organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-trans-5-Benzoyl-4-(3-bromo­phen­yl)-2-(1H-indol-3-yl)-4,5-di­hydro­furan-3-carbo­nitrile

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 1 July 2012; accepted 2 July 2012; online 10 July 2012)

The furan ring in the title compound, C26H17BrN2O2, adopts a twisted envelope conformation. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O inter­action which generates an S(6) ring motif. The crystal packing is stabilized by N—H⋯O and C—H⋯Br inter­actions, generating an R22(16) ring motif and a C(12) linear chain motif, respectively. Weak C—H⋯π bonding is also observed.

Related literature

For the importance of furan derivatives, see: Auvin & Chabrier De Lassauniere (2005[Auvin, S. & Chabrier De Lassauniere, P. (2005). US Patent No. 222045.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C26H17BrN2O2

  • Mr = 469.33

  • Monoclinic, P 21 /n

  • a = 9.8003 (6) Å

  • b = 15.8876 (10) Å

  • c = 13.5588 (9) Å

  • β = 100.306 (3)°

  • V = 2077.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 293 K

  • 0.18 × 0.16 × 0.13 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 17242 measured reflections

  • 3635 independent reflections

  • 2366 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.108

  • S = 1.02

  • 3635 reflections

  • 284 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C51–C56 and C32–C37 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33⋯O1 0.93 2.48 2.995 (3) 115
N2—H2⋯O2i 0.81 (3) 2.26 (3) 3.006 (3) 153 (3)
C36—H36⋯Br1ii 0.93 2.87 3.509 (3) 127
C34—H34⋯Cg1iii 0.93 2.66 3.570 (3) 166
C47—H47⋯Cg2iv 0.93 2.95 3.784 (4) 149
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z+1; (iii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Furan derivatives have calplain-inhibiting activity and are used in the preparation of medicaments for the treatment of inflammatory and immunological diseases, cardiovascular and cerebro-vascular diseases, disorders of the central or peripheral nervous system, cachexia, osteoporosis, muscular dystrophy, proliferative diseases, cataracts, rejection reactions following organ transplants and auto-immune and viral diseases (Auvin & Chabrier De Lassauniere, 2005). In view of the high medicinal value of these compounds in conjunction with our research interest, prompted us to synthesize and report the X-ray studies of the title compound in this paper.

In the title compound (Fig 1), the five-membered furan ring in the structure adopts a twisted envelope conformation, as evident from the puckering parameters (Cremer & Pople, 1975): Q = 0.209 (3) Å and φ = 303.7 (8)°. The five (N2/C38/C31/C32/C37) and six-membered (C32—C37) rings in the indole group are planar, with a dihedral angle of 0.53 (1)° between them. The dihedral angle between the phenyl rings (C42—C47 and C51—C56) is 25.01 (1)°.

The molecular structure is stabilized by an intramolecular C–H···O interaction which generates an S(6) ring motif (Bernstein et al., 1995). The presence of N–H···O hydrogen bonds leads to inversion dimers which are stabilized in the crystal packing by C–H···Br and C–H···π interactions, Table 1.

Related literature top

For the importance of furan derivatives, see: Auvin & Chabrier De Lassauniere (2005). For hydrogen-bonding motifs, see: Bernstein et al. (1995). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

To a stirred mixture of 3-(3-bromophenyl)-2-(1H-indole-3-carbonyl) acrylonitrile (1.0 eq.) and phenacylpyridinium bromide (1.0 eq.) in water (10 ml) was added drop-wise triethylamine (0.25 eq.) at room temperature. The resulting clear solution, that slowly became turbid, was stirred at room temperature for 1.2 h. Then the separated free flowing solid was filtered and washed with methanol (3 ml) to afford compound as pale-yellow solids. The product thus obtained was recrystallized from EtOH-EtOAc mixture (1:1 ratio v/v. ml) to give pure compound, as pale-yellow crystals. Melting point: 468 K. Yield: 91%.

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, and with Uiso = 1.2Ueq(C). The N-bound H atom was located in a difference Fourier map and refined freely.

Structure description top

Furan derivatives have calplain-inhibiting activity and are used in the preparation of medicaments for the treatment of inflammatory and immunological diseases, cardiovascular and cerebro-vascular diseases, disorders of the central or peripheral nervous system, cachexia, osteoporosis, muscular dystrophy, proliferative diseases, cataracts, rejection reactions following organ transplants and auto-immune and viral diseases (Auvin & Chabrier De Lassauniere, 2005). In view of the high medicinal value of these compounds in conjunction with our research interest, prompted us to synthesize and report the X-ray studies of the title compound in this paper.

In the title compound (Fig 1), the five-membered furan ring in the structure adopts a twisted envelope conformation, as evident from the puckering parameters (Cremer & Pople, 1975): Q = 0.209 (3) Å and φ = 303.7 (8)°. The five (N2/C38/C31/C32/C37) and six-membered (C32—C37) rings in the indole group are planar, with a dihedral angle of 0.53 (1)° between them. The dihedral angle between the phenyl rings (C42—C47 and C51—C56) is 25.01 (1)°.

The molecular structure is stabilized by an intramolecular C–H···O interaction which generates an S(6) ring motif (Bernstein et al., 1995). The presence of N–H···O hydrogen bonds leads to inversion dimers which are stabilized in the crystal packing by C–H···Br and C–H···π interactions, Table 1.

For the importance of furan derivatives, see: Auvin & Chabrier De Lassauniere (2005). For hydrogen-bonding motifs, see: Bernstein et al. (1995). For conformational analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.
(±)-trans-5-Benzoyl-4-(3-bromophenyl)-2-(1H-indol-3-yl)-4,5- dihydrofuran-3-carbonitrile top
Crystal data top
C26H17BrN2O2F(000) = 952
Mr = 469.33Dx = 1.501 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2000 reflections
a = 9.8003 (6) Åθ = 2.4–25°
b = 15.8876 (10) ŵ = 2.01 mm1
c = 13.5588 (9) ÅT = 293 K
β = 100.306 (3)°Block, pale-yellow
V = 2077.1 (2) Å30.18 × 0.16 × 0.13 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
3635 independent reflections
Radiation source: fine-focus sealed tube2366 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω and φ scansh = 711
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1818
Tmin = 0.967, Tmax = 0.974l = 1616
17242 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0397P)2 + 1.5055P]
where P = (Fo2 + 2Fc2)/3
3635 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
C26H17BrN2O2V = 2077.1 (2) Å3
Mr = 469.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8003 (6) ŵ = 2.01 mm1
b = 15.8876 (10) ÅT = 293 K
c = 13.5588 (9) Å0.18 × 0.16 × 0.13 mm
β = 100.306 (3)°
Data collection top
Bruker Kappa APEXII
diffractometer
3635 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2366 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.044
17242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.58 e Å3
3635 reflectionsΔρmin = 0.78 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H20.724 (3)0.5931 (19)0.496 (2)0.038 (10)*
Br10.09434 (6)0.43918 (4)0.23671 (3)0.1182 (3)
O10.37349 (19)0.36776 (12)0.29701 (14)0.0353 (5)
O20.1364 (2)0.35231 (14)0.36843 (15)0.0477 (6)
N20.6871 (3)0.55400 (18)0.4627 (2)0.0397 (7)
C530.2243 (4)0.4273 (2)0.1174 (2)0.0546 (9)
C410.1258 (3)0.34022 (18)0.2795 (2)0.0342 (7)
C320.6256 (3)0.41997 (18)0.4271 (2)0.0311 (7)
C420.0082 (3)0.31506 (18)0.2155 (2)0.0344 (7)
C40.2472 (3)0.35510 (18)0.2255 (2)0.0322 (7)
H40.25780.30690.18250.039*
C380.5653 (3)0.55612 (19)0.3984 (2)0.0374 (7)
H380.51760.60480.37510.045*
C20.3141 (3)0.49622 (17)0.2325 (2)0.0308 (7)
C310.5221 (3)0.47582 (18)0.3725 (2)0.0301 (7)
C510.2728 (3)0.42821 (17)0.0617 (2)0.0331 (7)
C10.3123 (3)0.5839 (2)0.2189 (2)0.0376 (7)
C340.7591 (3)0.3023 (2)0.4948 (2)0.0459 (8)
H340.77130.24430.50030.055*
C370.7273 (3)0.47240 (19)0.4816 (2)0.0342 (7)
C50.2256 (3)0.43649 (17)0.1618 (2)0.0316 (7)
H50.12810.45390.15180.038*
C430.0195 (3)0.2963 (2)0.1148 (2)0.0418 (8)
H430.05920.29810.08530.050*
C30.4017 (3)0.45201 (18)0.3016 (2)0.0313 (7)
C520.1805 (3)0.4376 (2)0.0265 (2)0.0459 (8)
H520.08840.45090.02520.055*
C440.1450 (3)0.2749 (2)0.0575 (2)0.0479 (9)
H440.15120.26330.01040.057*
C560.4098 (3)0.4092 (2)0.0573 (2)0.0412 (8)
H560.47420.40370.11620.049*
C470.1259 (3)0.3112 (2)0.2575 (3)0.0585 (10)
H470.12090.32400.32500.070*
C360.8450 (3)0.4407 (2)0.5426 (2)0.0469 (9)
H360.91150.47630.57830.056*
C330.6428 (3)0.33344 (19)0.4342 (2)0.0365 (7)
H330.57710.29730.39880.044*
C540.3588 (4)0.4073 (2)0.1217 (3)0.0538 (9)
H540.38710.40000.18300.065*
C350.8592 (3)0.3552 (2)0.5481 (3)0.0524 (9)
H350.93710.33190.58810.063*
N10.3062 (3)0.65498 (19)0.2061 (2)0.0598 (8)
C450.2606 (4)0.2708 (2)0.1007 (3)0.0601 (10)
H450.34570.25610.06250.072*
C550.4510 (3)0.3983 (2)0.0336 (3)0.0508 (9)
H550.54280.38460.03540.061*
C460.2505 (4)0.2885 (3)0.2002 (3)0.0742 (12)
H460.32910.28510.22970.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1313 (5)0.1734 (6)0.0363 (3)0.0828 (4)0.0219 (3)0.0174 (3)
O10.0322 (11)0.0287 (12)0.0400 (12)0.0040 (9)0.0073 (9)0.0007 (9)
O20.0534 (14)0.0585 (15)0.0302 (12)0.0101 (11)0.0049 (10)0.0076 (10)
N20.0401 (16)0.0376 (18)0.0367 (15)0.0097 (14)0.0060 (12)0.0074 (13)
C530.071 (3)0.056 (2)0.0317 (18)0.0146 (19)0.0045 (17)0.0030 (16)
C410.0402 (18)0.0276 (17)0.0332 (18)0.0026 (13)0.0019 (14)0.0010 (13)
C320.0306 (16)0.0357 (18)0.0275 (15)0.0005 (14)0.0062 (13)0.0003 (13)
C420.0328 (16)0.0336 (18)0.0358 (17)0.0035 (14)0.0032 (14)0.0012 (13)
C40.0301 (16)0.0313 (17)0.0317 (16)0.0021 (13)0.0040 (13)0.0039 (13)
C380.0384 (18)0.038 (2)0.0338 (16)0.0001 (14)0.0002 (14)0.0003 (14)
C20.0329 (16)0.0280 (17)0.0298 (16)0.0018 (13)0.0012 (13)0.0035 (13)
C310.0321 (16)0.0297 (17)0.0276 (15)0.0005 (13)0.0028 (13)0.0014 (13)
C510.0383 (17)0.0269 (16)0.0323 (16)0.0053 (13)0.0011 (13)0.0015 (12)
C10.0363 (18)0.038 (2)0.0350 (17)0.0017 (16)0.0027 (14)0.0018 (15)
C340.050 (2)0.041 (2)0.0476 (19)0.0092 (17)0.0098 (17)0.0072 (16)
C370.0335 (17)0.0386 (19)0.0296 (16)0.0027 (14)0.0035 (13)0.0019 (14)
C50.0290 (15)0.0297 (17)0.0335 (16)0.0006 (13)0.0011 (13)0.0022 (13)
C430.0348 (18)0.048 (2)0.0419 (18)0.0074 (15)0.0036 (15)0.0050 (15)
C30.0322 (16)0.0288 (17)0.0324 (16)0.0029 (13)0.0049 (13)0.0036 (13)
C520.047 (2)0.051 (2)0.0349 (18)0.0143 (16)0.0045 (15)0.0044 (15)
C440.046 (2)0.053 (2)0.0420 (19)0.0076 (17)0.0018 (16)0.0031 (16)
C560.0344 (18)0.048 (2)0.0392 (18)0.0086 (15)0.0019 (14)0.0010 (15)
C470.045 (2)0.088 (3)0.044 (2)0.0136 (19)0.0106 (17)0.0030 (19)
C360.0358 (18)0.060 (2)0.0404 (19)0.0025 (16)0.0059 (15)0.0049 (17)
C330.0387 (18)0.0374 (19)0.0334 (16)0.0008 (15)0.0062 (14)0.0008 (14)
C540.073 (3)0.051 (2)0.041 (2)0.0002 (19)0.0190 (19)0.0006 (16)
C350.040 (2)0.065 (3)0.048 (2)0.0150 (18)0.0030 (16)0.0059 (18)
N10.069 (2)0.0371 (19)0.067 (2)0.0010 (16)0.0045 (16)0.0038 (16)
C450.037 (2)0.070 (3)0.067 (3)0.0065 (18)0.0064 (19)0.001 (2)
C550.043 (2)0.058 (2)0.053 (2)0.0068 (17)0.0142 (18)0.0010 (18)
C460.038 (2)0.120 (4)0.066 (3)0.015 (2)0.012 (2)0.006 (3)
Geometric parameters (Å, º) top
Br1—C531.881 (3)C51—C51.516 (4)
O1—C31.366 (3)C1—N11.143 (4)
O1—C41.443 (3)C34—C331.372 (4)
O2—C411.207 (3)C34—C351.392 (5)
N2—C381.347 (4)C34—H340.9300
N2—C371.366 (4)C37—C361.388 (4)
N2—H20.81 (3)C5—H50.9800
C53—C541.367 (5)C43—C441.375 (4)
C53—C521.386 (5)C43—H430.9300
C41—C421.493 (4)C52—H520.9300
C41—C41.523 (4)C44—C451.367 (5)
C32—C331.386 (4)C44—H440.9300
C32—C371.404 (4)C56—C551.375 (4)
C32—C311.448 (4)C56—H560.9300
C42—C471.376 (4)C47—C461.374 (5)
C42—C431.383 (4)C47—H470.9300
C4—C51.548 (4)C36—C351.367 (5)
C4—H40.9800C36—H360.9300
C38—C311.370 (4)C33—H330.9300
C38—H380.9300C54—C551.369 (5)
C2—C31.350 (4)C54—H540.9300
C2—C11.405 (4)C35—H350.9300
C2—C51.508 (4)C45—C461.365 (5)
C31—C31.432 (4)C45—H450.9300
C51—C521.373 (4)C55—H550.9300
C51—C561.387 (4)C46—H460.9300
C3—O1—C4108.0 (2)C51—C5—C4113.2 (2)
C38—N2—C37109.7 (3)C2—C5—H5110.3
C38—N2—H2126 (2)C51—C5—H5110.3
C37—N2—H2123 (2)C4—C5—H5110.3
C54—C53—C52121.3 (3)C44—C43—C42121.1 (3)
C54—C53—Br1119.8 (3)C44—C43—H43119.4
C52—C53—Br1118.9 (3)C42—C43—H43119.4
O2—C41—C42122.2 (3)C2—C3—O1112.3 (2)
O2—C41—C4121.4 (3)C2—C3—C31132.4 (3)
C42—C41—C4116.3 (2)O1—C3—C31115.2 (2)
C33—C32—C37119.0 (3)C51—C52—C53120.1 (3)
C33—C32—C31135.2 (3)C51—C52—H52120.0
C37—C32—C31105.8 (2)C53—C52—H52120.0
C47—C42—C43118.4 (3)C45—C44—C43119.7 (3)
C47—C42—C41119.1 (3)C45—C44—H44120.1
C43—C42—C41122.6 (3)C43—C44—H44120.1
O1—C4—C41110.4 (2)C55—C56—C51120.6 (3)
O1—C4—C5105.9 (2)C55—C56—H56119.7
C41—C4—C5110.9 (2)C51—C56—H56119.7
O1—C4—H4109.9C46—C47—C42120.3 (3)
C41—C4—H4109.9C46—C47—H47119.9
C5—C4—H4109.9C42—C47—H47119.9
N2—C38—C31109.9 (3)C35—C36—C37117.3 (3)
N2—C38—H38125.0C35—C36—H36121.3
C31—C38—H38125.0C37—C36—H36121.3
C3—C2—C1126.8 (3)C34—C33—C32118.5 (3)
C3—C2—C5109.7 (2)C34—C33—H33120.7
C1—C2—C5123.2 (3)C32—C33—H33120.7
C38—C31—C3126.7 (3)C53—C54—C55118.6 (3)
C38—C31—C32106.4 (2)C53—C54—H54120.7
C3—C31—C32126.8 (3)C55—C54—H54120.7
C52—C51—C56118.5 (3)C36—C35—C34121.1 (3)
C52—C51—C5120.7 (3)C36—C35—H35119.4
C56—C51—C5120.7 (3)C34—C35—H35119.4
N1—C1—C2177.7 (3)C46—C45—C44119.7 (3)
C33—C34—C35121.7 (3)C46—C45—H45120.1
C33—C34—H34119.2C44—C45—H45120.1
C35—C34—H34119.2C54—C55—C56120.9 (3)
N2—C37—C36129.6 (3)C54—C55—H55119.5
N2—C37—C32108.1 (3)C56—C55—H55119.5
C36—C37—C32122.3 (3)C45—C46—C47120.8 (3)
C2—C5—C51113.0 (2)C45—C46—H46119.6
C2—C5—C499.5 (2)C47—C46—H46119.6
O2—C41—C42—C474.7 (4)C47—C42—C43—C440.5 (5)
C4—C41—C42—C47171.8 (3)C41—C42—C43—C44178.7 (3)
O2—C41—C42—C43176.1 (3)C1—C2—C3—O1178.2 (3)
C4—C41—C42—C437.5 (4)C5—C2—C3—O18.3 (3)
C3—O1—C4—C41102.4 (2)C1—C2—C3—C316.9 (5)
C3—O1—C4—C517.7 (3)C5—C2—C3—C31166.6 (3)
O2—C41—C4—O111.2 (4)C4—O1—C3—C26.4 (3)
C42—C41—C4—O1172.3 (2)C4—O1—C3—C31177.8 (2)
O2—C41—C4—C5105.8 (3)C38—C31—C3—C211.8 (5)
C42—C41—C4—C570.7 (3)C32—C31—C3—C2164.9 (3)
C37—N2—C38—C310.4 (3)C38—C31—C3—O1173.4 (3)
N2—C38—C31—C3176.2 (3)C32—C31—C3—O19.9 (4)
N2—C38—C31—C321.0 (3)C56—C51—C52—C530.6 (5)
C33—C32—C31—C38179.8 (3)C5—C51—C52—C53178.0 (3)
C37—C32—C31—C381.2 (3)C54—C53—C52—C510.3 (5)
C33—C32—C31—C33.0 (5)Br1—C53—C52—C51179.1 (2)
C37—C32—C31—C3176.0 (3)C42—C43—C44—C451.0 (5)
C38—N2—C37—C36179.8 (3)C52—C51—C56—C551.3 (5)
C38—N2—C37—C320.4 (3)C5—C51—C56—C55177.3 (3)
C33—C32—C37—N2179.8 (3)C43—C42—C47—C460.5 (5)
C31—C32—C37—N21.0 (3)C41—C42—C47—C46179.8 (3)
C33—C32—C37—C360.0 (4)N2—C37—C36—C35179.8 (3)
C31—C32—C37—C36179.2 (3)C32—C37—C36—C350.0 (5)
C3—C2—C5—C51102.5 (3)C35—C34—C33—C320.4 (4)
C1—C2—C5—C5171.3 (3)C37—C32—C33—C340.2 (4)
C3—C2—C5—C417.8 (3)C31—C32—C33—C34179.1 (3)
C1—C2—C5—C4168.4 (3)C52—C53—C54—C550.6 (5)
C52—C51—C5—C2129.2 (3)Br1—C53—C54—C55179.4 (3)
C56—C51—C5—C252.2 (4)C37—C36—C35—C340.2 (5)
C52—C51—C5—C4118.7 (3)C33—C34—C35—C360.4 (5)
C56—C51—C5—C460.0 (3)C43—C44—C45—C460.4 (6)
O1—C4—C5—C220.8 (3)C53—C54—C55—C560.1 (5)
C41—C4—C5—C299.0 (2)C51—C56—C55—C541.1 (5)
O1—C4—C5—C5199.3 (3)C44—C45—C46—C470.7 (6)
C41—C4—C5—C51140.9 (2)C42—C47—C46—C451.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···O10.932.482.995 (3)115
N2—H2···O2i0.81 (3)2.26 (3)3.006 (3)153 (3)
C36—H36···Br1ii0.932.873.509 (3)127
C34—H34···Cg1iii0.932.663.570 (3)166
C47—H47···Cg2iv0.932.953.784 (4)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x1/2, y1/2, z1/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H17BrN2O2
Mr469.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.8003 (6), 15.8876 (10), 13.5588 (9)
β (°) 100.306 (3)
V3)2077.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.01
Crystal size (mm)0.18 × 0.16 × 0.13
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
17242, 3635, 2366
Rint0.044
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.108, 1.02
No. of reflections3635
No. of parameters284
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.78

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···O10.932.482.995 (3)115
N2—H2···O2i0.81 (3)2.26 (3)3.006 (3)153 (3)
C36—H36···Br1ii0.932.873.509 (3)127
C34—H34···Cg1iii0.932.663.570 (3)166
C47—H47···Cg2iv0.932.953.784 (4)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x1/2, y1/2, z1/2; (iv) x1, y, z.
 

Acknowledgements

JS thanks the UGC for FIST support. JS and RV thank the management of Madura College for their encouragement and support. PG thanks CSIR for junior and senior research fellowships. SP thanks the Department of Science and Technology, New Delhi, for funding Indo-Spanish collaborative major research project (grants DST/INT/SPAIN/09).

References

First citationAuvin, S. & Chabrier De Lassauniere, P. (2005). US Patent No. 222045.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds