metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(thio­cyanato-κN)cobalt(II)]-di-μ-thio­urea-κ4S:S]

aDepartment of Physics, Rajeswari Vedachalam Government Arts College, Chengalpet 603 301, India, bResearch and Development Center, Bharathiar University, Coimbatore 641 046, India, and cDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: drkrr2007@gmail.com, smurugavel27@gmail.com

(Received 21 July 2012; accepted 23 July 2012; online 28 July 2012)

In the title polymeric complex, [Co(NCS)2{SC(NH2)2}2]n, the asymmetric unit comprises a CoII ion, which is situated on an inversion centre, an N-bound thio­cyanate anion and a μ2-bridging thio­urea mol­ecule. The CoII atom is coordinated in a distorted octa­hedral fashion within an N2S4 donor set. The bridging thio­urea ligands link CoII ions into a polymeric chain extending along [100]. The mol­ecular conformation is stabilized by intra­molecular N—H⋯N hydrogen bonds, which generate S(6) ring motifs. The crystal packing is stabilized by N—H⋯S inter­actions, which connect the chains into a three-dimensional architecture.

Related literature

For a general introduction to thio­cyanato complexes, see: Nardelli et al. (1957[Nardelli, M., Braibanti, A. & Fava, G. (1957). Gazz. Chim. Ital. 87, 1209-1231.]). For the crystal structure of the analogous CdII complex, see: Wang et al. (2002[Wang, X. Q., Yu, W. T., Xu, D., Lu, M. K. & Yuan, D. R. (2002). Acta Cryst. C58, m336-m337.]). For information on the properties of complexes incorporating these ligands, see: Yuan et al. (1997[Yuan, D. R., Xu, D., Fang, Q., Yu, W. T. & Jiang, M. H. (1997). Appl. Phys. Lett. 70, 544-546.]); Yu et al. (2001[Yu, W.-T., Wang, X.-Q., Xu, D., Lu, M.-K. & Yuan, D.-R. (2001). Acta Cryst. C57, 145-146.]); Machura et al. (2011[Machura, B., Nawrot, I. & Michalik, K. (2011). Polyhedron, 30, 2619-2626.]). For the use of CoII complexes with mixed S-donor ligands as precursors to CoS, see: Kropidłowska et al. (2008[Kropidłowska, A., Chojnacki, J., Fahmi, A. & Becker, B. (2008). Dalton Trans. pp. 6825-6831.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NCS)2(CH4N2S)2]

  • Mr = 327.33

  • Triclinic, [P \overline 1]

  • a = 3.855 (3) Å

  • b = 7.585 (2) Å

  • c = 10.094 (2) Å

  • α = 92.424 (3)°

  • β = 98.172 (2)°

  • γ = 104.166 (2)°

  • V = 282.4 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.23 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.591, Tmax = 0.699

  • 6452 measured reflections

  • 1844 independent reflections

  • 1764 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.052

  • S = 1.07

  • 1844 reflections

  • 71 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N1 0.86 2.26 3.079 (3) 159
N2—H2A⋯S1i 0.86 2.70 3.461 (3) 148
N3—H3A⋯S1ii 0.86 2.78 3.483 (3) 140
N3—H3B⋯S2iii 0.86 2.62 3.456 (3) 166
Symmetry codes: (i) -x+2, -y, -z+2; (ii) x+1, y-1, z; (iii) -x+2, -y-1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The interest in the coordination compounds possessing both thiourea and thiocyanato ligands dates back to the 1950's (e.g. Nardelli et al., 1957) when the nature of coordination compounds formed by divalent cations (M = Mn, Co, Ni, Cd, Pb) and organic molecules containing sulfur was extensively studied. The interest in these compounds is related either to their non-linear optical properties (Yuan et al., 1997, Yu et al., 2001) or with their possible use as single-source precursors of semiconducting materials. Moreover, the use of SCN ligands, with bridging abilities, may lead to intriguing architectures and topologies, often generating one-dimensional chains (Machura et al., 2011). For the above reasons and during our studies on new molecular precursors (Kropidłowska et al., 2008), we turned our attention to systems of this type, that is, complexes containing thiourea and thiocyanate ligands connected to a cobalt center.

The title complex, Fig. 1, is isostructural with the previously reported cadmium(II) complex (Wang et al., 2002). The CoII atom is located at the inversion centre and is octahedrally coordinated by two N atoms from two thiocynate groups and four S atoms from four thiourea molecules. The bridging thiourea ligands link CoII ions into a one dimensional polymeric chain along [100] (Fig. 2). The Co···Co distance along the chain is 3.855 (3) Å. The octahedral coordination sphere of the cobalt(II) cation is slightly distorted with distances in the range of 2.016 (1) Å to 2.623 (1) Å. The angles around the cobalt(II) atom range from 83.4 (1)° to 180°. The thiocynate group is almost linear with the N1—C1—S1 angle = 179.2 (1)°.

The molecular conformation is stabilized by intramolecular N2—H2B···N1 hydrogen bond, forming an S(6) ring motif (Bernstein et al., 1995). In the crystal, molecules are linked by N—H···S hydrogen bonds into a three-dimensional architecture (Table 1).

Related literature top

For a general introduction to thiocyanato complexes, see: Nardelli et al. (1957). For the crystal structure of the analogous CdII complex, see: Wang et al. (2002). For information on the properties of complexes incorporating these ligands, see: Yuan et al. (1997); Yu et al. (2001); Machura et al. (2011). For the use of CoII complexes with mixed S-donor ligands as precursors to CoS, see: Kropidłowska et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Cobalt(II) chloride, ammonium thiocynate and thiourea were dissolved in aqueous solution in the molar ratio 1:2:2 and stirred well for 2 h to obtain an homogeneous mixture. The dark-brown crystals of the title compound were obtained after the filtrate and had been allowed to stand at room temperature for two weeks.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å and constrained to ride on their parent atom, with Uiso(H)=1.2Ueq(N).

Structure description top

The interest in the coordination compounds possessing both thiourea and thiocyanato ligands dates back to the 1950's (e.g. Nardelli et al., 1957) when the nature of coordination compounds formed by divalent cations (M = Mn, Co, Ni, Cd, Pb) and organic molecules containing sulfur was extensively studied. The interest in these compounds is related either to their non-linear optical properties (Yuan et al., 1997, Yu et al., 2001) or with their possible use as single-source precursors of semiconducting materials. Moreover, the use of SCN ligands, with bridging abilities, may lead to intriguing architectures and topologies, often generating one-dimensional chains (Machura et al., 2011). For the above reasons and during our studies on new molecular precursors (Kropidłowska et al., 2008), we turned our attention to systems of this type, that is, complexes containing thiourea and thiocyanate ligands connected to a cobalt center.

The title complex, Fig. 1, is isostructural with the previously reported cadmium(II) complex (Wang et al., 2002). The CoII atom is located at the inversion centre and is octahedrally coordinated by two N atoms from two thiocynate groups and four S atoms from four thiourea molecules. The bridging thiourea ligands link CoII ions into a one dimensional polymeric chain along [100] (Fig. 2). The Co···Co distance along the chain is 3.855 (3) Å. The octahedral coordination sphere of the cobalt(II) cation is slightly distorted with distances in the range of 2.016 (1) Å to 2.623 (1) Å. The angles around the cobalt(II) atom range from 83.4 (1)° to 180°. The thiocynate group is almost linear with the N1—C1—S1 angle = 179.2 (1)°.

The molecular conformation is stabilized by intramolecular N2—H2B···N1 hydrogen bond, forming an S(6) ring motif (Bernstein et al., 1995). In the crystal, molecules are linked by N—H···S hydrogen bonds into a three-dimensional architecture (Table 1).

For a general introduction to thiocyanato complexes, see: Nardelli et al. (1957). For the crystal structure of the analogous CdII complex, see: Wang et al. (2002). For information on the properties of complexes incorporating these ligands, see: Yuan et al. (1997); Yu et al. (2001); Machura et al. (2011). For the use of CoII complexes with mixed S-donor ligands as precursors to CoS, see: Kropidłowska et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title complex expanded to show the coordination geometry of the CoII atom and the polymeric connectivity. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as a small circles of arbitrary radius. [Symmetry codes: (i)-1 + x, y, z; (ii)1 + x, y, z; (iii)1 - x, -y, 1 - z; (iv)2 - x, -y, 1 - z].
[Figure 2] Fig. 2. A view of the linear polymeric chain aligned along [100] in the title complex. Colour code: Co, red; N, blue; S, yellow; C, black; H, green.
catena-Poly[[bis(thiocyanato-κN)cobalt(II)]-di-µ-thiourea- κ4S:S] top
Crystal data top
[Co(NCS)2(CH4N2S)2]Z = 1
Mr = 327.33F(000) = 165
Triclinic, P1Dx = 1.925 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.855 (3) ÅCell parameters from 2298 reflections
b = 7.585 (2) Åθ = 2.0–34.1°
c = 10.094 (2) ŵ = 2.23 mm1
α = 92.424 (3)°T = 293 K
β = 98.172 (2)°Block, brown
γ = 104.166 (2)°0.24 × 0.22 × 0.16 mm
V = 282.4 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1844 independent reflections
Radiation source: fine-focus sealed tube1764 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 34.1°, θmin = 2.0°
ω scansh = 55
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1110
Tmin = 0.591, Tmax = 0.699l = 1415
6452 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0264P)2 + 0.0757P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1844 reflectionsΔρmax = 0.61 e Å3
71 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.203 (7)
Crystal data top
[Co(NCS)2(CH4N2S)2]γ = 104.166 (2)°
Mr = 327.33V = 282.4 (2) Å3
Triclinic, P1Z = 1
a = 3.855 (3) ÅMo Kα radiation
b = 7.585 (2) ŵ = 2.23 mm1
c = 10.094 (2) ÅT = 293 K
α = 92.424 (3)°0.24 × 0.22 × 0.16 mm
β = 98.172 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1844 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1764 reflections with I > 2σ(I)
Tmin = 0.591, Tmax = 0.699Rint = 0.026
6452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.07Δρmax = 0.61 e Å3
1844 reflectionsΔρmin = 0.33 e Å3
71 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5577 (3)0.18192 (15)0.78972 (10)0.01952 (19)
C20.9805 (3)0.29358 (15)0.69572 (11)0.02016 (19)
N10.5889 (3)0.10262 (13)0.69282 (9)0.02280 (18)
N20.9447 (3)0.19551 (16)0.80075 (10)0.0295 (2)
H2A0.98990.23010.88000.035*
H2B0.87590.09660.79030.035*
N31.0858 (3)0.44519 (15)0.71126 (11)0.0324 (2)
H3A1.13130.48010.79040.039*
H3B1.10910.50920.64230.039*
S10.51233 (9)0.29477 (5)0.92362 (3)0.03241 (9)
S20.89332 (7)0.22779 (3)0.53449 (2)0.01878 (8)
Co0.50000.00000.50000.01874 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0193 (4)0.0231 (5)0.0165 (4)0.0073 (4)0.0011 (3)0.0004 (3)
C20.0189 (4)0.0209 (5)0.0200 (4)0.0033 (4)0.0031 (3)0.0046 (4)
N10.0259 (4)0.0256 (4)0.0169 (4)0.0078 (4)0.0022 (3)0.0016 (3)
N20.0430 (6)0.0313 (5)0.0173 (4)0.0147 (4)0.0056 (4)0.0040 (4)
N30.0484 (6)0.0269 (5)0.0256 (5)0.0173 (5)0.0027 (4)0.0072 (4)
S10.03586 (17)0.0469 (2)0.01841 (14)0.02104 (14)0.00223 (11)0.00877 (12)
S20.02254 (13)0.01991 (13)0.01566 (12)0.00861 (9)0.00307 (9)0.00202 (8)
Co0.02202 (11)0.02291 (12)0.01230 (10)0.00862 (8)0.00200 (7)0.00215 (7)
Geometric parameters (Å, º) top
C1—N11.1627 (14)N3—H3A0.8600
C1—S11.6226 (11)N3—H3B0.8600
C2—N21.3121 (15)S2—Co2.5668 (10)
C2—N31.3182 (15)S2—Coi2.6231 (14)
C2—S21.7338 (11)Co—N1ii2.0158 (10)
N1—Co2.0158 (10)Co—S2ii2.5668 (10)
N2—H2A0.8600Co—S2iii2.6231 (14)
N2—H2B0.8600Co—S2iv2.6231 (14)
N1—C1—S1179.17 (10)N1—Co—S2ii83.37 (3)
N2—C2—N3120.18 (11)N1ii—Co—S2ii96.63 (3)
N2—C2—S2121.31 (9)N1—Co—S296.63 (3)
N3—C2—S2118.50 (9)N1ii—Co—S283.37 (3)
C1—N1—Co160.34 (9)S2ii—Co—S2180.000 (11)
C2—N2—H2A120.0N1—Co—S2iii88.73 (3)
C2—N2—H2B120.0N1ii—Co—S2iii91.27 (3)
H2A—N2—H2B120.0S2ii—Co—S2iii95.93 (5)
C2—N3—H3A120.0S2—Co—S2iii84.07 (5)
C2—N3—H3B120.0N1—Co—S2iv91.27 (3)
H3A—N3—H3B120.0N1ii—Co—S2iv88.73 (3)
C2—S2—Co117.06 (4)S2ii—Co—S2iv84.07 (5)
C2—S2—Coi104.64 (4)S2—Co—S2iv95.93 (5)
Co—S2—Coi95.93 (5)S2iii—Co—S2iv180.000 (11)
N1—Co—N1ii180.0
S1—C1—N1—Co33 (7)C2—S2—Co—N121.76 (5)
N2—C2—S2—Co19.76 (11)Coi—S2—Co—N188.02 (3)
N3—C2—S2—Co160.47 (8)C2—S2—Co—N1ii158.24 (5)
N2—C2—S2—Coi84.92 (10)Coi—S2—Co—N1ii91.98 (3)
N3—C2—S2—Coi94.85 (10)C2—S2—Co—S2ii117 (100)
C1—N1—Co—N1ii140 (100)Coi—S2—Co—S2ii133 (100)
C1—N1—Co—S2ii12.8 (3)C2—S2—Co—S2iii109.79 (4)
C1—N1—Co—S2167.2 (3)Coi—S2—Co—S2iii0.0
C1—N1—Co—S2iii108.9 (3)C2—S2—Co—S2iv70.21 (4)
C1—N1—Co—S2iv71.1 (3)Coi—S2—Co—S2iv180.0
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+2, y, z+1; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N10.862.263.079 (3)159
N2—H2A···S1v0.862.703.461 (3)148
N3—H3A···S1vi0.862.783.483 (3)140
N3—H3B···S2vii0.862.623.456 (3)166
Symmetry codes: (v) x+2, y, z+2; (vi) x+1, y1, z; (vii) x+2, y1, z+1.

Experimental details

Crystal data
Chemical formula[Co(NCS)2(CH4N2S)2]
Mr327.33
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)3.855 (3), 7.585 (2), 10.094 (2)
α, β, γ (°)92.424 (3), 98.172 (2), 104.166 (2)
V3)282.4 (2)
Z1
Radiation typeMo Kα
µ (mm1)2.23
Crystal size (mm)0.24 × 0.22 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.591, 0.699
No. of measured, independent and
observed [I > 2σ(I)] reflections
6452, 1844, 1764
Rint0.026
(sin θ/λ)max1)0.789
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.052, 1.07
No. of reflections1844
No. of parameters71
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.33

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N10.862.263.079 (3)159.0
N2—H2A···S1i0.862.703.461 (3)147.6
N3—H3A···S1ii0.862.783.483 (3)139.7
N3—H3B···S2iii0.862.623.456 (3)165.6
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y1, z; (iii) x+2, y1, z+1.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKropidłowska, A., Chojnacki, J., Fahmi, A. & Becker, B. (2008). Dalton Trans. pp. 6825–6831.  Google Scholar
First citationMachura, B., Nawrot, I. & Michalik, K. (2011). Polyhedron, 30, 2619–2626.  Web of Science CSD CrossRef CAS Google Scholar
First citationNardelli, M., Braibanti, A. & Fava, G. (1957). Gazz. Chim. Ital. 87, 1209–1231.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. Q., Yu, W. T., Xu, D., Lu, M. K. & Yuan, D. R. (2002). Acta Cryst. C58, m336–m337.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYu, W.-T., Wang, X.-Q., Xu, D., Lu, M.-K. & Yuan, D.-R. (2001). Acta Cryst. C57, 145–146.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYuan, D. R., Xu, D., Fang, Q., Yu, W. T. & Jiang, M. H. (1997). Appl. Phys. Lett. 70, 544–546.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds