metal-organic compounds
Dianilinium bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6)cuprate(II) hexahydrate
aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Università di Messina, Salita Sperone, 31 Contrada Papardo, 98166 Messina, Italy
*Correspondence e-mail: amir.saljooghi@yahoo.com
The 6H8N)2[Cu(C7H3NO4)2]·6H2O, contains half a copper(II)–dipicolinate complex located on a twofold rotation axis, one protonated aniline molecule and three solvent water molecules. The CuII atom is coordinated by four O atoms and two N atoms from two dipicolinate ligands in a distorted octahedral environment. In the crystal, the components are linked into a three-dimensional framework by intermolecular O—H⋯O and N—H⋯O interactions.
of the title complex, (CRelated literature
For metal complexes formed by pyridinedicarboxylic acids, see: Crans (2000); Wang et al. (2004); Park et al. (2007); Aghabozorg et al. (2008, 2011); Tabatabaee (2010).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XPW (Siemens, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536812028590/vn2037sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812028590/vn2037Isup2.hkl
The title compound was synthesized by the reaction of copper(II) acetate, pyridine-2,6-dicarboxylic acid (pydcH2) and aniline in aqueous solution in a 1:1:1 molar ratio. Green crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.
The H atoms of the water molecules were found in difference Fourier maps and the O–H bond lengths were constrained to 0.85 Å. The positions of the water molecules were optimized using rigid-body constraints (SHELXL AFIX 6). The H atoms from C–H groups were placed in calculated positions. The carbon H atoms were refined in riding model approximation with Uiso(H) = 1.2Ueq(C) whereas the water hydrogens were treated with 1.5Ueq(O).
Pyridine-2,6-dicarboxylic acid (dipicolinic acid) is a versatile N—O donor capable of forming stable chelates (Park et al., 2007), with various metal ions and it can exhibit diverse coordination modes such as monodentate (Park et al., 2007), bidentate (Wang et al., 2004), tridentate (Park et al., 2007), meridian (Park et al., 2007), or bridging (Aghabozorg et al., 2008, 2011). Dipicolinic acid (H2dipic) and its anions (Hdipic-, dipic2-), have been extensively used in the design of coordination compounds, due to the variety of their bonding ability and the relatively strong hydrogen bonds they form. Dipicolinic acid is a beneficial compound for the human organism and it is involved in several essential biochemical processes. It shows various biological functions and is a suitable ligand for modeling potential pharmacological compounds because of its low toxicity and
nature (Crans, 2000). In recent years, syntheses and crystal structures of a large number of complexes with dipicolinic acid and some amino compounds have been reported (Aghabozorg et al., 2008; Tabatabaee, 2010). Here, we present the preparation and the of the title compund, (C6H8N)2 [Cu(C7H3NO4)2].6H2O. The molecular structure of the title compound is shown in Fig. 1. The cationic portion of the consists of one protonated aniline molecule (anilinium cation) and the anionic portion is the [Cu(pydc)2]2- complex.In the anion, the angles O1—Cu1—O1 [103.65 (5)°], O2—Cu1—O2 [102.71 (5)°] and N1—Cu1—N1 [179.46 (5)°] indicate that the coordination environment around Cu(II) ion is a distorted octahedron. There are extensive intermolecular O—H···O, N—H···O and weak C—H···O hydrogen bonds, which increases the stability of the (Fig. 2).For metal complexes formed by pyridinedicarboxylic acids, see: Crans (2000); Wang et al. (2004); Park et al. (2007); Aghabozorg et al. (2008, 2011); Tabatabaee (2010).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XPW (Siemens, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure and atom labeling scheme for title compound with displacement ellipsoids at the 50% probability level. | |
Fig. 2. A view of H-bonded chain in crystal network of title compound, hydrogen bonds are shown as dashed lines. |
(C6H8N)2[Cu(C7H3NO4)2]·6H2O | F(000) = 1436 |
Mr = 690.11 | Dx = 1.574 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9787 reflections |
a = 20.9117 (6) Å | θ = 2.3–32.7° |
b = 7.9115 (2) Å | µ = 0.83 mm−1 |
c = 19.8842 (5) Å | T = 293 K |
β = 117.706 (2)° | Irregular, green |
V = 2912.52 (13) Å3 | 0.44 × 0.36 × 0.35 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 5321 independent reflections |
Radiation source: fine-focus sealed tube | 4990 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
φ and ω scans | θmax = 32.7°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −31→31 |
Tmin = 0.652, Tmax = 0.746 | k = −12→12 |
48649 measured reflections | l = −30→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0415P)2 + 1.1609P] where P = (Fo2 + 2Fc2)/3 |
5321 reflections | (Δ/σ)max = 0.001 |
213 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.55 e Å−3 |
(C6H8N)2[Cu(C7H3NO4)2]·6H2O | V = 2912.52 (13) Å3 |
Mr = 690.11 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 20.9117 (6) Å | µ = 0.83 mm−1 |
b = 7.9115 (2) Å | T = 293 K |
c = 19.8842 (5) Å | 0.44 × 0.36 × 0.35 mm |
β = 117.706 (2)° |
Bruker APEXII CCD diffractometer | 5321 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 4990 reflections with I > 2σ(I) |
Tmin = 0.652, Tmax = 0.746 | Rint = 0.017 |
48649 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.39 e Å−3 |
5321 reflections | Δρmin = −0.55 e Å−3 |
213 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.979382 (19) | 0.2500 | 0.02257 (5) | |
O1 | 0.59158 (4) | 0.80292 (10) | 0.26847 (4) | 0.03298 (14) | |
O2 | 0.43941 (4) | 1.15066 (10) | 0.28429 (4) | 0.03275 (14) | |
O3 | 0.70644 (4) | 0.77108 (10) | 0.35839 (4) | 0.03315 (14) | |
O4 | 0.43162 (4) | 1.20999 (11) | 0.39036 (4) | 0.03787 (16) | |
N1 | 0.55834 (4) | 0.98045 (9) | 0.35855 (4) | 0.02101 (12) | |
C1 | 0.64268 (4) | 0.81793 (11) | 0.33490 (5) | 0.02413 (14) | |
C2 | 0.62266 (4) | 0.90375 (10) | 0.39060 (4) | 0.02198 (13) | |
C3 | 0.66492 (5) | 0.90453 (12) | 0.46879 (5) | 0.02786 (15) | |
H3 | 0.7102 | 0.8535 | 0.4911 | 0.033* | |
C4 | 0.63852 (5) | 0.98284 (13) | 0.51321 (5) | 0.03126 (18) | |
H4 | 0.6656 | 0.9822 | 0.5658 | 0.038* | |
C5 | 0.57176 (5) | 1.06210 (12) | 0.47912 (5) | 0.02811 (16) | |
H5 | 0.5534 | 1.1150 | 0.5082 | 0.034* | |
C6 | 0.53317 (4) | 1.06049 (11) | 0.40074 (4) | 0.02196 (13) | |
C7 | 0.46167 (4) | 1.14859 (11) | 0.35519 (5) | 0.02438 (14) | |
N2 | 0.65628 (5) | 0.54403 (11) | 0.60233 (5) | 0.03183 (16) | |
H2A | 0.6328 | 0.6190 | 0.6098 | 0.038* | |
H2B | 0.6526 | 0.4490 | 0.6238 | 0.038* | |
H2C | 0.7012 | 0.5780 | 0.6201 | 0.038* | |
C8 | 0.63075 (5) | 0.51163 (11) | 0.52136 (6) | 0.02671 (15) | |
C9 | 0.67563 (6) | 0.42455 (14) | 0.50001 (6) | 0.03540 (19) | |
H9 | 0.7207 | 0.3871 | 0.5364 | 0.042* | |
C10 | 0.65261 (7) | 0.39375 (16) | 0.42367 (7) | 0.0440 (2) | |
H10 | 0.6826 | 0.3359 | 0.4087 | 0.053* | |
C11 | 0.58577 (8) | 0.44806 (16) | 0.36981 (7) | 0.0442 (3) | |
H11 | 0.5706 | 0.4266 | 0.3186 | 0.053* | |
C12 | 0.54110 (7) | 0.53474 (16) | 0.39200 (7) | 0.0418 (2) | |
H12 | 0.4959 | 0.5711 | 0.3556 | 0.050* | |
C13 | 0.56340 (5) | 0.56767 (14) | 0.46834 (6) | 0.03397 (18) | |
H13 | 0.5337 | 0.6262 | 0.4834 | 0.041* | |
O5 | 0.29295 (4) | 0.17557 (11) | 0.19901 (5) | 0.03988 (17) | |
H5A | 0.3387 | 0.1722 | 0.2247 | 0.060* | |
H5B | 0.2852 | 0.2755 | 0.2092 | 0.060* | |
O6 | 0.74953 (5) | 0.49186 (10) | 0.79362 (5) | 0.04002 (17) | |
H6A | 0.7296 | 0.4169 | 0.8082 | 0.060* | |
H6B | 0.7635 | 0.4372 | 0.7660 | 0.060* | |
O7 | 0.37393 (5) | 0.76400 (11) | 0.34828 (4) | 0.03909 (16) | |
H7A | 0.3829 | 0.7562 | 0.3108 | 0.059* | |
H7B | 0.3414 | 0.8380 | 0.3387 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01931 (7) | 0.02986 (8) | 0.01981 (7) | 0.000 | 0.01017 (5) | 0.000 |
O1 | 0.0284 (3) | 0.0478 (4) | 0.0232 (3) | 0.0025 (3) | 0.0124 (2) | −0.0029 (3) |
O2 | 0.0236 (3) | 0.0484 (4) | 0.0236 (3) | 0.0075 (3) | 0.0088 (2) | 0.0010 (3) |
O3 | 0.0245 (3) | 0.0373 (4) | 0.0392 (3) | 0.0072 (3) | 0.0161 (3) | −0.0025 (3) |
O4 | 0.0355 (3) | 0.0459 (4) | 0.0394 (4) | 0.0126 (3) | 0.0236 (3) | −0.0026 (3) |
N1 | 0.0190 (3) | 0.0251 (3) | 0.0198 (3) | 0.0023 (2) | 0.0097 (2) | 0.0004 (2) |
C1 | 0.0232 (3) | 0.0254 (3) | 0.0259 (3) | 0.0028 (3) | 0.0133 (3) | 0.0011 (3) |
C2 | 0.0193 (3) | 0.0245 (3) | 0.0222 (3) | 0.0025 (2) | 0.0097 (2) | 0.0014 (2) |
C3 | 0.0229 (3) | 0.0320 (4) | 0.0237 (3) | 0.0049 (3) | 0.0068 (3) | 0.0031 (3) |
C4 | 0.0306 (4) | 0.0393 (5) | 0.0188 (3) | 0.0029 (3) | 0.0071 (3) | 0.0008 (3) |
C5 | 0.0293 (4) | 0.0348 (4) | 0.0213 (3) | 0.0014 (3) | 0.0127 (3) | −0.0027 (3) |
C6 | 0.0204 (3) | 0.0261 (3) | 0.0209 (3) | 0.0009 (3) | 0.0109 (3) | −0.0012 (3) |
C7 | 0.0212 (3) | 0.0271 (4) | 0.0262 (3) | 0.0017 (3) | 0.0122 (3) | −0.0021 (3) |
N2 | 0.0293 (4) | 0.0354 (4) | 0.0315 (4) | 0.0046 (3) | 0.0147 (3) | −0.0007 (3) |
C8 | 0.0267 (4) | 0.0248 (3) | 0.0313 (4) | −0.0010 (3) | 0.0157 (3) | 0.0005 (3) |
C9 | 0.0346 (5) | 0.0356 (5) | 0.0415 (5) | 0.0057 (4) | 0.0223 (4) | 0.0012 (4) |
C10 | 0.0554 (7) | 0.0432 (6) | 0.0474 (6) | 0.0012 (5) | 0.0357 (5) | −0.0046 (5) |
C11 | 0.0581 (7) | 0.0425 (6) | 0.0352 (5) | −0.0113 (5) | 0.0244 (5) | −0.0043 (4) |
C12 | 0.0367 (5) | 0.0438 (6) | 0.0364 (5) | −0.0043 (4) | 0.0098 (4) | 0.0018 (4) |
C13 | 0.0272 (4) | 0.0349 (4) | 0.0386 (5) | 0.0013 (3) | 0.0144 (4) | −0.0004 (4) |
O5 | 0.0276 (3) | 0.0430 (4) | 0.0443 (4) | 0.0022 (3) | 0.0128 (3) | 0.0012 (3) |
O6 | 0.0493 (5) | 0.0317 (4) | 0.0429 (4) | −0.0055 (3) | 0.0246 (4) | −0.0021 (3) |
O7 | 0.0470 (4) | 0.0429 (4) | 0.0332 (3) | 0.0045 (3) | 0.0235 (3) | 0.0054 (3) |
Cu1—N1 | 1.9232 (7) | N2—C8 | 1.4641 (13) |
Cu1—N1i | 1.9232 (7) | N2—H2A | 0.8262 |
Cu1—O2i | 2.1701 (7) | N2—H2B | 0.8855 |
Cu1—O1 | 2.2577 (7) | N2—H2C | 0.8779 |
Cu1—O2 | 2.1701 (7) | C8—C9 | 1.3807 (13) |
Cu1—O1i | 2.2577 (7) | C8—C13 | 1.3823 (14) |
O1—C1 | 1.2603 (10) | C9—C10 | 1.3841 (16) |
O2—C7 | 1.2628 (10) | C9—H9 | 0.9300 |
O3—C1 | 1.2467 (10) | C10—C11 | 1.376 (2) |
O4—C7 | 1.2364 (10) | C10—H10 | 0.9300 |
N1—C2 | 1.3365 (10) | C11—C12 | 1.3859 (19) |
N1—C6 | 1.3389 (10) | C11—H11 | 0.9300 |
C1—C2 | 1.5146 (11) | C12—C13 | 1.3897 (16) |
C2—C3 | 1.3858 (11) | C12—H12 | 0.9300 |
C3—C4 | 1.3865 (13) | C13—H13 | 0.9300 |
C3—H3 | 0.9300 | O5—H5A | 0.8500 |
C4—C5 | 1.3863 (13) | O5—H5B | 0.8500 |
C4—H4 | 0.9300 | O6—H6A | 0.8502 |
C5—C6 | 1.3823 (11) | O6—H6B | 0.8500 |
C5—H5 | 0.9300 | O7—H7A | 0.8499 |
C6—C7 | 1.5109 (11) | O7—H7B | 0.8500 |
N1—Cu1—N1i | 179.49 (4) | C4—C5—H5 | 120.8 |
N1—Cu1—O2i | 101.04 (3) | N1—C6—C5 | 121.15 (8) |
N1i—Cu1—O2i | 78.64 (3) | N1—C6—C7 | 114.23 (7) |
N1—Cu1—O2 | 78.64 (3) | C5—C6—C7 | 124.61 (7) |
N1i—Cu1—O2 | 101.04 (3) | O4—C7—O2 | 127.31 (8) |
O2i—Cu1—O2 | 102.72 (4) | O4—C7—C6 | 117.63 (8) |
N1—Cu1—O1i | 103.46 (3) | O2—C7—C6 | 115.06 (7) |
N1i—Cu1—O1i | 76.86 (3) | C8—N2—H2A | 112.3 |
O2i—Cu1—O1i | 155.50 (2) | C8—N2—H2B | 108.2 |
O2—Cu1—O1i | 82.08 (3) | H2A—N2—H2B | 109.3 |
N1—Cu1—O1 | 76.86 (3) | C8—N2—H2C | 105.7 |
N1i—Cu1—O1 | 103.46 (3) | H2A—N2—H2C | 108.8 |
O2i—Cu1—O1 | 82.08 (3) | H2B—N2—H2C | 112.5 |
O2—Cu1—O1 | 155.50 (2) | C9—C8—C13 | 121.51 (10) |
O1i—Cu1—O1 | 103.61 (4) | C9—C8—N2 | 118.23 (9) |
C1—O1—Cu1 | 110.73 (6) | C13—C8—N2 | 120.26 (8) |
C7—O2—Cu1 | 112.14 (5) | C8—C9—C10 | 119.05 (10) |
C2—N1—C6 | 121.17 (7) | C8—C9—H9 | 120.5 |
C2—N1—Cu1 | 120.39 (5) | C10—C9—H9 | 120.5 |
C6—N1—Cu1 | 118.44 (5) | C11—C10—C9 | 120.53 (11) |
O3—C1—O1 | 127.06 (8) | C11—C10—H10 | 119.7 |
O3—C1—C2 | 118.06 (7) | C9—C10—H10 | 119.7 |
O1—C1—C2 | 114.87 (7) | C10—C11—C12 | 119.86 (11) |
N1—C2—C3 | 120.56 (7) | C10—C11—H11 | 120.1 |
N1—C2—C1 | 114.45 (7) | C12—C11—H11 | 120.1 |
C3—C2—C1 | 124.99 (7) | C11—C12—C13 | 120.45 (11) |
C2—C3—C4 | 118.79 (8) | C11—C12—H12 | 119.8 |
C2—C3—H3 | 120.6 | C13—C12—H12 | 119.8 |
C4—C3—H3 | 120.6 | C8—C13—C12 | 118.59 (10) |
C5—C4—C3 | 119.95 (8) | C8—C13—H13 | 120.7 |
C5—C4—H4 | 120.0 | C12—C13—H13 | 120.7 |
C3—C4—H4 | 120.0 | H5A—O5—H5B | 99.9 |
C6—C5—C4 | 118.33 (8) | H6A—O6—H6B | 103.6 |
C6—C5—H5 | 120.8 | H7A—O7—H7B | 109.5 |
N1—Cu1—O1—C1 | −14.29 (6) | O3—C1—C2—C3 | −13.90 (13) |
N1i—Cu1—O1—C1 | 165.31 (6) | O1—C1—C2—C3 | 166.50 (9) |
O2i—Cu1—O1—C1 | 89.06 (6) | N1—C2—C3—C4 | 1.50 (13) |
O2—Cu1—O1—C1 | −14.29 (11) | C1—C2—C3—C4 | −177.53 (9) |
O1i—Cu1—O1—C1 | −115.21 (7) | C2—C3—C4—C5 | −1.60 (15) |
N1—Cu1—O2—C7 | −11.16 (6) | C3—C4—C5—C6 | −0.05 (15) |
N1i—Cu1—O2—C7 | 169.24 (6) | C2—N1—C6—C5 | −2.07 (13) |
O2i—Cu1—O2—C7 | −110.06 (7) | Cu1—N1—C6—C5 | 178.37 (7) |
O1i—Cu1—O2—C7 | 94.37 (6) | C2—N1—C6—C7 | 176.68 (7) |
O1—Cu1—O2—C7 | −11.16 (11) | Cu1—N1—C6—C7 | −2.87 (9) |
O2i—Cu1—N1—C2 | −71.51 (7) | C4—C5—C6—N1 | 1.91 (14) |
O2—Cu1—N1—C2 | −172.44 (7) | C4—C5—C6—C7 | −176.72 (9) |
O1i—Cu1—N1—C2 | 108.66 (6) | Cu1—O2—C7—O4 | −167.46 (8) |
O1—Cu1—N1—C2 | 7.56 (6) | Cu1—O2—C7—C6 | 12.58 (9) |
O2i—Cu1—N1—C6 | 108.06 (6) | N1—C6—C7—O4 | 172.64 (8) |
O2—Cu1—N1—C6 | 7.12 (6) | C5—C6—C7—O4 | −8.65 (13) |
O1i—Cu1—N1—C6 | −71.77 (7) | N1—C6—C7—O2 | −7.39 (11) |
O1—Cu1—N1—C6 | −172.88 (7) | C5—C6—C7—O2 | 171.32 (9) |
Cu1—O1—C1—O3 | −162.04 (8) | C13—C8—C9—C10 | 0.37 (16) |
Cu1—O1—C1—C2 | 17.52 (9) | N2—C8—C9—C10 | −179.56 (10) |
C6—N1—C2—C3 | 0.33 (12) | C8—C9—C10—C11 | −0.45 (18) |
Cu1—N1—C2—C3 | 179.88 (6) | C9—C10—C11—C12 | 0.19 (19) |
C6—N1—C2—C1 | 179.46 (7) | C10—C11—C12—C13 | 0.16 (18) |
Cu1—N1—C2—C1 | −0.99 (10) | C9—C8—C13—C12 | −0.03 (15) |
O3—C1—C2—N1 | 167.02 (8) | N2—C8—C13—C12 | 179.90 (9) |
O1—C1—C2—N1 | −12.58 (11) | C11—C12—C13—C8 | −0.24 (17) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O4ii | 0.83 | 1.91 | 2.7267 (11) | 171 |
N2—H2B···O7iii | 0.89 | 1.93 | 2.8071 (12) | 168 |
N2—H2C···O3iv | 0.88 | 2.14 | 2.9842 (12) | 162 |
O5—H5A···O2v | 0.85 | 1.88 | 2.732 | 176 |
O5—H5B···O6iii | 0.85 | 1.97 | 2.8026 (12) | 166 |
O6—H6A···O3vi | 0.85 | 1.97 | 2.8066 (11) | 167 |
O6—H6B···O5vii | 0.85 | 1.93 | 2.7760 (13) | 177 |
O7—H7A···O1i | 0.85 | 1.92 | 2.750 | 164 |
O7—H7B···O6viii | 0.85 | 2.17 | 3.0083 (12) | 170 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+3/2, −y+3/2, −z+1; (v) x, y−1, z; (vi) x, −y+1, z+1/2; (vii) x+1/2, −y+1/2, z+1/2; (viii) x−1/2, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | (C6H8N)2[Cu(C7H3NO4)2]·6H2O |
Mr | 690.11 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 20.9117 (6), 7.9115 (2), 19.8842 (5) |
β (°) | 117.706 (2) |
V (Å3) | 2912.52 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.83 |
Crystal size (mm) | 0.44 × 0.36 × 0.35 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.652, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 48649, 5321, 4990 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.760 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.073, 1.06 |
No. of reflections | 5321 |
No. of parameters | 213 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.55 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XPW (Siemens, 1996), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O4i | 0.83 | 1.91 | 2.7267 (11) | 170.6 |
N2—H2B···O7ii | 0.89 | 1.93 | 2.8071 (12) | 168.2 |
N2—H2C···O3iii | 0.88 | 2.14 | 2.9842 (12) | 161.7 |
O5—H5A···O2iv | 0.85 | 1.88 | 2.732 | 176.2 |
O5—H5B···O6ii | 0.85 | 1.97 | 2.8026 (12) | 166.1 |
O6—H6A···O3v | 0.85 | 1.97 | 2.8066 (11) | 166.7 |
O6—H6B···O5vi | 0.85 | 1.93 | 2.7760 (13) | 176.5 |
O7—H7A···O1vii | 0.85 | 1.92 | 2.750 | 164.4 |
O7—H7B···O6viii | 0.85 | 2.17 | 3.0083 (12) | 169.5 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+3/2, −y+3/2, −z+1; (iv) x, y−1, z; (v) x, −y+1, z+1/2; (vi) x+1/2, −y+1/2, z+1/2; (vii) −x+1, y, −z+1/2; (viii) x−1/2, −y+3/2, z−1/2. |
Acknowledgements
Support for this study by Ferdowsi University of Mashhad is gratefully acknowledged.
References
Aghabozorg, H., Kazemi, S., Agah, A. A., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, m360–m361. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227. CrossRef CAS Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA. Google Scholar
Crans, D. C. (2000). J. Inorg. Biochem. 80, 123–131. Web of Science CrossRef PubMed CAS Google Scholar
Park, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360, 2819–2823. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). XPW. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Tabatabaee, M. (2010). Acta Cryst. E66, m647–m648. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, Y., Odoko, M. & Okabe, N. (2004). Acta Cryst. E60, m1178–m1180. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine-2,6-dicarboxylic acid (dipicolinic acid) is a versatile N—O donor capable of forming stable chelates (Park et al., 2007), with various metal ions and it can exhibit diverse coordination modes such as monodentate (Park et al., 2007), bidentate (Wang et al., 2004), tridentate (Park et al., 2007), meridian (Park et al., 2007), or bridging (Aghabozorg et al., 2008, 2011). Dipicolinic acid (H2dipic) and its anions (Hdipic-, dipic2-), have been extensively used in the design of coordination compounds, due to the variety of their bonding ability and the relatively strong hydrogen bonds they form. Dipicolinic acid is a beneficial compound for the human organism and it is involved in several essential biochemical processes. It shows various biological functions and is a suitable ligand for modeling potential pharmacological compounds because of its low toxicity and amphiphilic nature (Crans, 2000). In recent years, syntheses and crystal structures of a large number of complexes with dipicolinic acid and some amino compounds have been reported (Aghabozorg et al., 2008; Tabatabaee, 2010). Here, we present the preparation and the crystal structure of the title compund, (C6H8N)2 [Cu(C7H3NO4)2].6H2O. The molecular structure of the title compound is shown in Fig. 1. The cationic portion of the asymmetric unit consists of one protonated aniline molecule (anilinium cation) and the anionic portion is the [Cu(pydc)2]2- complex.In the anion, the angles O1—Cu1—O1 [103.65 (5)°], O2—Cu1—O2 [102.71 (5)°] and N1—Cu1—N1 [179.46 (5)°] indicate that the coordination environment around Cu(II) ion is a distorted octahedron. There are extensive intermolecular O—H···O, N—H···O and weak C—H···O hydrogen bonds, which increases the stability of the crystal structure (Fig. 2).