—C13—C14—C1914.1 (2)
C6—C7—C8—C90.1 (2)C12—C13—C14—C1514.5 (2)
C6—C7—C8—C11178.39 (14)O3—C13—C14—C15166.74 (13)
C13—O3—C9—C81.8 (2)C19—C14—C15—C160.4 (2)
C13—O3—C9—C10177.59 (12)C13—C14—C15—C16179.60 (14)
C7—C8—C9—O3179.21 (13)C14—C15—C16—C170.6 (2)
C11—C8—C9—O30.9 (2)C15—C16—C17—C181.4 (2)
C7—C8—C9—C100.2 (2)C15—C16—C17—C20177.83 (15)
C11—C8—C9—C10178.47 (13)C16—C17—C18—C191.2 (3)
O1—C5—C10—C9179.90 (13)C20—C17—C18—C19178.04 (17)
C6—C5—C10—C90.3 (2)C17—C18—C19—C140.2 (3)
O3—C9—C10—C5179.46 (12)C15—C14—C19—C180.6 (3)
C8—C9—C10—C50.0 (2)C13—C14—C19—C18179.81 (16)
C9—C8—C11—O2179.02 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O30.932.382.702 (2)100
C1—H1A···O10.962.582.900 (2)100

Experimental details

Crystal data
Chemical formula0.95C20H20O3·0.05C20H19ClO3
Mr310.19
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.0371 (2), 9.6216 (2), 11.0308 (3)
α, β, γ (°)75.171 (2), 65.865 (2), 69.833 (1)
V3)814.20 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
18174, 3847, 2737
Rint0.026
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.136, 1.06
No. of reflections3847
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.17

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O30.932.382.702 (2)100
C1—H1A···O10.962.582.900 (2)100
 

Acknowledgements

The authors thank the Department of Science and Technology (DST) and SAIF, IIT Madras, Chennai, India, for the intensity data collection.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker, (2004). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarborne, J. B. & Williams, C. A. (2000). Phytochemistry, 55, 481–504.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHollman, P. C. H., van Trijp, J. M. P., Buysman, M. N. C. P., Van de Gaag, M. S., Mengelers, M. J. B., de Vries, J. H. M. & Katan, M. B. (1997). FEBS Lett. 418, 152–156.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKhan, M. S. Y. & Hasan, S. M. (2003). Indian J. Chem. Sect. B, 42, 1970–1974.  Google Scholar
First citationMota, K. S. L., Dias, G. E. N., Pinto, M. E. F., Luiz-Ferreira, A., Souza-Brito, A. R. M., Lima, C. A. H., Filho, J. M. B. & Batista, L. M. (2009). Molecules, 14, 979–1012.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrakash, O., Kumar, R. & Sehrawat, R. (2009). Eur. J. Med. Chem. 44, 1763–1767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQin, C. X., Chen, X., Hughes, R. A., Williams, S. J. & Woodman, O. L. (2008). J. Med. Chem. 51, 1874–1884.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, L. H., Jiang, Y. M., Shi, J., Tomas-Barberan, F. A., Datta, N., Singanusong, R. & Chen, S. S. (2004). Plant Foods Hum. Nutr. 59, 113–122.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds