organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-[(E)-2-(1-Benzo­thio­phen-3-yl­methyl­­idene)hydrazin-1-yl­­idene]-1,2-di­phenyl­ethanone

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and cDepartment of Physics, Arts and Science Faculty, Giresun University, Giresun, Turkey
*Correspondence e-mail: merve.pekdemir@oposta.omu.edu.tr

(Received 24 May 2012; accepted 6 July 2012; online 28 July 2012)

The title compound, C23H16N2OS, is not planar, the phenyl ring of the benzoyl group making a dihedral of 77.61 (7)° with the benzothio­phene system ring. The benzothio­phene system and the remaining phenyl ring make an angle of 12.71 (13)°. The conformation around the imine functions is E for the C=N bond towards the benzothio­phene system and Z for the C=N bond towards the benzoyl group. The packing of the mol­ecules shows C—H⋯π inter­actions. A weak intramolecular C—H⋯N bond also occurs.

Related literature

For general background to benzothio­phenes, see: Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Editors. Comprehensive Heterocyclic Chemistry, Vol. 2. pp. 679-729. Oxford: Pergamon Press.]); Shishoo & Jain (1992[Shishoo, C. J. & Jain, K. S. (1992). J. Heterocycl. Chem. 29, 883-893.]). For the biological properties of Schiff bases, see: Barton & Ollis (1979[Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon.]); Layer (1963[Layer, R. W. (1963). Chem. Rev. 63, 489-510.]); Ingold (1969[Ingold, C. K. (1969). In Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca, New York: Cornell University Press.]). For industrial applications of Shiff bases, see: Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). For related structures, see: Dege et al. (2006[Dege, N., Içbudak, H. & Adıyaman, E. (2006). Acta Cryst. C62, m401-m403.], 2007[Dege, N., Içbudak, H. & Adıyaman, E. (2007). Acta Cryst. C63, m13-m15.]); Demirtaş et al. (2009[Demirtaş, G., Dege, N., Şekerci, M., Servi, S. & Dinçer, M. (2009). Acta Cryst. E65, o1668.]); Gül et al. (2007[Gül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2902.]). For structural properties of benzothio­phene derivatives, see: Inamoto et al. (2008[Inamoto, C. K., Arai, Y., Hiroya, K. & Doi, T. (2008). Chem. Commun. pp. 5529-5531.]); Mlochowski & Potaczek (2009[Mlochowski, J. & Potaczek, P. (2009). Phosphorus Sulfur Slicon Relat. Elem. 184, 1115-1123.]); Novopoltseva (1995[Novopoltseva, O. M. (1995). Candidate of Sciences (Chemistry) dissertation, University of Volgograd, Russian Federation.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H16N2OS

  • Mr = 368.44

  • Monoclinic, P 21 /c

  • a = 17.1009 (7) Å

  • b = 8.7700 (4) Å

  • c = 13.1170 (6) Å

  • β = 103.898 (4)°

  • V = 1909.63 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Oxford Diffraction SuperNova (single source at offset) Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. ]) Tmin = 0.843, Tmax = 1.000

  • 7369 measured reflections

  • 3815 independent reflections

  • 2566 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.121

  • S = 1.07

  • 3815 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C9–C14 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯N2 0.93 2.53 3.083 (3) 118
C4—H4⋯Cg3i 0.93 2.74 3.648 (4) 167
C15—H15⋯Cg4ii 0.93 3.00 3.879 (3) 158
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. ]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases, i.e., compounds having a double CN bond, are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic and antitumor substances (Barton & Ollis, 1979; Layer, 1963; Ingold, 1969). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi et al., 2002) and components of rubber compounds (Novopoltseva, 1995).

Benzothiophenes are significant heterocyles either as biological active or luminescent molecules (Shishoo & Jain, 1992; Katritzky et al., 1996). Recently, new effective methods for the synthesis of benzothiophens have been developed (Inamoto et al., 2008; Mlochowski & Potaczek, 2009). In this work, we report the crystal structure of a benzothiophene derivate containing C=N bonds.

The molecular structure is not planar (Fig.1), the dihedral angle between the C1—C6 benzene ring and the C9—C14 benzene ring is 89.59 (16)°. However, the dihedral angle between the C1—C6 benzene ring and the C18—C23 benzene ring is 12.62 (16)°. The thiophene ring is actually planar (maximum deviation 0.0132 (17) Å) and the dihedral angle between the benzene ring with thiophene ring is 1.05 (12)°. The benzothiophene ring system (C16—C23/S1) makes dihedral angles with the benzene rings of 12.71 (13)° for C1—C6 benzene ring and 77.62 (11)° for C9—C14 benzene ring.

The NC double bond legths are 1.281 (3) Å for N1C7 and 1.276 (3) Å for N2C15. These are typical of double bonds, like to the matching bond length in (E)-2-[(3-trifluoromenthylphenylimino)methyl]-4-methylphenol [1.280 (2) Å; Gül et al., 2007]. The C8O1 bond length indicates the presence of a normal double CO bond (Allen et al., 1987). The C17—S1 and C19—S1 bond distances are 1.704 (2) Å and 1.733 (2) Å, respectively. The C—S bond distances are compatible with the literature (Dege et al., 2006, 2007; Demirtaş et al., 2009).

The molecules are packged by C—H···π and π···π interactions.

Related literature top

For general background to benzothiophenes, see: Katritzky et al. (1996); Shishoo & Jain (1992). For the biological properties of Schiff bases, see: Barton & Ollis (1979); Layer (1963); Ingold (1969). For industrial applications of Shiff bases, see: Taggi et al. (2002). For related structures, see: Allen et al. (1987); Dege et al. (2006, 2007); Demirtaş et al. (2009); Gül et al. (2007). For structural properties of benzothiophene derivatives, see: Inamoto et al. (2008); Mlochowski & Potaczek (2009); Novopoltseva (1995).

Experimental top

The compound (2Z)-2-[(2E)-(1-benzothiophen-3-ylmethylidene)hydrazinylidene] -1,2 diphenylethanone was prepared by refluxing a mixture of a solution containing 1-benzothiophene-3-carbaldehyde (0.012 g, 0.074 mmol) in 20 ml ethanol and a solution containing benzyl monohydrazone (0.017 g, 0.074 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1 h under reflux. The crystals of (2Z)-2-[(2E)-(1-benzothiophen-3-ylmethylidene) hydrazinylidene]-1,2-diphenylethanone suitable for X-ray analysis were obtained from ethanol by slow evaporation (yield % 61; m.p 135–137 °C).

Refinement top

All H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C—H = 0.93 Å and Uiso(H)=1.2Ueq(C).

Structure description top

Schiff bases, i.e., compounds having a double CN bond, are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic and antitumor substances (Barton & Ollis, 1979; Layer, 1963; Ingold, 1969). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi et al., 2002) and components of rubber compounds (Novopoltseva, 1995).

Benzothiophenes are significant heterocyles either as biological active or luminescent molecules (Shishoo & Jain, 1992; Katritzky et al., 1996). Recently, new effective methods for the synthesis of benzothiophens have been developed (Inamoto et al., 2008; Mlochowski & Potaczek, 2009). In this work, we report the crystal structure of a benzothiophene derivate containing C=N bonds.

The molecular structure is not planar (Fig.1), the dihedral angle between the C1—C6 benzene ring and the C9—C14 benzene ring is 89.59 (16)°. However, the dihedral angle between the C1—C6 benzene ring and the C18—C23 benzene ring is 12.62 (16)°. The thiophene ring is actually planar (maximum deviation 0.0132 (17) Å) and the dihedral angle between the benzene ring with thiophene ring is 1.05 (12)°. The benzothiophene ring system (C16—C23/S1) makes dihedral angles with the benzene rings of 12.71 (13)° for C1—C6 benzene ring and 77.62 (11)° for C9—C14 benzene ring.

The NC double bond legths are 1.281 (3) Å for N1C7 and 1.276 (3) Å for N2C15. These are typical of double bonds, like to the matching bond length in (E)-2-[(3-trifluoromenthylphenylimino)methyl]-4-methylphenol [1.280 (2) Å; Gül et al., 2007]. The C8O1 bond length indicates the presence of a normal double CO bond (Allen et al., 1987). The C17—S1 and C19—S1 bond distances are 1.704 (2) Å and 1.733 (2) Å, respectively. The C—S bond distances are compatible with the literature (Dege et al., 2006, 2007; Demirtaş et al., 2009).

The molecules are packged by C—H···π and π···π interactions.

For general background to benzothiophenes, see: Katritzky et al. (1996); Shishoo & Jain (1992). For the biological properties of Schiff bases, see: Barton & Ollis (1979); Layer (1963); Ingold (1969). For industrial applications of Shiff bases, see: Taggi et al. (2002). For related structures, see: Allen et al. (1987); Dege et al. (2006, 2007); Demirtaş et al. (2009); Gül et al. (2007). For structural properties of benzothiophene derivatives, see: Inamoto et al. (2008); Mlochowski & Potaczek (2009); Novopoltseva (1995).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability.
(Z)-2-[(E)-2-(1-Benzothiophen-3-ylmethylidene)hydrazin-1- ylidene]-1,2-diphenylethanone top
Crystal data top
C23H16N2OSF(000) = 768
Mr = 368.44Dx = 1.282 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2365 reflections
a = 17.1009 (7) Åθ = 3.2–27.5°
b = 8.7700 (4) ŵ = 0.18 mm1
c = 13.1170 (6) ÅT = 293 K
β = 103.898 (4)°Plate, yellow
V = 1909.63 (15) Å30.30 × 0.15 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction SuperNova (single source at offset) Eos
diffractometer
3815 independent reflections
Radiation source: fine-focus sealed tube2566 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.0454 pixels mm-1θmax = 27.6°, θmin = 3.2°
ω scansh = 2221
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 106
Tmin = 0.843, Tmax = 1.000l = 1516
7369 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0328P)2 + 0.4842P]
where P = (Fo2 + 2Fc2)/3
3815 reflections(Δ/σ)max = 0.002
244 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C23H16N2OSV = 1909.63 (15) Å3
Mr = 368.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.1009 (7) ŵ = 0.18 mm1
b = 8.7700 (4) ÅT = 293 K
c = 13.1170 (6) Å0.30 × 0.15 × 0.10 mm
β = 103.898 (4)°
Data collection top
Oxford Diffraction SuperNova (single source at offset) Eos
diffractometer
3815 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
2566 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 1.000Rint = 0.025
7369 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.07Δρmax = 0.20 e Å3
3815 reflectionsΔρmin = 0.24 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.63404 (17)0.2840 (3)0.5699 (2)0.0696 (8)
H10.68190.26570.55010.083*
C20.5635 (2)0.2214 (4)0.5132 (3)0.0925 (10)
H20.56380.16150.45480.111*
C30.4926 (2)0.2463 (5)0.5417 (3)0.1115 (13)
H30.44510.20280.50300.134*
C40.49182 (19)0.3354 (5)0.6271 (3)0.1178 (14)
H40.44370.35260.64650.141*
C50.56261 (17)0.4000 (4)0.6846 (3)0.0901 (10)
H50.56180.46100.74230.108*
C60.63441 (15)0.3744 (3)0.6568 (2)0.0588 (7)
C70.71001 (14)0.4422 (3)0.71807 (18)0.0516 (6)
C80.71003 (13)0.5224 (3)0.82084 (19)0.0522 (6)
C90.70993 (13)0.6910 (3)0.82297 (19)0.0507 (6)
C100.69128 (16)0.7746 (3)0.7316 (2)0.0640 (7)
H100.67950.72490.66710.077*
C110.68997 (18)0.9321 (3)0.7350 (3)0.0817 (9)
H110.67600.98810.67310.098*
C120.70923 (18)1.0052 (4)0.8298 (3)0.0875 (10)
H120.70791.11120.83220.105*
C130.73038 (17)0.9241 (4)0.9211 (3)0.0811 (9)
H130.74540.97470.98510.097*
C140.72938 (15)0.7666 (3)0.9182 (2)0.0657 (7)
H140.74180.71130.98050.079*
C150.90807 (14)0.4568 (3)0.73987 (18)0.0508 (6)
H150.90730.39140.68380.061*
C160.98486 (13)0.5071 (2)0.80241 (17)0.0453 (5)
C171.05487 (14)0.4515 (3)0.78494 (18)0.0541 (6)
H171.05620.38230.73160.065*
C181.08272 (13)0.6305 (3)0.93254 (17)0.0460 (6)
C191.00005 (13)0.6127 (2)0.88917 (16)0.0413 (5)
C200.94578 (15)0.6956 (3)0.93244 (17)0.0506 (6)
H200.89050.68490.90600.061*
C210.97565 (17)0.7928 (3)1.01439 (19)0.0620 (7)
H210.94010.84901.04300.074*
C221.05794 (19)0.8089 (3)1.0555 (2)0.0688 (8)
H221.07640.87581.11110.083*
C231.11240 (17)0.7285 (3)1.01580 (19)0.0601 (7)
H231.16750.73911.04370.072*
N10.77520 (12)0.4280 (2)0.68712 (15)0.0569 (5)
N20.84100 (12)0.4976 (2)0.75772 (15)0.0533 (5)
O10.70894 (11)0.4453 (2)0.89756 (14)0.0710 (5)
S11.13984 (4)0.51911 (8)0.86872 (5)0.0595 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0639 (18)0.0671 (18)0.0739 (18)0.0102 (15)0.0091 (15)0.0083 (15)
C20.077 (2)0.096 (2)0.093 (2)0.015 (2)0.0014 (19)0.024 (2)
C30.063 (2)0.132 (3)0.122 (3)0.022 (2)0.013 (2)0.023 (3)
C40.0462 (19)0.166 (4)0.135 (3)0.015 (2)0.011 (2)0.035 (3)
C50.0543 (18)0.113 (3)0.101 (2)0.0033 (18)0.0145 (17)0.023 (2)
C60.0498 (15)0.0572 (16)0.0660 (16)0.0034 (13)0.0075 (13)0.0031 (14)
C70.0488 (14)0.0463 (14)0.0569 (15)0.0009 (12)0.0073 (12)0.0034 (12)
C80.0380 (13)0.0612 (16)0.0553 (15)0.0007 (12)0.0070 (11)0.0053 (13)
C90.0399 (13)0.0557 (15)0.0561 (14)0.0034 (12)0.0104 (11)0.0000 (13)
C100.0716 (18)0.0583 (17)0.0625 (16)0.0013 (15)0.0166 (14)0.0042 (14)
C110.083 (2)0.064 (2)0.097 (2)0.0007 (17)0.0186 (18)0.0164 (18)
C120.074 (2)0.0573 (19)0.127 (3)0.0005 (17)0.015 (2)0.008 (2)
C130.069 (2)0.075 (2)0.092 (2)0.0066 (17)0.0054 (17)0.0267 (19)
C140.0563 (16)0.075 (2)0.0629 (17)0.0112 (15)0.0092 (13)0.0056 (15)
C150.0536 (15)0.0504 (14)0.0488 (13)0.0037 (12)0.0131 (11)0.0048 (11)
C160.0461 (13)0.0443 (13)0.0479 (13)0.0011 (11)0.0160 (11)0.0011 (11)
C170.0550 (15)0.0565 (15)0.0537 (14)0.0022 (13)0.0186 (12)0.0079 (12)
C180.0497 (14)0.0420 (13)0.0460 (13)0.0021 (11)0.0109 (11)0.0067 (11)
C190.0481 (13)0.0365 (12)0.0411 (12)0.0003 (11)0.0143 (10)0.0061 (10)
C200.0559 (15)0.0472 (14)0.0503 (14)0.0045 (12)0.0160 (12)0.0057 (12)
C210.078 (2)0.0545 (16)0.0563 (16)0.0100 (15)0.0221 (14)0.0039 (13)
C220.091 (2)0.0583 (17)0.0535 (16)0.0025 (17)0.0094 (15)0.0092 (13)
C230.0635 (17)0.0570 (16)0.0543 (15)0.0085 (14)0.0034 (13)0.0044 (13)
N10.0458 (12)0.0620 (13)0.0592 (13)0.0024 (11)0.0055 (10)0.0073 (11)
N20.0465 (11)0.0583 (13)0.0533 (12)0.0032 (11)0.0085 (9)0.0067 (10)
O10.0777 (13)0.0735 (12)0.0623 (11)0.0000 (10)0.0175 (10)0.0162 (10)
S10.0460 (4)0.0669 (5)0.0675 (4)0.0005 (3)0.0172 (3)0.0010 (3)
Geometric parameters (Å, º) top
C1—C21.371 (4)C12—H120.9300
C1—C61.387 (3)C13—C141.381 (4)
C1—H10.9300C13—H130.9300
C2—C31.369 (4)C14—H140.9300
C2—H20.9300C15—N21.276 (3)
C3—C41.369 (4)C15—C161.440 (3)
C3—H30.9300C15—H150.9300
C4—C51.384 (4)C16—C171.362 (3)
C4—H40.9300C16—C191.442 (3)
C5—C61.380 (4)C17—S11.704 (2)
C5—H50.9300C17—H170.9300
C6—C71.474 (3)C18—C231.386 (3)
C7—N11.281 (3)C18—C191.400 (3)
C7—C81.521 (3)C18—S11.733 (2)
C8—O11.217 (3)C19—C201.402 (3)
C8—C91.479 (3)C20—C211.371 (3)
C9—C101.376 (3)C20—H200.9300
C9—C141.383 (3)C21—C221.388 (4)
C10—C111.382 (4)C21—H210.9300
C10—H100.9300C22—C231.367 (4)
C11—C121.367 (4)C22—H220.9300
C11—H110.9300C23—H230.9300
C12—C131.364 (4)N1—N21.413 (3)
C2—C1—C6120.3 (3)C12—C13—C14119.9 (3)
C2—C1—H1119.8C12—C13—H13120.0
C6—C1—H1119.8C14—C13—H13120.0
C3—C2—C1120.6 (3)C13—C14—C9120.2 (3)
C3—C2—H2119.7C13—C14—H14119.9
C1—C2—H2119.7C9—C14—H14119.9
C2—C3—C4119.9 (3)N2—C15—C16123.1 (2)
C2—C3—H3120.1N2—C15—H15118.4
C4—C3—H3120.1C16—C15—H15118.4
C3—C4—C5120.0 (3)C17—C16—C15120.8 (2)
C3—C4—H4120.0C17—C16—C19111.3 (2)
C5—C4—H4120.0C15—C16—C19127.8 (2)
C6—C5—C4120.4 (3)C16—C17—S1114.51 (18)
C6—C5—H5119.8C16—C17—H17122.7
C4—C5—H5119.8S1—C17—H17122.7
C5—C6—C1118.7 (3)C23—C18—C19122.2 (2)
C5—C6—C7120.7 (3)C23—C18—S1126.00 (19)
C1—C6—C7120.6 (2)C19—C18—S1111.85 (17)
N1—C7—C6120.3 (2)C18—C19—C20118.7 (2)
N1—C7—C8120.7 (2)C18—C19—C16111.42 (19)
C6—C7—C8118.9 (2)C20—C19—C16129.9 (2)
O1—C8—C9122.7 (2)C21—C20—C19118.8 (2)
O1—C8—C7118.6 (2)C21—C20—H20120.6
C9—C8—C7118.7 (2)C19—C20—H20120.6
C10—C9—C14119.2 (2)C20—C21—C22121.3 (2)
C10—C9—C8121.2 (2)C20—C21—H21119.3
C14—C9—C8119.7 (2)C22—C21—H21119.3
C9—C10—C11120.4 (3)C23—C22—C21121.3 (2)
C9—C10—H10119.8C23—C22—H22119.4
C11—C10—H10119.8C21—C22—H22119.4
C12—C11—C10119.8 (3)C22—C23—C18117.8 (2)
C12—C11—H11120.1C22—C23—H23121.1
C10—C11—H11120.1C18—C23—H23121.1
C13—C12—C11120.5 (3)C7—N1—N2111.53 (19)
C13—C12—H12119.7C15—N2—N1111.59 (19)
C11—C12—H12119.7C17—S1—C1890.89 (11)
C6—C1—C2—C30.4 (5)C8—C9—C14—C13179.3 (2)
C1—C2—C3—C40.5 (6)N2—C15—C16—C17175.2 (2)
C2—C3—C4—C50.1 (6)N2—C15—C16—C193.0 (4)
C3—C4—C5—C60.4 (6)C15—C16—C17—S1178.11 (17)
C4—C5—C6—C10.5 (5)C19—C16—C17—S10.3 (3)
C4—C5—C6—C7179.7 (3)C23—C18—C19—C200.7 (3)
C2—C1—C6—C50.1 (4)S1—C18—C19—C20180.00 (15)
C2—C1—C6—C7179.9 (3)C23—C18—C19—C16178.8 (2)
C5—C6—C7—N1174.5 (3)S1—C18—C19—C160.4 (2)
C1—C6—C7—N15.3 (4)C17—C16—C19—C180.1 (3)
C5—C6—C7—C88.4 (4)C15—C16—C19—C18178.4 (2)
C1—C6—C7—C8171.8 (2)C17—C16—C19—C20179.6 (2)
N1—C7—C8—O1101.5 (3)C15—C16—C19—C202.1 (4)
C6—C7—C8—O175.6 (3)C18—C19—C20—C211.0 (3)
N1—C7—C8—C979.5 (3)C16—C19—C20—C21178.4 (2)
C6—C7—C8—C9103.3 (3)C19—C20—C21—C220.7 (4)
O1—C8—C9—C10163.7 (2)C20—C21—C22—C230.0 (4)
C7—C8—C9—C1015.1 (3)C21—C22—C23—C180.4 (4)
O1—C8—C9—C1416.7 (3)C19—C18—C23—C220.0 (3)
C7—C8—C9—C14164.4 (2)S1—C18—C23—C22179.19 (19)
C14—C9—C10—C111.7 (4)C6—C7—N1—N2178.57 (19)
C8—C9—C10—C11178.8 (2)C8—C7—N1—N21.5 (3)
C9—C10—C11—C121.6 (4)C16—C15—N2—N1178.0 (2)
C10—C11—C12—C130.5 (5)C7—N1—N2—C15166.1 (2)
C11—C12—C13—C142.5 (5)C16—C17—S1—C180.51 (19)
C12—C13—C14—C92.4 (4)C23—C18—S1—C17178.7 (2)
C10—C9—C14—C130.3 (4)C19—C18—S1—C170.54 (17)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C9–C14 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···N20.932.533.083 (3)118
C4—H4···Cg3i0.932.743.648 (4)167
C15—H15···Cg4ii0.933.003.879 (3)158
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC23H16N2OS
Mr368.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.1009 (7), 8.7700 (4), 13.1170 (6)
β (°) 103.898 (4)
V3)1909.63 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerOxford Diffraction SuperNova (single source at offset) Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.843, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7369, 3815, 2566
Rint0.025
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.121, 1.07
No. of reflections3815
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C9–C14 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···N20.932.533.083 (3)118.3
C4—H4···Cg3i0.932.743.648 (4)167
C15—H15···Cg4ii0.933.003.879 (3)158
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Giresun University, Turkey, for the use of the diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBarton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon.  Google Scholar
First citationDege, N., Içbudak, H. & Adıyaman, E. (2006). Acta Cryst. C62, m401–m403.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDege, N., Içbudak, H. & Adıyaman, E. (2007). Acta Cryst. C63, m13–m15.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDemirtaş, G., Dege, N., Şekerci, M., Servi, S. & Dinçer, M. (2009). Acta Cryst. E65, o1668.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationInamoto, C. K., Arai, Y., Hiroya, K. & Doi, T. (2008). Chem. Commun. pp. 5529–5531.  Web of Science CrossRef Google Scholar
First citationIngold, C. K. (1969). In Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca, New York: Cornell University Press.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Editors. Comprehensive Heterocyclic Chemistry, Vol. 2. pp. 679–729. Oxford: Pergamon Press.  Google Scholar
First citationLayer, R. W. (1963). Chem. Rev. 63, 489–510.  CrossRef CAS Web of Science Google Scholar
First citationMlochowski, J. & Potaczek, P. (2009). Phosphorus Sulfur Slicon Relat. Elem. 184, 1115–1123.  CAS Google Scholar
First citationNovopoltseva, O. M. (1995). Candidate of Sciences (Chemistry) dissertation, University of Volgograd, Russian Federation.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.   Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShishoo, C. J. & Jain, K. S. (1992). J. Heterocycl. Chem. 29, 883–893.  CrossRef CAS Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds