organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2Z)-Azepan-2-yl­­idene]-1-(4-nitro­phen­yl)ethanone

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa
*Correspondence e-mail: joseph.michael@wits.ac.za

(Received 10 July 2012; accepted 13 July 2012; online 18 July 2012)

The title compound, C14H16N2O3, is an NH-vinyl­ogous amide (enaminone) produced by the reaction of 4-nitro­phenacyl bromide with azepane-2-thione. The conformation about the C=C bond [1.3927 (14) Å] is Z, which allows for the formation of an intra­molecular N—H⋯O hydrogen bond that leads to an S(6) loop. Inversion-related mol­ecules associate via N—H⋯O hydrogen bonds to form a 12-membered {⋯OC3NH}2 synthon.

Related literature

For uses and reactions of enamino­nes, see: Roth et al. (1971[Roth, M., Dubs, P., Götschi, E. & Eschenmoser, A. (1971). Helv. Chim. Acta, 54, 710-734.]); Paulvannan & Stille (1994[Paulvannan, K. & Stille, J. R. (1994). J. Org. Chem. 59, 1613-1620.]); Michael et al. (1999[Michael, J. P., de Koning, C. B., Gravestock, D., Hosken, G. D., Howard, A. S., Jungmann, C. M., Krause, R. W. M., Parsons, A. S., Pelly, S. C. & Stanbury, T. V. (1999). Pure Appl. Chem. 71, 979-988.]). For related structures, see: Balderson et al. (2007[Balderson, J. L., Fernandes, M. A., Michael, J. P. & Perry, C. B. (2007). Acta Cryst. C63, o734-o738.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O3

  • Mr = 260.29

  • Triclinic, [P \overline 1]

  • a = 6.7963 (3) Å

  • b = 8.4054 (3) Å

  • c = 11.6649 (5) Å

  • α = 76.508 (2)°

  • β = 81.134 (2)°

  • γ = 80.596 (2)°

  • V = 634.58 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.56 × 0.5 × 0.42 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.905, Tmax = 0.955

  • 10354 measured reflections

  • 3041 independent reflections

  • 2732 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.116

  • S = 1.06

  • 3041 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.897 (16) 1.998 (15) 2.7041 (11) 134.6 (13)
N1—H1⋯O1i 0.897 (16) 2.392 (15) 3.0303 (12) 128.2 (12)
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker 2004[Bruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was prepared as part of an ongoing methodological investigation into the use of enaminones in the synthesis of azabicyclic alkaloids (Michael et al., 1999). For example, its reaction with acryloyl chloride, according to the method of Paulvannan & Stille (1994), produced a 2,3,6,7-tetrahydro-5(1H)-indolizinone related to numerous natural products. The crystal structures of analogous 4-bromophenyl enaminones with 5-, 6- and 7-membered rings have been reported (Balderson et al., 2007).

The asymmetric unit of (I) consists of one molecule of 2-[(2Z)-azepan-2-ylidene]-1-(4-nitrophenyl)ethan-1-one (Fig. 1). The hydrogen bonding consists of an intramolecular N—H···OC hydrogen bond, and an intermolecular N—H···OC hydrogen bond (Table 1). The combination of these two hydrogen bonds results in an R22(4) ring (Fig. 2) as described by graph set notation (Bernstein et al., 1995).

Related literature top

For uses and reactions of enaminones, see: Roth et al. (1971); Paulvannan & Stille (1994); Michael et al. (1999). For related structures, see: Balderson et al. (2007). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The employed synthesis followed the Eschenmoser procedure (Roth et al., 1971). p-Nitrophenacyl bromide (995 mg, 4.08 mmol) was added to a solution of azepane-2-thione (502 mg, 3.88 mmol) in dry acetonitrile (30 ml). The resulting solution was stirred at room temperature for 4 h, after which S-alkylation was complete as shown by the precipitation of the thioiminium salt. This was then followed by the addition of triphenylphosphine (1.069 g, 4.08 mmol) and triethylamine (413 mg, 4.08 mmol) to induce sulfur extrusion. The reaction mixture was poured into water and the organic components were extracted with diethyl ether (3 × 30 ml). The resulting organic layer was dried over MgSO4, filtered and the solvent removed in vacuo. The resulting residue was purified by column chromatography on silica gel with hexane:ethyl acetate (19:1 v/v) as eluent to yield 2-[(2Z)-azepan-2-ylidene]-1-(4-nitrophenyl)ethan-1-one (829 mg, 82%) as yellow crystals, m.p. 398–400 K.

Refinement top

The C-bound H atoms were geometrically placed [C—H = 0.95 Å (alkenyl- and aromatic-H) and 0.99 Å (methylene-H)] and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference Fourier map and refined freely.

Structure description top

The title compound was prepared as part of an ongoing methodological investigation into the use of enaminones in the synthesis of azabicyclic alkaloids (Michael et al., 1999). For example, its reaction with acryloyl chloride, according to the method of Paulvannan & Stille (1994), produced a 2,3,6,7-tetrahydro-5(1H)-indolizinone related to numerous natural products. The crystal structures of analogous 4-bromophenyl enaminones with 5-, 6- and 7-membered rings have been reported (Balderson et al., 2007).

The asymmetric unit of (I) consists of one molecule of 2-[(2Z)-azepan-2-ylidene]-1-(4-nitrophenyl)ethan-1-one (Fig. 1). The hydrogen bonding consists of an intramolecular N—H···OC hydrogen bond, and an intermolecular N—H···OC hydrogen bond (Table 1). The combination of these two hydrogen bonds results in an R22(4) ring (Fig. 2) as described by graph set notation (Bernstein et al., 1995).

For uses and reactions of enaminones, see: Roth et al. (1971); Paulvannan & Stille (1994); Michael et al. (1999). For related structures, see: Balderson et al. (2007). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004) and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding diagram of the compound. Intermolecular and intramolecular N—H···O hydrogen bonds (shown as dashed red lines) form a four-membered ring. Non-participating H atoms have been omitted for clarity.
2-[(2Z)-Azepan-2-ylidene]-1-(4-nitrophenyl)ethanone top
Crystal data top
C14H16N2O3Z = 2
Mr = 260.29F(000) = 276
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7963 (3) ÅCell parameters from 6539 reflections
b = 8.4054 (3) Åθ = 2.5–28.4°
c = 11.6649 (5) ŵ = 0.10 mm1
α = 76.508 (2)°T = 173 K
β = 81.134 (2)°Block, red
γ = 80.596 (2)°0.56 × 0.5 × 0.42 mm
V = 634.58 (5) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2732 reflections with I > 2σ(I)
ω scansRint = 0.048
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28.0°, θmin = 1.8°
Tmin = 0.905, Tmax = 0.955h = 88
10354 measured reflectionsk = 1111
3041 independent reflectionsl = 1515
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0618P)2 + 0.1127P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.039(Δ/σ)max < 0.001
wR(F2) = 0.116Δρmax = 0.30 e Å3
S = 1.06Δρmin = 0.24 e Å3
3041 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
177 parametersExtinction coefficient: 0.170 (12)
0 restraints
Crystal data top
C14H16N2O3γ = 80.596 (2)°
Mr = 260.29V = 634.58 (5) Å3
Triclinic, P1Z = 2
a = 6.7963 (3) ÅMo Kα radiation
b = 8.4054 (3) ŵ = 0.10 mm1
c = 11.6649 (5) ÅT = 173 K
α = 76.508 (2)°0.56 × 0.5 × 0.42 mm
β = 81.134 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3041 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2732 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.955Rint = 0.048
10354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.30 e Å3
3041 reflectionsΔρmin = 0.24 e Å3
177 parameters
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.01720 (16)0.40728 (13)0.79045 (9)0.0296 (2)
H1A1.00070.47940.84830.035*
H1B1.1550.40940.74820.035*
C20.99594 (18)0.23125 (14)0.85852 (10)0.0342 (3)
H2A1.11870.18560.89740.041*
H2B0.98820.16330.80090.041*
C30.8137 (2)0.21416 (15)0.95278 (11)0.0394 (3)
H3A0.81410.0960.99130.047*
H3B0.82790.27351.01440.047*
C40.61162 (18)0.27927 (13)0.90694 (10)0.0333 (3)
H4A0.50340.25270.97280.04*
H4B0.59760.22150.84430.04*
C50.58338 (16)0.46611 (13)0.85608 (9)0.0281 (2)
H5A0.43780.50650.86060.034*
H5B0.64280.52130.90620.034*
C60.67677 (15)0.51517 (12)0.72942 (9)0.0248 (2)
C70.55481 (15)0.60086 (12)0.64327 (9)0.0256 (2)
H70.41350.61460.6650.031*
C80.63077 (15)0.66855 (12)0.52480 (9)0.0249 (2)
C90.48836 (15)0.78776 (12)0.44815 (8)0.0236 (2)
C100.28080 (15)0.78647 (13)0.46714 (9)0.0267 (2)
H100.22480.70460.52850.032*
C110.15532 (15)0.90342 (13)0.39730 (9)0.0270 (2)
H110.01380.90380.4110.032*
C120.24127 (15)1.01984 (12)0.30693 (9)0.0244 (2)
C130.44670 (16)1.02284 (12)0.28387 (9)0.0271 (2)
H130.50211.10280.22070.033*
C140.56934 (15)0.90611 (13)0.35534 (9)0.0273 (2)
H140.71070.90640.34110.033*
N10.87397 (13)0.47603 (11)0.70420 (8)0.0275 (2)
H10.923 (2)0.5042 (18)0.6274 (14)0.042 (4)*
N20.10920 (13)1.14105 (10)0.23068 (8)0.0275 (2)
O10.81102 (11)0.64279 (10)0.48208 (7)0.0328 (2)
O20.07169 (12)1.15862 (11)0.26345 (8)0.0403 (2)
O30.18635 (12)1.21881 (10)0.13628 (7)0.0373 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0269 (5)0.0327 (5)0.0286 (5)0.0022 (4)0.0067 (4)0.0047 (4)
C20.0361 (6)0.0315 (5)0.0320 (6)0.0020 (4)0.0066 (5)0.0036 (4)
C30.0462 (7)0.0339 (6)0.0301 (6)0.0000 (5)0.0018 (5)0.0034 (4)
C40.0379 (6)0.0319 (5)0.0276 (5)0.0090 (4)0.0047 (4)0.0041 (4)
C50.0294 (5)0.0320 (5)0.0213 (5)0.0027 (4)0.0015 (4)0.0062 (4)
C60.0267 (5)0.0249 (5)0.0224 (5)0.0042 (4)0.0002 (4)0.0056 (4)
C70.0225 (5)0.0283 (5)0.0241 (5)0.0023 (4)0.0005 (4)0.0045 (4)
C80.0238 (5)0.0262 (5)0.0241 (5)0.0030 (4)0.0017 (4)0.0050 (4)
C90.0241 (5)0.0245 (5)0.0218 (5)0.0030 (4)0.0008 (4)0.0057 (4)
C100.0265 (5)0.0286 (5)0.0233 (5)0.0064 (4)0.0012 (4)0.0017 (4)
C110.0213 (5)0.0326 (5)0.0262 (5)0.0048 (4)0.0016 (4)0.0047 (4)
C120.0265 (5)0.0233 (5)0.0235 (5)0.0016 (4)0.0040 (4)0.0055 (4)
C130.0283 (5)0.0258 (5)0.0257 (5)0.0063 (4)0.0014 (4)0.0020 (4)
C140.0217 (5)0.0313 (5)0.0272 (5)0.0050 (4)0.0006 (4)0.0036 (4)
N10.0253 (4)0.0332 (5)0.0211 (4)0.0019 (3)0.0017 (3)0.0023 (3)
N20.0282 (5)0.0251 (4)0.0286 (4)0.0026 (3)0.0040 (3)0.0047 (3)
O10.0236 (4)0.0398 (4)0.0278 (4)0.0009 (3)0.0021 (3)0.0002 (3)
O20.0263 (4)0.0435 (5)0.0434 (5)0.0029 (3)0.0038 (3)0.0004 (4)
O30.0378 (5)0.0363 (4)0.0319 (4)0.0056 (3)0.0043 (3)0.0049 (3)
Geometric parameters (Å, º) top
C1—N11.4630 (13)C7—C81.4174 (14)
C1—C21.5254 (15)C7—H70.95
C1—H1A0.99C8—O11.2535 (12)
C1—H1B0.99C8—C91.5073 (14)
C2—C31.5259 (17)C9—C101.3952 (14)
C2—H2A0.99C9—C141.3990 (14)
C2—H2B0.99C10—C111.3870 (14)
C3—C41.5219 (18)C10—H100.95
C3—H3A0.99C11—C121.3877 (14)
C3—H3B0.99C11—H110.95
C4—C51.5353 (15)C12—C131.3838 (14)
C4—H4A0.99C12—N21.4694 (13)
C4—H4B0.99C13—C141.3848 (15)
C5—C61.5060 (13)C13—H130.95
C5—H5A0.99C14—H140.95
C5—H5B0.99N1—H10.897 (16)
C6—N11.3306 (13)N2—O21.2253 (12)
C6—C71.3927 (14)N2—O31.2300 (12)
N1—C1—C2114.74 (9)C7—C6—C5119.10 (9)
N1—C1—H1A108.6C6—C7—C8123.35 (9)
C2—C1—H1A108.6C6—C7—H7118.3
N1—C1—H1B108.6C8—C7—H7118.3
C2—C1—H1B108.6O1—C8—C7124.12 (9)
H1A—C1—H1B107.6O1—C8—C9118.04 (9)
C1—C2—C3115.04 (9)C7—C8—C9117.72 (9)
C1—C2—H2A108.5C10—C9—C14119.09 (9)
C3—C2—H2A108.5C10—C9—C8122.91 (9)
C1—C2—H2B108.5C14—C9—C8117.99 (9)
C3—C2—H2B108.5C11—C10—C9120.69 (9)
H2A—C2—H2B107.5C11—C10—H10119.7
C4—C3—C2115.06 (10)C9—C10—H10119.7
C4—C3—H3A108.5C10—C11—C12118.47 (9)
C2—C3—H3A108.5C10—C11—H11120.8
C4—C3—H3B108.5C12—C11—H11120.8
C2—C3—H3B108.5C13—C12—C11122.46 (9)
H3A—C3—H3B107.5C13—C12—N2118.91 (9)
C3—C4—C5113.73 (9)C11—C12—N2118.60 (9)
C3—C4—H4A108.8C12—C13—C14118.20 (9)
C5—C4—H4A108.8C12—C13—H13120.9
C3—C4—H4B108.8C14—C13—H13120.9
C5—C4—H4B108.8C13—C14—C9121.06 (9)
H4A—C4—H4B107.7C13—C14—H14119.5
C6—C5—C4113.97 (9)C9—C14—H14119.5
C6—C5—H5A108.8C6—N1—C1126.07 (9)
C4—C5—H5A108.8C6—N1—H1115.6 (9)
C6—C5—H5B108.8C1—N1—H1118.0 (9)
C4—C5—H5B108.8O2—N2—O3123.31 (9)
H5A—C5—H5B107.7O2—N2—C12118.66 (9)
N1—C6—C7122.38 (9)O3—N2—C12118.02 (9)
N1—C6—C5118.52 (9)
N1—C1—C2—C373.34 (13)C9—C10—C11—C121.08 (16)
C1—C2—C3—C458.23 (14)C10—C11—C12—C130.29 (16)
C2—C3—C4—C564.07 (13)C10—C11—C12—N2178.33 (9)
C3—C4—C5—C682.62 (12)C11—C12—C13—C140.94 (16)
C4—C5—C6—N160.10 (13)N2—C12—C13—C14178.98 (9)
C4—C5—C6—C7120.49 (11)C12—C13—C14—C90.24 (16)
N1—C6—C7—C86.73 (16)C10—C9—C14—C131.07 (16)
C5—C6—C7—C8172.66 (10)C8—C9—C14—C13177.89 (9)
C6—C7—C8—O18.38 (17)C7—C6—N1—C1170.95 (10)
C6—C7—C8—C9167.41 (9)C5—C6—N1—C18.44 (15)
O1—C8—C9—C10157.98 (10)C2—C1—N1—C668.52 (14)
C7—C8—C9—C1025.96 (14)C13—C12—N2—O2166.71 (9)
O1—C8—C9—C1423.10 (14)C11—C12—N2—O215.17 (14)
C7—C8—C9—C14152.95 (10)C13—C12—N2—O313.97 (14)
C14—C9—C10—C111.74 (16)C11—C12—N2—O3164.14 (9)
C8—C9—C10—C11177.16 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.897 (16)1.998 (15)2.7041 (11)134.6 (13)
N1—H1···O1i0.897 (16)2.392 (15)3.0303 (12)128.2 (12)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H16N2O3
Mr260.29
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.7963 (3), 8.4054 (3), 11.6649 (5)
α, β, γ (°)76.508 (2), 81.134 (2), 80.596 (2)
V3)634.58 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.56 × 0.5 × 0.42
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.905, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
10354, 3041, 2732
Rint0.048
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.116, 1.06
No. of reflections3041
No. of parameters177
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004) and XPREP (Bruker 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.897 (16)1.998 (15)2.7041 (11)134.6 (13)
N1—H1···O1i0.897 (16)2.392 (15)3.0303 (12)128.2 (12)
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by the University of the Witwatersrand, which is thanked for providing the required infrastructure.

References

First citationBalderson, J. L., Fernandes, M. A., Michael, J. P. & Perry, C. B. (2007). Acta Cryst. C63, o734–o738.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMichael, J. P., de Koning, C. B., Gravestock, D., Hosken, G. D., Howard, A. S., Jungmann, C. M., Krause, R. W. M., Parsons, A. S., Pelly, S. C. & Stanbury, T. V. (1999). Pure Appl. Chem. 71, 979–988.  Web of Science CrossRef CAS Google Scholar
First citationPaulvannan, K. & Stille, J. R. (1994). J. Org. Chem. 59, 1613–1620.  CrossRef CAS Web of Science Google Scholar
First citationRoth, M., Dubs, P., Götschi, E. & Eschenmoser, A. (1971). Helv. Chim. Acta, 54, 710–734.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds