metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N,N′-Bis(2,3,4-trimeth­­oxy­benzyl­­idene)­ethane-1,2-di­amine-κ2N,N′]di­bromido­mercury(II)

aDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran, and bInstitute of Physics, Na Slovance 2, 182 21 Prague 8, Czech Republic
*Correspondence e-mail: fejfarov@fzu.cz

(Received 21 June 2012; accepted 4 July 2012; online 10 July 2012)

In the title compound, [HgBr2(C22H28N2O6)], the HgII ion is bonded to two Br ions and two N atoms of the chelating Schiff base ligand in a distorted tetra­hedral geometry. The Schiff base ligand adopts an E,E conformation. The dihedral angle between the planes of the two halves of the central N,N′-dimethyl­ethylenediamine part of the ligand is 2.3 (11)°. The crystal studied was twinned by pseudomerohedry [twin law (0-10/-100/00-1)]; the contribution of the minor twin component refined to 0.208 (3).

Related literature

For related structures, see: Marjani et al. (2009[Marjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633-1637.]); Mahmoudi & Morsali (2008[Mahmoudi, G. & Morsali, A. (2008). Cryst. Growth Des. 8, 391-394.]); Mahmoudi et al. (2008[Mahmoudi, G., Morsali, A. & Zeller, M. (2008). Solid State Sci. 10, 283-290.]); Khalaji, Fejfarová & Dušek (2011[Khalaji, A. D., Fejfarová, K. & Dušek, K. (2011). Russ. J. Coord. Chem. 37, 743-747.]); Khalaji, Grivani et al. (2011[Khalaji, A. D., Grivani, G., Rezaei, M., Fejfarová, K. & Dušek, K. (2011). Polyhedron, 30, 2790-2794.]). For properties of HgII complexes, see: Morsali & Masoomi (2009[Morsali, A. & Masoomi, M. Y. (2009). Coord. Chem. Rev. 253, 1882-1905.]). For properties of complexes of symmetric bidentate Schiff base ligands, see: Dolaz et al. (2009[Dolaz, M., McKee, V., Golcu, A. & Tumer, M. (2009). Spectrochim. Acta Part A, 71, 1648-1654.], 2010[Dolaz, M., McKee, V., Urus, S., Demir, N., Sabik, A. E., Golcu, A. & Tumer, M. (2010). Spectrochim. Acta Part A, 76, 174-181.]); Komatsu et al. (2007[Komatsu, H., Ochiai, B., Hino, T. & Endo, T. (2007). J. Mol. Catal. A Chem. 273, 289-297.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [HgBr2(C22H28N2O6)]

  • Mr = 776.85

  • Triclinic, [P \overline 1]

  • a = 7.7847 (1) Å

  • b = 7.7944 (2) Å

  • c = 21.1957 (8) Å

  • α = 93.487 (2)°

  • β = 93.163 (2)°

  • γ = 96.912 (2)°

  • V = 1271.84 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 9.25 mm−1

  • T = 150 K

  • 0.23 × 0.16 × 0.06 mm

Data collection
  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.268, Tmax = 0.694

  • 16635 measured reflections

  • 5193 independent reflections

  • 4391 reflections with I > 3σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 3σ(F2)] = 0.044

  • wR(F2) = 0.125

  • S = 1.76

  • 5193 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 1.46 e Å−3

  • Δρmin = −1.48 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—Br1 2.4798 (13)
Hg1—Br2 2.4832 (14)
Hg1—N1 2.411 (9)
Hg1—N2 2.385 (8)

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Complexes of symmetric bidentate Schiff base ligands with transition metals have attracted much attention because of their catalytic (Komatsu et al., 2007) and antibacterial activity, electrochemical and photophysical properties (Dolaz et al., 2009, 2010). The coordination behavior of Schiff base ligands depends on the metal ion, the reaction condition and the nature of anion and the solvent used. There is a substantial interest in the coordination chemistry of the Hg(II) ion (Marjani et al., 2009; Mahmoudi & Morsali, 2008; Mahmoudi et al., 2008; Khalaji, Fejfarová & Dušek, 2011; Khalaji, Grivani, Rezaei et al., 2011; Morsali & Masoomi, 2009), because of its toxic environmental effects. N,N' The molecular structure of the title compound, [HgBr2(C22H28N2O6)], (I), with the atom-numbering scheme is presented in Fig. 1. Bond lengths and angles (Allen et al., 1987) are generally normal. The Hg(II) ion is coordinated by the bidentate Schiff-base ligand (2,3,4-MeO-ba)2en and two Br- ions. Although a tetrahedral geometry might be expected for a four coordinated Hg(II) ion, the geometry around Hg(II) is distorted by the restricting bite angle N1—Hg1—N2 (72.1 (3)°) of the chelating Schiff-base ligand. On the contrary, the Br1—Hg1—Br2 angle has opened up to 144.61 (5)°. The N—Hg—Br angles are also distorted from the tetrahedral values. The dihedral angles between the planes defined by atoms C1—N2—C2 and C3–C8, and C12—N2—C13 and C14–C19 are 39.2 (10)° and 40.5 (10)°, respectively. The torsion angles C4—C5—O2—C10 and C15—C16—O5—C21 are -98.9 (13)° and -100.6 (11)°, respectively.

The average Hg—N bond length of 2.40 Å agrees well with the corresponding distances in other tetrahedral Hg(II) complexes (Marjani et al., 2009; Mahmoudi & Morsali, 2008; Mahmoudi et al., 2008; Khalaji, Fejfarová & Dušek, 2011; Khalaji, Grivani, Rezaei et al., 2011; Morsali & Masoomi, 2009). The Schiff-base ligand (2,3,4-MeO-ba)2en adopts an E,E conformation in this complex.

Related literature top

For related structures, see: Marjani et al. (2009); Mahmoudi & Morsali (2008); Mahmoudi et al. (2008); Khalaji, Fejfarová & Dušek (2011); Khalaji, Grivani, Rezaei et al. (2011). For properties of HgII complexes, see: Morsali & Masoomi (2009). For properties of complexes of symmetric bidentate Schiff base ligands, see: Dolaz et al. (2009, 2010); Komatsu et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

To a stirring solution of the (2,3,4-MeO-ba)2en ligand (0.2 mmol, in 5 ml of chloroform) was added HgBr2 (0.2 mmol) in 10 ml of methanol and the mixture was stirred for 10 min in air at room temperature and was then left at 273 K for several days without disturbance yielding suitable crystals of (I) that subsequently were filtered off and washed with Et2O. Yield: 72%. Colourless crystals. Anal. Calc. for C22H28N2O6HgBr2: C, 34.01; H, 3.63; N, 3.61%. Found: C, 34.15; H, 3.71; N, 3.68%. 1H-NMR (CDCl3, δ(p.p.m.)): 3.73 (s, 6H), 3.77 (s, 6H), 3.82 (s, 6H), 3.86 (s, 4H), 6.87 (d, 2H), 7.63 (d, 2H), 8.58 (s, 2H).

Refinement top

The hydrogen atoms were added geometrically, with a C–H distance of 0.96 Å, and refined as riding on their parent atoms. The methyl H atoms were allowed to rotate freely about the adjacent C—C bonds. The thermal displacement coefficients Uiso(H) were set to 1.5Ueq(C) for the methyl groups and to to 1.2Ueq(C) for the CH– and CH2-groups.

The structure of (I) can also be refined in space group C2/c with unit cell parameters of a = 10.332 Å, b =11.6601 Å, c = 21.1957 Å, β=95.017 ° to a relatively good R value of 0.055. In the monoclinic structure model two halves of the structure are symmetry-equivalent as found in the 1H-NMR solution spectra. However, the true crystal symmetry is triclinic due to small rotations of aromatic rings as well as methyl groups.

The lowering of symmetry can be indicated by comparison of Rint factors which are 0.035 for triclinic symmetry but almost 0.1 for monoclinic symmetry. In order to test that the triclinic structure model does not contain hidden monoclinic symmetry we used a simulated data set based on the refined triclinic structure, transformed to the twofold monoclinic unit cell and merged according to the monoclinic Laue group. The obtained Rint of 0.1 was in agreement with the value found experimentally and confirmed the fact that tiny rotations of methyl groups and aromatic rings are responsible for lowering of symmetry from monoclinic to triclinic. Twofold rotation along b was used as the twinning operation, which became (0 1 0 / 1 0 0 / 0 0 1) after transformation to the final triclinic unit cell (the matrix acts to indices as columns). The refined twin ratio of the second twin domain was 0.208 (3).

The highest residual electron density of 1.46 e Å-3 was located 1.814 (13) Å from C9; the deepest hole of -1.48 e Å-3 was located 2.187 (13) Å from C9.

Structure description top

Complexes of symmetric bidentate Schiff base ligands with transition metals have attracted much attention because of their catalytic (Komatsu et al., 2007) and antibacterial activity, electrochemical and photophysical properties (Dolaz et al., 2009, 2010). The coordination behavior of Schiff base ligands depends on the metal ion, the reaction condition and the nature of anion and the solvent used. There is a substantial interest in the coordination chemistry of the Hg(II) ion (Marjani et al., 2009; Mahmoudi & Morsali, 2008; Mahmoudi et al., 2008; Khalaji, Fejfarová & Dušek, 2011; Khalaji, Grivani, Rezaei et al., 2011; Morsali & Masoomi, 2009), because of its toxic environmental effects. N,N' The molecular structure of the title compound, [HgBr2(C22H28N2O6)], (I), with the atom-numbering scheme is presented in Fig. 1. Bond lengths and angles (Allen et al., 1987) are generally normal. The Hg(II) ion is coordinated by the bidentate Schiff-base ligand (2,3,4-MeO-ba)2en and two Br- ions. Although a tetrahedral geometry might be expected for a four coordinated Hg(II) ion, the geometry around Hg(II) is distorted by the restricting bite angle N1—Hg1—N2 (72.1 (3)°) of the chelating Schiff-base ligand. On the contrary, the Br1—Hg1—Br2 angle has opened up to 144.61 (5)°. The N—Hg—Br angles are also distorted from the tetrahedral values. The dihedral angles between the planes defined by atoms C1—N2—C2 and C3–C8, and C12—N2—C13 and C14–C19 are 39.2 (10)° and 40.5 (10)°, respectively. The torsion angles C4—C5—O2—C10 and C15—C16—O5—C21 are -98.9 (13)° and -100.6 (11)°, respectively.

The average Hg—N bond length of 2.40 Å agrees well with the corresponding distances in other tetrahedral Hg(II) complexes (Marjani et al., 2009; Mahmoudi & Morsali, 2008; Mahmoudi et al., 2008; Khalaji, Fejfarová & Dušek, 2011; Khalaji, Grivani, Rezaei et al., 2011; Morsali & Masoomi, 2009). The Schiff-base ligand (2,3,4-MeO-ba)2en adopts an E,E conformation in this complex.

For related structures, see: Marjani et al. (2009); Mahmoudi & Morsali (2008); Mahmoudi et al. (2008); Khalaji, Fejfarová & Dušek (2011); Khalaji, Grivani, Rezaei et al. (2011). For properties of HgII complexes, see: Morsali & Masoomi (2009). For properties of complexes of symmetric bidentate Schiff base ligands, see: Dolaz et al. (2009, 2010); Komatsu et al. (2007). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[N,N'-Bis(2,3,4-trimethoxybenzylidene)ethane-1,2- diamine-κ2N,N']dibromidomercury(II) top
Crystal data top
[HgBr2(C22H28N2O6)]Z = 2
Mr = 776.85F(000) = 744
Triclinic, P1Dx = 2.028 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 7.7847 (1) ÅCell parameters from 8498 reflections
b = 7.7944 (2) Åθ = 2.9–26.3°
c = 21.1957 (8) ŵ = 9.25 mm1
α = 93.487 (2)°T = 150 K
β = 93.163 (2)°Plate, colourless
γ = 96.912 (2)°0.23 × 0.16 × 0.06 mm
V = 1271.84 (6) Å3
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
5193 independent reflections
Radiation source: X-ray tube4391 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.3784 pixels mm-1θmax = 26.4°, θmin = 2.9°
Rotation method data acquisition using ω scansh = 99
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
k = 99
Tmin = 0.268, Tmax = 0.694l = 2626
16635 measured reflections
Refinement top
Refinement on F2112 constraints
R[F > 3σ(F)] = 0.044H-atom parameters constrained
wR(F) = 0.125Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 1.76(Δ/σ)max = 0.007
5193 reflectionsΔρmax = 1.46 e Å3
299 parametersΔρmin = 1.48 e Å3
0 restraints
Crystal data top
[HgBr2(C22H28N2O6)]γ = 96.912 (2)°
Mr = 776.85V = 1271.84 (6) Å3
Triclinic, P1Z = 2
a = 7.7847 (1) ÅMo Kα radiation
b = 7.7944 (2) ŵ = 9.25 mm1
c = 21.1957 (8) ÅT = 150 K
α = 93.487 (2)°0.23 × 0.16 × 0.06 mm
β = 93.163 (2)°
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
5193 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
4391 reflections with I > 3σ(I)
Tmin = 0.268, Tmax = 0.694Rint = 0.035
16635 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0440 restraints
wR(F) = 0.125H-atom parameters constrained
S = 1.76Δρmax = 1.46 e Å3
5193 reflectionsΔρmin = 1.48 e Å3
299 parameters
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.37072 (5)0.63869 (6)0.25091 (3)0.04023 (14)
Br10.51422 (17)0.90658 (15)0.20946 (8)0.0588 (5)
Br20.09847 (15)0.50076 (19)0.29179 (8)0.0632 (5)
O10.9444 (9)0.9090 (11)0.3853 (4)0.049 (3)
O20.8619 (10)1.2308 (10)0.4242 (4)0.049 (3)
O30.5366 (11)1.2813 (12)0.4428 (4)0.056 (3)
O40.1026 (9)0.0570 (9)0.1171 (4)0.038 (2)
O50.2179 (10)0.1352 (9)0.0797 (4)0.046 (3)
O60.2707 (9)0.4636 (10)0.0597 (4)0.044 (3)
N10.5962 (12)0.5309 (11)0.3140 (4)0.042 (3)
N20.4779 (10)0.4141 (10)0.1887 (4)0.031 (3)
C10.6352 (14)0.3621 (17)0.2877 (6)0.052 (4)
C20.6924 (14)0.6232 (15)0.3559 (6)0.045 (4)
C30.6465 (14)0.7939 (15)0.3827 (5)0.043 (4)
C40.7755 (15)0.9297 (16)0.3960 (5)0.044 (4)
C50.7351 (14)1.0908 (16)0.4156 (6)0.046 (4)
C60.5619 (15)1.1177 (15)0.4235 (6)0.042 (4)
C70.4355 (14)0.9766 (16)0.4137 (6)0.049 (4)
C80.4796 (14)0.8155 (16)0.3942 (5)0.045 (4)
C90.9982 (15)0.9674 (17)0.3270 (6)0.054 (5)
C100.9221 (18)1.2691 (18)0.4866 (7)0.067 (5)
C110.3609 (16)1.3144 (18)0.4472 (7)0.063 (5)
C120.6384 (12)0.3677 (13)0.2157 (5)0.037 (3)
C130.3914 (13)0.3135 (13)0.1451 (5)0.038 (4)
C140.2226 (13)0.3556 (13)0.1190 (5)0.034 (3)
C150.0832 (13)0.2238 (12)0.1074 (5)0.034 (3)
C160.0803 (13)0.2636 (13)0.0872 (5)0.037 (3)
C170.1055 (14)0.4365 (14)0.0773 (5)0.039 (4)
C180.0351 (14)0.5662 (14)0.0867 (5)0.040 (4)
C190.1952 (15)0.5265 (13)0.1071 (5)0.041 (4)
C200.0482 (16)0.0059 (16)0.1769 (6)0.050 (4)
C210.2585 (15)0.0723 (17)0.0148 (7)0.057 (5)
C220.3020 (16)0.6398 (15)0.0520 (7)0.055 (5)
H1a0.5466220.2730630.2977680.0627*
H1b0.7466060.3404130.3049040.0627*
H20.7980640.5835860.3712470.0537*
H70.3168040.9901390.4204740.0587*
H80.3912370.7177560.388610.0538*
H9a1.1201590.9613690.3246280.0804*
H9b0.9355060.8955560.2928160.0804*
H9c0.975581.0850570.323750.0804*
H10a1.0227031.3539250.4885370.1007*
H10b0.8332941.3141240.5099650.1007*
H10c0.9520021.165730.5045970.1007*
H11a0.3577911.436340.4555750.095*
H11b0.2960181.2759710.4080370.095*
H11c0.3109311.2529280.4810180.095*
H12a0.7326790.4505380.2055950.0442*
H12b0.6575860.2563720.1974980.0442*
H130.4360870.2107740.1293180.0457*
H180.0199910.6836460.0788280.048*
H190.290610.6173140.1135520.0489*
H20a0.0905030.1014620.185770.0748*
H20b0.0936510.0935360.2093410.0748*
H20c0.0761210.009020.1760570.0748*
H21a0.3408010.0302180.0130850.0848*
H21b0.3070630.1596170.0079860.0848*
H21c0.1546330.045560.0039680.0848*
H22a0.4193370.641210.0357160.0829*
H22b0.2839650.7048370.0923070.0829*
H22c0.2237130.6909130.0230170.0829*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0312 (2)0.0343 (2)0.0545 (2)0.00009 (12)0.00690 (19)0.00200 (19)
Br10.0540 (7)0.0337 (6)0.0879 (10)0.0025 (5)0.0015 (7)0.0172 (6)
Br20.0325 (6)0.0683 (8)0.0868 (11)0.0070 (6)0.0170 (6)0.0017 (8)
O10.030 (4)0.059 (5)0.061 (6)0.006 (3)0.014 (4)0.014 (4)
O20.041 (4)0.047 (5)0.060 (6)0.001 (4)0.005 (4)0.010 (4)
O30.049 (5)0.062 (6)0.057 (6)0.005 (4)0.013 (4)0.004 (4)
O40.038 (4)0.031 (4)0.047 (5)0.005 (3)0.008 (3)0.011 (3)
O50.045 (4)0.039 (4)0.051 (5)0.007 (3)0.000 (4)0.005 (4)
O60.040 (4)0.040 (4)0.051 (5)0.003 (3)0.001 (4)0.006 (4)
N10.045 (5)0.036 (5)0.041 (6)0.012 (4)0.001 (4)0.001 (4)
N20.029 (4)0.021 (4)0.044 (5)0.002 (3)0.003 (4)0.007 (4)
C10.032 (6)0.074 (9)0.051 (8)0.015 (5)0.005 (5)0.043 (6)
C20.032 (6)0.047 (6)0.055 (8)0.000 (5)0.001 (5)0.010 (6)
C30.037 (6)0.054 (7)0.036 (6)0.001 (5)0.003 (5)0.006 (5)
C40.042 (6)0.062 (8)0.031 (6)0.003 (6)0.000 (5)0.018 (5)
C50.038 (6)0.052 (7)0.050 (7)0.003 (5)0.007 (5)0.013 (6)
C60.042 (6)0.044 (6)0.045 (7)0.012 (5)0.011 (5)0.008 (5)
C70.033 (6)0.067 (8)0.047 (7)0.007 (6)0.013 (5)0.004 (6)
C80.040 (6)0.055 (7)0.039 (7)0.001 (5)0.005 (5)0.008 (6)
C90.037 (6)0.065 (8)0.061 (8)0.005 (6)0.014 (6)0.014 (7)
C100.045 (7)0.064 (9)0.085 (11)0.009 (6)0.005 (7)0.021 (8)
C110.052 (8)0.069 (9)0.074 (10)0.020 (7)0.022 (7)0.000 (8)
C120.023 (5)0.037 (6)0.050 (7)0.010 (4)0.003 (4)0.015 (5)
C130.041 (6)0.032 (5)0.042 (7)0.003 (5)0.009 (5)0.004 (5)
C140.035 (5)0.031 (5)0.038 (6)0.003 (4)0.011 (5)0.003 (5)
C150.041 (6)0.026 (5)0.035 (6)0.002 (4)0.008 (5)0.009 (4)
C160.030 (5)0.035 (6)0.045 (7)0.001 (4)0.010 (5)0.005 (5)
C170.045 (6)0.041 (6)0.033 (6)0.004 (5)0.006 (5)0.007 (5)
C180.048 (6)0.032 (6)0.040 (6)0.003 (5)0.002 (5)0.005 (5)
C190.050 (7)0.031 (5)0.042 (7)0.000 (5)0.005 (5)0.015 (5)
C200.050 (7)0.046 (7)0.055 (8)0.007 (5)0.006 (6)0.012 (6)
C210.039 (7)0.054 (7)0.074 (9)0.004 (5)0.012 (6)0.013 (7)
C220.057 (8)0.050 (7)0.061 (9)0.012 (6)0.003 (7)0.015 (6)
Geometric parameters (Å, º) top
Hg1—Br12.4798 (13)C8—H80.96
Hg1—Br22.4832 (14)C9—H9a0.96
Hg1—N12.411 (9)C9—H9b0.96
Hg1—N22.385 (8)C9—H9c0.96
O1—C41.373 (14)C10—H10a0.96
