metal-organic compounds
[N,N′-Bis(2,3,4-trimethoxybenzylidene)ethane-1,2-diamine-κ2N,N′]dibromidomercury(II)
aDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran, and bInstitute of Physics, Na Slovance 2, 182 21 Prague 8, Czech Republic
*Correspondence e-mail: fejfarov@fzu.cz
In the title compound, [HgBr2(C22H28N2O6)], the HgII ion is bonded to two Br− ions and two N atoms of the chelating Schiff base ligand in a distorted tetrahedral geometry. The Schiff base ligand adopts an E,E conformation. The dihedral angle between the planes of the two halves of the central N,N′-dimethylethylenediamine part of the ligand is 2.3 (11)°. The crystal studied was twinned by pseudomerohedry [twin law (0-10/-100/00-1)]; the contribution of the minor twin component refined to 0.208 (3).
Related literature
For related structures, see: Marjani et al. (2009); Mahmoudi & Morsali (2008); Mahmoudi et al. (2008); Khalaji, Fejfarová & Dušek (2011); Khalaji, Grivani et al. (2011). For properties of HgII complexes, see: Morsali & Masoomi (2009). For properties of complexes of symmetric bidentate Schiff base ligands, see: Dolaz et al. (2009, 2010); Komatsu et al. (2007). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.
Supporting information
https://doi.org/10.1107/S1600536812030577/wm2653sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812030577/wm2653Isup2.hkl
To a stirring solution of the (2,3,4-MeO-ba)2en ligand (0.2 mmol, in 5 ml of chloroform) was added HgBr2 (0.2 mmol) in 10 ml of methanol and the mixture was stirred for 10 min in air at room temperature and was then left at 273 K for several days without disturbance yielding suitable crystals of (I) that subsequently were filtered off and washed with Et2O. Yield: 72%. Colourless crystals. Anal. Calc. for C22H28N2O6HgBr2: C, 34.01; H, 3.63; N, 3.61%. Found: C, 34.15; H, 3.71; N, 3.68%. 1H-NMR (CDCl3, δ(p.p.m.)): 3.73 (s, 6H), 3.77 (s, 6H), 3.82 (s, 6H), 3.86 (s, 4H), 6.87 (d, 2H), 7.63 (d, 2H), 8.58 (s, 2H).
The hydrogen atoms were added geometrically, with a C–H distance of 0.96 Å, and refined as riding on their parent atoms. The methyl H atoms were allowed to rotate freely about the adjacent C—C bonds. The thermal displacement coefficients Uiso(H) were set to 1.5Ueq(C) for the methyl groups and to to 1.2Ueq(C) for the CH– and CH2-groups.
The structure of (I) can also be refined in β=95.017 ° to a relatively good R value of 0.055. In the monoclinic structure model two halves of the structure are symmetry-equivalent as found in the 1H-NMR solution spectra. However, the true crystal symmetry is triclinic due to small rotations of aromatic rings as well as methyl groups.
C2/c with parameters of a = 10.332 Å, b =11.6601 Å, c = 21.1957 Å,The lowering of symmetry can be indicated by comparison of Rint factors which are 0.035 for triclinic symmetry but almost 0.1 for monoclinic symmetry. In order to test that the triclinic structure model does not contain hidden monoclinic symmetry we used a simulated data set based on the refined triclinic structure, transformed to the twofold monoclinic 1 0 / 1 0 0 / 0 0 1) after transformation to the final triclinic (the matrix acts to indices as columns). The refined twin ratio of the second twin domain was 0.208 (3).
and merged according to the monoclinic Laue group. The obtained Rint of 0.1 was in agreement with the value found experimentally and confirmed the fact that tiny rotations of methyl groups and aromatic rings are responsible for lowering of symmetry from monoclinic to triclinic. Twofold rotation along b was used as the which became (0The highest residual electron density of 1.46 e Å-3 was located 1.814 (13) Å from C9; the deepest hole of -1.48 e Å-3 was located 2.187 (13) Å from C9.
Complexes of symmetric bidentate Schiff base ligands with transition metals have attracted much attention because of their catalytic (Komatsu et al., 2007) and antibacterial activity, electrochemical and photophysical properties (Dolaz et al., 2009, 2010). The coordination behavior of Schiff base ligands depends on the metal ion, the reaction condition and the nature of anion and the solvent used. There is a substantial interest in the coordination chemistry of the Hg(II) ion (Marjani et al., 2009; Mahmoudi & Morsali, 2008; Mahmoudi et al., 2008; Khalaji, Fejfarová & Dušek, 2011; Khalaji, Grivani, Rezaei et al., 2011; Morsali & Masoomi, 2009), because of its toxic environmental effects. N,N' The molecular structure of the title compound, [HgBr2(C22H28N2O6)], (I), with the atom-numbering scheme is presented in Fig. 1. Bond lengths and angles (Allen et al., 1987) are generally normal. The Hg(II) ion is coordinated by the bidentate Schiff-base ligand (2,3,4-MeO-ba)2en and two Br- ions. Although a tetrahedral geometry might be expected for a four coordinated Hg(II) ion, the geometry around Hg(II) is distorted by the restricting bite angle N1—Hg1—N2 (72.1 (3)°) of the chelating Schiff-base ligand. On the contrary, the Br1—Hg1—Br2 angle has opened up to 144.61 (5)°. The N—Hg—Br angles are also distorted from the tetrahedral values. The dihedral angles between the planes defined by atoms C1—N2—C2 and C3–C8, and C12—N2—C13 and C14–C19 are 39.2 (10)° and 40.5 (10)°, respectively. The torsion angles C4—C5—O2—C10 and C15—C16—O5—C21 are -98.9 (13)° and -100.6 (11)°, respectively.
The average Hg—N bond length of 2.40 Å agrees well with the corresponding distances in other tetrahedral Hg(II) complexes (Marjani et al., 2009; Mahmoudi & Morsali, 2008; Mahmoudi et al., 2008; Khalaji, Fejfarová & Dušek, 2011; Khalaji, Grivani, Rezaei et al., 2011; Morsali & Masoomi, 2009). The Schiff-base ligand (2,3,4-MeO-ba)2en adopts an E,E conformation in this complex.
For related structures, see: Marjani et al. (2009); Mahmoudi & Morsali (2008); Mahmoudi et al. (2008); Khalaji, Fejfarová & Dušek (2011); Khalaji, Grivani, Rezaei et al. (2011). For properties of HgII complexes, see: Morsali & Masoomi (2009). For properties of complexes of symmetric bidentate Schiff base ligands, see: Dolaz et al. (2009, 2010); Komatsu et al. (2007). For bond-length data, see: Allen et al. (1987).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. |
[HgBr2(C22H28N2O6)] | Z = 2 |
Mr = 776.85 | F(000) = 744 |
Triclinic, P1 | Dx = 2.028 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.7107 Å |
a = 7.7847 (1) Å | Cell parameters from 8498 reflections |
b = 7.7944 (2) Å | θ = 2.9–26.3° |
c = 21.1957 (8) Å | µ = 9.25 mm−1 |
α = 93.487 (2)° | T = 150 K |
β = 93.163 (2)° | Plate, colourless |
γ = 96.912 (2)° | 0.23 × 0.16 × 0.06 mm |
V = 1271.84 (6) Å3 |
Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector | 5193 independent reflections |
Radiation source: X-ray tube | 4391 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 10.3784 pixels mm-1 | θmax = 26.4°, θmin = 2.9° |
Rotation method data acquisition using ω scans | h = −9→9 |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2011) | k = −9→9 |
Tmin = 0.268, Tmax = 0.694 | l = −26→26 |
16635 measured reflections |
Refinement on F2 | 112 constraints |
R[F > 3σ(F)] = 0.044 | H-atom parameters constrained |
wR(F) = 0.125 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2) |
S = 1.76 | (Δ/σ)max = 0.007 |
5193 reflections | Δρmax = 1.46 e Å−3 |
299 parameters | Δρmin = −1.48 e Å−3 |
0 restraints |
[HgBr2(C22H28N2O6)] | γ = 96.912 (2)° |
Mr = 776.85 | V = 1271.84 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.7847 (1) Å | Mo Kα radiation |
b = 7.7944 (2) Å | µ = 9.25 mm−1 |
c = 21.1957 (8) Å | T = 150 K |
α = 93.487 (2)° | 0.23 × 0.16 × 0.06 mm |
β = 93.163 (2)° |
Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector | 5193 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2011) | 4391 reflections with I > 3σ(I) |
Tmin = 0.268, Tmax = 0.694 | Rint = 0.035 |
16635 measured reflections |
R[F > 3σ(F)] = 0.044 | 0 restraints |
wR(F) = 0.125 | H-atom parameters constrained |
S = 1.76 | Δρmax = 1.46 e Å−3 |
5193 reflections | Δρmin = −1.48 e Å−3 |
299 parameters |
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement. The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.37072 (5) | 0.63869 (6) | 0.25091 (3) | 0.04023 (14) | |
Br1 | 0.51422 (17) | 0.90658 (15) | 0.20946 (8) | 0.0588 (5) | |
Br2 | 0.09847 (15) | 0.50076 (19) | 0.29179 (8) | 0.0632 (5) | |
O1 | 0.9444 (9) | 0.9090 (11) | 0.3853 (4) | 0.049 (3) | |
O2 | 0.8619 (10) | 1.2308 (10) | 0.4242 (4) | 0.049 (3) | |
O3 | 0.5366 (11) | 1.2813 (12) | 0.4428 (4) | 0.056 (3) | |
O4 | 0.1026 (9) | 0.0570 (9) | 0.1171 (4) | 0.038 (2) | |
O5 | −0.2179 (10) | 0.1352 (9) | 0.0797 (4) | 0.046 (3) | |
O6 | −0.2707 (9) | 0.4636 (10) | 0.0597 (4) | 0.044 (3) | |
N1 | 0.5962 (12) | 0.5309 (11) | 0.3140 (4) | 0.042 (3) | |
N2 | 0.4779 (10) | 0.4141 (10) | 0.1887 (4) | 0.031 (3) | |
C1 | 0.6352 (14) | 0.3621 (17) | 0.2877 (6) | 0.052 (4) | |
C2 | 0.6924 (14) | 0.6232 (15) | 0.3559 (6) | 0.045 (4) | |
C3 | 0.6465 (14) | 0.7939 (15) | 0.3827 (5) | 0.043 (4) | |
C4 | 0.7755 (15) | 0.9297 (16) | 0.3960 (5) | 0.044 (4) | |
C5 | 0.7351 (14) | 1.0908 (16) | 0.4156 (6) | 0.046 (4) | |
C6 | 0.5619 (15) | 1.1177 (15) | 0.4235 (6) | 0.042 (4) | |
C7 | 0.4355 (14) | 0.9766 (16) | 0.4137 (6) | 0.049 (4) | |
C8 | 0.4796 (14) | 0.8155 (16) | 0.3942 (5) | 0.045 (4) | |
C9 | 0.9982 (15) | 0.9674 (17) | 0.3270 (6) | 0.054 (5) | |
C10 | 0.9221 (18) | 1.2691 (18) | 0.4866 (7) | 0.067 (5) | |
C11 | 0.3609 (16) | 1.3144 (18) | 0.4472 (7) | 0.063 (5) | |
C12 | 0.6384 (12) | 0.3677 (13) | 0.2157 (5) | 0.037 (3) | |
C13 | 0.3914 (13) | 0.3135 (13) | 0.1451 (5) | 0.038 (4) | |
C14 | 0.2226 (13) | 0.3556 (13) | 0.1190 (5) | 0.034 (3) | |
C15 | 0.0832 (13) | 0.2238 (12) | 0.1074 (5) | 0.034 (3) | |
C16 | −0.0803 (13) | 0.2636 (13) | 0.0872 (5) | 0.037 (3) | |
C17 | −0.1055 (14) | 0.4365 (14) | 0.0773 (5) | 0.039 (4) | |
C18 | 0.0351 (14) | 0.5662 (14) | 0.0867 (5) | 0.040 (4) | |
C19 | 0.1952 (15) | 0.5265 (13) | 0.1071 (5) | 0.041 (4) | |
C20 | 0.0482 (16) | 0.0059 (16) | 0.1769 (6) | 0.050 (4) | |
C21 | −0.2585 (15) | 0.0723 (17) | 0.0148 (7) | 0.057 (5) | |
C22 | −0.3020 (16) | 0.6398 (15) | 0.0520 (7) | 0.055 (5) | |
H1a | 0.546622 | 0.273063 | 0.297768 | 0.0627* | |
H1b | 0.746606 | 0.340413 | 0.304904 | 0.0627* | |
H2 | 0.798064 | 0.583586 | 0.371247 | 0.0537* | |
H7 | 0.316804 | 0.990139 | 0.420474 | 0.0587* | |
H8 | 0.391237 | 0.717756 | 0.38861 | 0.0538* | |
H9a | 1.120159 | 0.961369 | 0.324628 | 0.0804* | |
H9b | 0.935506 | 0.895556 | 0.292816 | 0.0804* | |
H9c | 0.97558 | 1.085057 | 0.32375 | 0.0804* | |
H10a | 1.022703 | 1.353925 | 0.488537 | 0.1007* | |
H10b | 0.833294 | 1.314124 | 0.509965 | 0.1007* | |
H10c | 0.952002 | 1.16573 | 0.504597 | 0.1007* | |
H11a | 0.357791 | 1.43634 | 0.455575 | 0.095* | |
H11b | 0.296018 | 1.275971 | 0.408037 | 0.095* | |
H11c | 0.310931 | 1.252928 | 0.481018 | 0.095* | |
H12a | 0.732679 | 0.450538 | 0.205595 | 0.0442* | |
H12b | 0.657586 | 0.256372 | 0.197498 | 0.0442* | |
H13 | 0.436087 | 0.210774 | 0.129318 | 0.0457* | |
H18 | 0.019991 | 0.683646 | 0.078828 | 0.048* | |
H19 | 0.29061 | 0.617314 | 0.113552 | 0.0489* | |
H20a | 0.090503 | −0.101462 | 0.18577 | 0.0748* | |
H20b | 0.093651 | 0.093536 | 0.209341 | 0.0748* | |
H20c | −0.076121 | −0.00902 | 0.176057 | 0.0748* | |
H21a | −0.340801 | −0.030218 | 0.013085 | 0.0848* | |
H21b | −0.307063 | 0.159617 | −0.007986 | 0.0848* | |
H21c | −0.154633 | 0.04556 | −0.003968 | 0.0848* | |
H22a | −0.419337 | 0.64121 | 0.035716 | 0.0829* | |
H22b | −0.283965 | 0.704837 | 0.092307 | 0.0829* | |
H22c | −0.223713 | 0.690913 | 0.023017 | 0.0829* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.0312 (2) | 0.0343 (2) | 0.0545 (2) | −0.00009 (12) | 0.00690 (19) | 0.00200 (19) |
Br1 | 0.0540 (7) | 0.0337 (6) | 0.0879 (10) | −0.0025 (5) | 0.0015 (7) | 0.0172 (6) |
Br2 | 0.0325 (6) | 0.0683 (8) | 0.0868 (11) | −0.0070 (6) | 0.0170 (6) | 0.0017 (8) |
O1 | 0.030 (4) | 0.059 (5) | 0.061 (6) | 0.006 (3) | 0.014 (4) | 0.014 (4) |
O2 | 0.041 (4) | 0.047 (5) | 0.060 (6) | −0.001 (4) | 0.005 (4) | 0.010 (4) |
O3 | 0.049 (5) | 0.062 (6) | 0.057 (6) | 0.005 (4) | 0.013 (4) | 0.004 (4) |
O4 | 0.038 (4) | 0.031 (4) | 0.047 (5) | 0.005 (3) | 0.008 (3) | 0.011 (3) |
O5 | 0.045 (4) | 0.039 (4) | 0.051 (5) | −0.007 (3) | 0.000 (4) | 0.005 (4) |
O6 | 0.040 (4) | 0.040 (4) | 0.051 (5) | 0.003 (3) | 0.001 (4) | 0.006 (4) |
N1 | 0.045 (5) | 0.036 (5) | 0.041 (6) | −0.012 (4) | 0.001 (4) | 0.001 (4) |
N2 | 0.029 (4) | 0.021 (4) | 0.044 (5) | 0.002 (3) | 0.003 (4) | 0.007 (4) |
C1 | 0.032 (6) | 0.074 (9) | 0.051 (8) | −0.015 (5) | 0.005 (5) | 0.043 (6) |
C2 | 0.032 (6) | 0.047 (6) | 0.055 (8) | 0.000 (5) | 0.001 (5) | 0.010 (6) |
C3 | 0.037 (6) | 0.054 (7) | 0.036 (6) | 0.001 (5) | 0.003 (5) | 0.006 (5) |
C4 | 0.042 (6) | 0.062 (8) | 0.031 (6) | 0.003 (6) | 0.000 (5) | 0.018 (5) |
C5 | 0.038 (6) | 0.052 (7) | 0.050 (7) | 0.003 (5) | 0.007 (5) | 0.013 (6) |
C6 | 0.042 (6) | 0.044 (6) | 0.045 (7) | 0.012 (5) | 0.011 (5) | 0.008 (5) |
C7 | 0.033 (6) | 0.067 (8) | 0.047 (7) | 0.007 (6) | 0.013 (5) | −0.004 (6) |
C8 | 0.040 (6) | 0.055 (7) | 0.039 (7) | 0.001 (5) | 0.005 (5) | 0.008 (6) |
C9 | 0.037 (6) | 0.065 (8) | 0.061 (8) | 0.005 (6) | 0.014 (6) | 0.014 (7) |
C10 | 0.045 (7) | 0.064 (9) | 0.085 (11) | −0.009 (6) | 0.005 (7) | −0.021 (8) |
C11 | 0.052 (8) | 0.069 (9) | 0.074 (10) | 0.020 (7) | 0.022 (7) | 0.000 (8) |
C12 | 0.023 (5) | 0.037 (6) | 0.050 (7) | 0.010 (4) | −0.003 (4) | −0.015 (5) |
C13 | 0.041 (6) | 0.032 (5) | 0.042 (7) | 0.003 (5) | 0.009 (5) | 0.004 (5) |
C14 | 0.035 (5) | 0.031 (5) | 0.038 (6) | 0.003 (4) | 0.011 (5) | 0.003 (5) |
C15 | 0.041 (6) | 0.026 (5) | 0.035 (6) | 0.002 (4) | 0.008 (5) | 0.009 (4) |
C16 | 0.030 (5) | 0.035 (6) | 0.045 (7) | 0.001 (4) | 0.010 (5) | 0.005 (5) |
C17 | 0.045 (6) | 0.041 (6) | 0.033 (6) | 0.004 (5) | 0.006 (5) | 0.007 (5) |
C18 | 0.048 (6) | 0.032 (6) | 0.040 (6) | 0.003 (5) | 0.002 (5) | 0.005 (5) |
C19 | 0.050 (7) | 0.031 (5) | 0.042 (7) | 0.000 (5) | 0.005 (5) | 0.015 (5) |
C20 | 0.050 (7) | 0.046 (7) | 0.055 (8) | 0.007 (5) | 0.006 (6) | 0.012 (6) |
C21 | 0.039 (7) | 0.054 (7) | 0.074 (9) | −0.004 (5) | −0.012 (6) | 0.013 (7) |
C22 | 0.057 (8) | 0.050 (7) | 0.061 (9) | 0.012 (6) | 0.003 (7) | 0.015 (6) |
Hg1—Br1 | 2.4798 (13) | C8—H8 | 0.96 |
Hg1—Br2 | 2.4832 (14) | C9—H9a | 0.96 |
Hg1—N1 | 2.411 (9) | C9—H9b | 0.96 |
Hg1—N2 | 2.385 (8) | C9—H9c | 0.96 |
O1—C4 | 1.373 (14) | C10—H10a | 0.96 |
O1—C9 | 1.412 (16) | C10—H10b | 0.96 |
O2—C5 | 1.376 (13) | C10—H10c | 0.96 |
O2—C10 | 1.381 (17) | C11—H11a | 0.96 |
O3—C6 | 1.356 (15) | C11—H11b | 0.96 |
O3—C11 | 1.429 (16) | C11—H11c | 0.96 |
O4—C15 | 1.353 (12) | C12—H12a | 0.96 |
O4—C20 | 1.423 (15) | C12—H12b | 0.96 |
O5—C16 | 1.370 (12) | C13—C14 | 1.478 (15) |
O5—C21 | 1.436 (16) | C13—H13 | 0.96 |
O6—C17 | 1.364 (14) | C14—C15 | 1.402 (13) |
O6—C22 | 1.441 (15) | C14—C19 | 1.409 (15) |
N1—C1 | 1.469 (16) | C15—C16 | 1.397 (15) |
N1—C2 | 1.260 (14) | C16—C17 | 1.412 (16) |
N2—C12 | 1.440 (13) | C17—C18 | 1.395 (14) |
N2—C13 | 1.281 (13) | C18—C19 | 1.373 (16) |
C1—C12 | 1.531 (16) | C18—H18 | 0.96 |
C1—H1a | 0.96 | C19—H19 | 0.96 |
C1—H1b | 0.96 | C20—H20a | 0.96 |
C2—C3 | 1.505 (17) | C20—H20b | 0.96 |
C2—H2 | 0.96 | C20—H20c | 0.96 |
C3—C4 | 1.373 (15) | C21—H21a | 0.96 |
C3—C8 | 1.363 (16) | C21—H21b | 0.96 |
C4—C5 | 1.377 (18) | C21—H21c | 0.96 |
C5—C6 | 1.407 (16) | C22—H22a | 0.96 |
C6—C7 | 1.382 (16) | C22—H22b | 0.96 |
C7—C8 | 1.386 (18) | C22—H22c | 0.96 |
C7—H7 | 0.96 | ||
Br1—Hg1—Br2 | 144.61 (5) | H10a—C10—H10c | 109.4711 |
Br1—Hg1—N2 | 103.1 (2) | H10b—C10—H10c | 109.4709 |
Br2—Hg1—N2 | 105.22 (18) | O3—C11—H11a | 109.4716 |
N1—Hg1—N2 | 72.1 (3) | O3—C11—H11b | 109.4711 |
Br1—Hg1—N1 | 104.5 (2) | O3—C11—H11c | 109.4716 |
Br2—Hg1—N1 | 103.9 (2) | H11a—C11—H11b | 109.4715 |
C4—O1—C9 | 113.8 (9) | H11a—C11—H11c | 109.4707 |
C5—O2—C10 | 113.7 (10) | H11b—C11—H11c | 109.4708 |
C6—O3—C11 | 116.7 (9) | N2—C12—C1 | 111.1 (9) |
C15—O4—C20 | 113.1 (9) | N2—C12—H12a | 109.4708 |
C16—O5—C21 | 113.1 (9) | N2—C12—H12b | 109.4712 |
C17—O6—C22 | 117.3 (8) | C1—C12—H12a | 109.4717 |
C1—N1—C2 | 123.4 (10) | C1—C12—H12b | 109.4711 |
Hg1—N2—C12 | 112.5 (6) | H12a—C12—H12b | 107.7784 |
Hg1—N2—C13 | 126.1 (7) | N2—C13—C14 | 120.0 (9) |
C12—N2—C13 | 119.5 (9) | N2—C13—H13 | 119.9921 |
N1—C1—C12 | 108.4 (10) | C14—C13—H13 | 119.9903 |
N1—C1—H1a | 109.4717 | C13—C14—C15 | 119.6 (9) |
N1—C1—H1b | 109.4718 | C13—C14—C19 | 121.9 (9) |
C12—C1—H1a | 109.4703 | C15—C14—C19 | 118.5 (9) |
C12—C1—H1b | 109.4705 | O4—C15—C14 | 121.1 (9) |
H1a—C1—H1b | 110.5361 | O4—C15—C16 | 118.7 (8) |
N1—C2—C3 | 121.9 (10) | C14—C15—C16 | 120.2 (9) |
N1—C2—H2 | 119.0299 | O5—C16—C15 | 119.7 (9) |
C3—C2—H2 | 119.0308 | O5—C16—C17 | 120.1 (9) |
C2—C3—C4 | 119.2 (10) | C15—C16—C17 | 120.2 (9) |
C2—C3—C8 | 121.2 (10) | O6—C17—C16 | 116.0 (9) |
C4—C3—C8 | 119.6 (11) | O6—C17—C18 | 124.7 (10) |
O1—C4—C3 | 120.2 (11) | C16—C17—C18 | 119.3 (10) |
O1—C4—C5 | 119.4 (10) | C17—C18—C19 | 120.2 (10) |
C3—C4—C5 | 120.2 (11) | C17—C18—H18 | 119.8968 |
O2—C5—C4 | 120.7 (10) | C19—C18—H18 | 119.8967 |
O2—C5—C6 | 118.6 (10) | C14—C19—C18 | 121.5 (9) |
C4—C5—C6 | 120.6 (10) | C14—C19—H19 | 119.2318 |
O3—C6—C5 | 115.7 (9) | C18—C19—H19 | 119.2308 |
O3—C6—C7 | 126.2 (11) | O4—C20—H20a | 109.4713 |
C5—C6—C7 | 118.1 (11) | O4—C20—H20b | 109.4709 |
C6—C7—C8 | 120.2 (11) | O4—C20—H20c | 109.471 |
C6—C7—H7 | 119.8945 | H20a—C20—H20b | 109.4717 |
C8—C7—H7 | 119.8948 | H20a—C20—H20c | 109.4707 |
C3—C8—C7 | 121.0 (10) | H20b—C20—H20c | 109.4716 |
C3—C8—H8 | 119.5052 | O5—C21—H21a | 109.4712 |
C7—C8—H8 | 119.5057 | O5—C21—H21b | 109.4712 |
O1—C9—H9a | 109.4711 | O5—C21—H21c | 109.4711 |
O1—C9—H9b | 109.4712 | H21a—C21—H21b | 109.4711 |
O1—C9—H9c | 109.4705 | H21a—C21—H21c | 109.4714 |
H9a—C9—H9b | 109.4714 | H21b—C21—H21c | 109.4714 |
H9a—C9—H9c | 109.4712 | O6—C22—H22a | 109.4711 |
H9b—C9—H9c | 109.4718 | O6—C22—H22b | 109.4706 |
O2—C10—H10a | 109.4714 | O6—C22—H22c | 109.4709 |
O2—C10—H10b | 109.4716 | H22a—C22—H22b | 109.4716 |
O2—C10—H10c | 109.4711 | H22a—C22—H22c | 109.4722 |
H10a—C10—H10b | 109.4713 | H22b—C22—H22c | 109.471 |
C3—C4—O1—C9 | 97.1 (13) | C20—O4—C15—C16 | −81.2 (12) |
C14—C15—O4—C20 | 97.1 (12) | C21—O5—C16—C15 | −100.6 (11) |
C4—C5—O2—C10 | −98.9 (14) | C21—O5—C16—C17 | 82.3 (12) |
C15—C16—O5—C21 | −100.6 (12) | C22—O6—C17—C16 | 177.3 (10) |
C5—C6—O3—C11 | 176.1 (11) | C22—O6—C17—C18 | −1.7 (16) |
C16—C17—O6—C22 | 177.3 (10) | N1—C2—C3—C4 | −141.7 (11) |
C9—O1—C4—C3 | 97.0 (12) | N1—C2—C3—C8 | 38.6 (17) |
C9—O1—C4—C5 | −78.2 (13) | C2—C3—C4—C5 | 174.7 (11) |
C10—O2—C5—C4 | −98.9 (13) | C2—C3—C8—C7 | −174.4 (11) |
C10—O2—C5—C6 | 84.9 (14) | N2—C13—C14—C15 | −137.8 (11) |
C11—O3—C6—C5 | 176.1 (11) | N2—C13—C14—C19 | 40.2 (15) |
C11—O3—C6—C7 | −6.8 (18) | C13—C14—C15—C16 | 175.3 (10) |
C20—O4—C15—C14 | 97.1 (12) | C13—C14—C19—C18 | −175.8 (10) |
Experimental details
Crystal data | |
Chemical formula | [HgBr2(C22H28N2O6)] |
Mr | 776.85 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 7.7847 (1), 7.7944 (2), 21.1957 (8) |
α, β, γ (°) | 93.487 (2), 93.163 (2), 96.912 (2) |
V (Å3) | 1271.84 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 9.25 |
Crystal size (mm) | 0.23 × 0.16 × 0.06 |
Data collection | |
Diffractometer | Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector |
Absorption correction | Analytical (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.268, 0.694 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 16635, 5193, 4391 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F > 3σ(F)], wR(F), S | 0.044, 0.125, 1.76 |
No. of reflections | 5193 |
No. of parameters | 299 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.46, −1.48 |
Computer programs: CrysAlis PRO (Agilent, 2011), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).
Acknowledgements
We acknowledge Golestan University for partial support of this work, the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae Project of the Academy of Sciences of the Czech Republic.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Dolaz, M., McKee, V., Golcu, A. & Tumer, M. (2009). Spectrochim. Acta Part A, 71, 1648–1654. CrossRef Google Scholar
Dolaz, M., McKee, V., Urus, S., Demir, N., Sabik, A. E., Golcu, A. & Tumer, M. (2010). Spectrochim. Acta Part A, 76, 174–181. CrossRef Google Scholar
Khalaji, A. D., Fejfarová, K. & Dušek, K. (2011). Russ. J. Coord. Chem. 37, 743–747. Web of Science CrossRef CAS Google Scholar
Khalaji, A. D., Grivani, G., Rezaei, M., Fejfarová, K. & Dušek, K. (2011). Polyhedron, 30, 2790–2794. Web of Science CSD CrossRef CAS Google Scholar
Komatsu, H., Ochiai, B., Hino, T. & Endo, T. (2007). J. Mol. Catal. A Chem. 273, 289–297. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G. & Morsali, A. (2008). Cryst. Growth Des. 8, 391–394. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Morsali, A. & Zeller, M. (2008). Solid State Sci. 10, 283–290. Web of Science CSD CrossRef CAS Google Scholar
Marjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633–1637. Web of Science CSD CrossRef CAS Google Scholar
Morsali, A. & Masoomi, M. Y. (2009). Coord. Chem. Rev. 253, 1882–1905. Web of Science CrossRef CAS Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Complexes of symmetric bidentate Schiff base ligands with transition metals have attracted much attention because of their catalytic (Komatsu et al., 2007) and antibacterial activity, electrochemical and photophysical properties (Dolaz et al., 2009, 2010). The coordination behavior of Schiff base ligands depends on the metal ion, the reaction condition and the nature of anion and the solvent used. There is a substantial interest in the coordination chemistry of the Hg(II) ion (Marjani et al., 2009; Mahmoudi & Morsali, 2008; Mahmoudi et al., 2008; Khalaji, Fejfarová & Dušek, 2011; Khalaji, Grivani, Rezaei et al., 2011; Morsali & Masoomi, 2009), because of its toxic environmental effects. N,N' The molecular structure of the title compound, [HgBr2(C22H28N2O6)], (I), with the atom-numbering scheme is presented in Fig. 1. Bond lengths and angles (Allen et al., 1987) are generally normal. The Hg(II) ion is coordinated by the bidentate Schiff-base ligand (2,3,4-MeO-ba)2en and two Br- ions. Although a tetrahedral geometry might be expected for a four coordinated Hg(II) ion, the geometry around Hg(II) is distorted by the restricting bite angle N1—Hg1—N2 (72.1 (3)°) of the chelating Schiff-base ligand. On the contrary, the Br1—Hg1—Br2 angle has opened up to 144.61 (5)°. The N—Hg—Br angles are also distorted from the tetrahedral values. The dihedral angles between the planes defined by atoms C1—N2—C2 and C3–C8, and C12—N2—C13 and C14–C19 are 39.2 (10)° and 40.5 (10)°, respectively. The torsion angles C4—C5—O2—C10 and C15—C16—O5—C21 are -98.9 (13)° and -100.6 (11)°, respectively.
The average Hg—N bond length of 2.40 Å agrees well with the corresponding distances in other tetrahedral Hg(II) complexes (Marjani et al., 2009; Mahmoudi & Morsali, 2008; Mahmoudi et al., 2008; Khalaji, Fejfarová & Dušek, 2011; Khalaji, Grivani, Rezaei et al., 2011; Morsali & Masoomi, 2009). The Schiff-base ligand (2,3,4-MeO-ba)2en adopts an E,E conformation in this complex.