O1—C91.412 (16)C10—H10b0.96
O2—C51.376 (13)C10—H10c0.96
O2—C101.381 (17)C11—H11a0.96
O3—C61.356 (15)C11—H11b0.96
O3—C111.429 (16)C11—H11c0.96
O4—C151.353 (12)C12—H12a0.96
O4—C201.423 (15)C12—H12b0.96
O5—C161.370 (12)C13—C141.478 (15)
O5—C211.436 (16)C13—H130.96
O6—C171.364 (14)C14—C151.402 (13)
O6—C221.441 (15)C14—C191.409 (15)
N1—C11.469 (16)C15—C161.397 (15)
N1—C21.260 (14)C16—C171.412 (16)
N2—C121.440 (13)C17—C181.395 (14)
N2—C131.281 (13)C18—C191.373 (16)
C1—C121.531 (16)C18—H180.96
C1—H1a0.96C19—H190.96
C1—H1b0.96C20—H20a0.96
C2—C31.505 (17)C20—H20b0.96
C2—H20.96C20—H20c0.96
C3—C41.373 (15)C21—H21a0.96
C3—C81.363 (16)C21—H21b0.96
C4—C51.377 (18)C21—H21c0.96
C5—C61.407 (16)C22—H22a0.96
C6—C71.382 (16)C22—H22b0.96
C7—C81.386 (18)C22—H22c0.96
C7—H70.96
Br1—Hg1—Br2144.61 (5)H10a—C10—H10c109.4711
Br1—Hg1—N2103.1 (2)H10b—C10—H10c109.4709
Br2—Hg1—N2105.22 (18)O3—C11—H11a109.4716
N1—Hg1—N272.1 (3)O3—C11—H11b109.4711
Br1—Hg1—N1104.5 (2)O3—C11—H11c109.4716
Br2—Hg1—N1103.9 (2)H11a—C11—H11b109.4715
C4—O1—C9113.8 (9)H11a—C11—H11c109.4707
C5—O2—C10113.7 (10)H11b—C11—H11c109.4708
C6—O3—C11116.7 (9)N2—C12—C1111.1 (9)
C15—O4—C20113.1 (9)N2—C12—H12a109.4708
C16—O5—C21113.1 (9)N2—C12—H12b109.4712
C17—O6—C22117.3 (8)C1—C12—H12a109.4717
C1—N1—C2123.4 (10)C1—C12—H12b109.4711
Hg1—N2—C12112.5 (6)H12a—C12—H12b107.7784
Hg1—N2—C13126.1 (7)N2—C13—C14120.0 (9)
C12—N2—C13119.5 (9)N2—C13—H13119.9921
N1—C1—C12108.4 (10)C14—C13—H13119.9903
N1—C1—H1a109.4717C13—C14—C15119.6 (9)
N1—C1—H1b109.4718C13—C14—C19121.9 (9)
C12—C1—H1a109.4703C15—C14—C19118.5 (9)
C12—C1—H1b109.4705O4—C15—C14121.1 (9)
H1a—C1—H1b110.5361O4—C15—C16118.7 (8)
N1—C2—C3121.9 (10)C14—C15—C16120.2 (9)
N1—C2—H2119.0299O5—C16—C15119.7 (9)
C3—C2—H2119.0308O5—C16—C17120.1 (9)
C2—C3—C4119.2 (10)C15—C16—C17120.2 (9)
C2—C3—C8121.2 (10)O6—C17—C16116.0 (9)
C4—C3—C8119.6 (11)O6—C17—C18124.7 (10)
O1—C4—C3120.2 (11)C16—C17—C18119.3 (10)
O1—C4—C5119.4 (10)C17—C18—C19120.2 (10)
C3—C4—C5120.2 (11)C17—C18—H18119.8968
O2—C5—C4120.7 (10)C19—C18—H18119.8967
O2—C5—C6118.6 (10)C14—C19—C18121.5 (9)
C4—C5—C6120.6 (10)C14—C19—H19119.2318
O3—C6—C5115.7 (9)C18—C19—H19119.2308
O3—C6—C7126.2 (11)O4—C20—H20a109.4713
C5—C6—C7118.1 (11)O4—C20—H20b109.4709
C6—C7—C8120.2 (11)O4—C20—H20c109.471
C6—C7—H7119.8945H20a—C20—H20b109.4717
C8—C7—H7119.8948H20a—C20—H20c109.4707
C3—C8—C7121.0 (10)H20b—C20—H20c109.4716
C3—C8—H8119.5052O5—C21—H21a109.4712
C7—C8—H8119.5057O5—C21—H21b109.4712
O1—C9—H9a109.4711O5—C21—H21c109.4711
O1—C9—H9b109.4712H21a—C21—H21b109.4711
O1—C9—H9c109.4705H21a—C21—H21c109.4714
H9a—C9—H9b109.4714H21b—C21—H21c109.4714
H9a—C9—H9c109.4712O6—C22—H22a109.4711
H9b—C9—H9c109.4718O6—C22—H22b109.4706
O2—C10—H10a109.4714O6—C22—H22c109.4709
O2—C10—H10b109.4716H22a—C22—H22b109.4716
O2—C10—H10c109.4711H22a—C22—H22c109.4722
H10a—C10—H10b109.4713H22b—C22—H22c109.471
C3—C4—O1—C997.1 (13)C20—O4—C15—C1681.2 (12)
C14—C15—O4—C2097.1 (12)C21—O5—C16—C15100.6 (11)
C4—C5—O2—C1098.9 (14)C21—O5—C16—C1782.3 (12)
C15—C16—O5—C21100.6 (12)C22—O6—C17—C16177.3 (10)
C5—C6—O3—C11176.1 (11)C22—O6—C17—C181.7 (16)
C16—C17—O6—C22177.3 (10)N1—C2—C3—C4141.7 (11)
C9—O1—C4—C397.0 (12)N1—C2—C3—C838.6 (17)
C9—O1—C4—C578.2 (13)C2—C3—C4—C5174.7 (11)
C10—O2—C5—C498.9 (13)C2—C3—C8—C7174.4 (11)
C10—O2—C5—C684.9 (14)N2—C13—C14—C15137.8 (11)
C11—O3—C6—C5176.1 (11)N2—C13—C14—C1940.2 (15)
C11—O3—C6—C76.8 (18)C13—C14—C15—C16175.3 (10)
C20—O4—C15—C1497.1 (12)C13—C14—C19—C18175.8 (10)

Experimental details

Crystal data
Chemical formula[HgBr2(C22H28N2O6)]
Mr776.85
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.7847 (1), 7.7944 (2), 21.1957 (8)
α, β, γ (°)93.487 (2), 93.163 (2), 96.912 (2)
V3)1271.84 (6)
Z2
Radiation typeMo Kα
µ (mm1)9.25
Crystal size (mm)0.23 × 0.16 × 0.06
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.268, 0.694
No. of measured, independent and
observed [I > 3σ(I)] reflections
16635, 5193, 4391
Rint0.035
(sin θ/λ)max1)0.625
Refinement
R[F > 3σ(F)], wR(F), S 0.044, 0.125, 1.76
No. of reflections5193
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.46, 1.48

Computer programs: CrysAlis PRO (Agilent, 2011), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Selected bond lengths (Å) top
Hg1—Br12.4798 (13)Hg1—N12.411 (9)
Hg1—Br22.4832 (14)Hg1—N22.385 (8)
 

Acknowledgements

We acknowledge Golestan University for partial support of this work, the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae Project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationDolaz, M., McKee, V., Golcu, A. & Tumer, M. (2009). Spectrochim. Acta Part A, 71, 1648–1654.  CrossRef Google Scholar
First citationDolaz, M., McKee, V., Urus, S., Demir, N., Sabik, A. E., Golcu, A. & Tumer, M. (2010). Spectrochim. Acta Part A, 76, 174–181.  CrossRef Google Scholar
First citationKhalaji, A. D., Fejfarová, K. & Dušek, K. (2011). Russ. J. Coord. Chem. 37, 743–747.  Web of Science CrossRef CAS Google Scholar
First citationKhalaji, A. D., Grivani, G., Rezaei, M., Fejfarová, K. & Dušek, K. (2011). Polyhedron, 30, 2790–2794.  Web of Science CSD CrossRef CAS Google Scholar
First citationKomatsu, H., Ochiai, B., Hino, T. & Endo, T. (2007). J. Mol. Catal. A Chem. 273, 289–297.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G. & Morsali, A. (2008). Cryst. Growth Des. 8, 391–394.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Morsali, A. & Zeller, M. (2008). Solid State Sci. 10, 283–290.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633–1637.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorsali, A. & Masoomi, M. Y. (2009). Coord. Chem. Rev. 253, 1882–1905.  Web of Science CrossRef CAS Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds