metal-organic compounds
(N-Benzoyl-N′,N′-diphenylthioureato-κ2S,O)(η4-cycloocta-1,5-diene)rhodium(I)
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: 2011009426@ufs4life.ac.za
The title complex, [Rh(C20H15N2OS)(C8H12)], exhibits an essentially square-planar coordination environment around the RhI atom, which bears a bidentate cyclooctadiene ligand as well as a monoanionic bidentate benzoylthioureate ligand. The RhI atom, the S- and O-donor atoms and the alkene centroids of the cyclooctadiene ligand do not deviate by more than 0.031 Å from their least mean-squares plane.
Related literature
For rhodium complexes containing related monoanionic bidentate ligands, see: Trzeciak et al. (2004); Roodt et al. (2011); Crous et al. (2005); Guiseppe et al. (2011); Venter et al. (2009). For bidentate thioureato ligands, see: Sacht et al. (2000a,b); Kemp et al. (1997). For RhI complexes bearing cyclooctadiene and S,O-bidentate ligands, see: Grim et al. (1991); Hesp et al. (2007). For RhI complexes bearing a thiourea ligand and cyclooctadiene, see: Kotze et al. (2010); Cauzzi et al. (1995). For trisubstituted thiourea ligands, see: Hernandez et al. (2003); Arslan et al. (2003).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812029753/wm2654sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812029753/wm2654Isup2.hkl
The title compound was prepared by adding 0.4 mmol of N-benzoyl-N,N'-diphenyl thiourea to a suspension of 0.2 mmol [RhCl(cod)]2 (cod is cyclooctadiene) in 5 ml of dichloromethane. The orange suspension changed into an orange solution, from which a yellow precipitate formed. After one hour of stirring, the yellow solid was isolated by filtration with a yield of 197 mg (90%, 0.36 mmol). 1H NMR (300 MHz, CDCl3): δ 7.66 (d, 3J(HH) = 7.4 Hz, 2H, o-benzoyl-H), 7.5–7.2 (m, 13H, 2x Ph, benzoyl), 4.71 (m, 2H, cod-alkene), 3.84 (m, 2H, cod-alkene), 2.6–2.4 (m, 4H, cod-alkane), 2.1–1.9 (m, 4H, cod-alkane). Yellow crystals of (I) were obtained by slow evaporation of a dichloromethane solution.
The hydrogen atoms were added geometrically and refined as riding on their parent atoms, with C—H distances of 0.95 Å for phenyl H atoms, of 1.00 Å for those bonded to sp2 C atoms and of 0.99 Å for those bonded to sp2 C atoms of the cyclooctadiene ligand. The thermal displacement coefficients Uiso(H) were set to 1.2Ueq(C) of the corresponding parent atoms.
Rhodium complexes bearing bidentate ligands that bond through σ-interactions, such as β-diketonates and 8-hydroxyquinolates are well known (Trzeciak et al., 2004; Guiseppe et al., 2011). These bidentate ligands are compatible with a wide range of other ligands such as carbonyls and (Crous et al., 2005; Venter et al., 2009; Roodt et al., 2011). Also regularly employed are thioureato ligands (Sacht et al., 2000a,b; Kemp et al., 1997).
The title compound [Rh(C8H12)(C20H15N2OS)], (I), bears a benzoyl-functionalized thioureato moiety (Arslan et al., 2003), which can coordinate as a mono- or a bidentate ligand, depending on the metal and the other ligands present. With this specific ligand class, it was found that the peripheral substitution pattern significantly influences the coordination behaviour. When an N,N',N'-trisubstituted thiourea ligand was employed, as is the case in this study, the thiourea coordinates as a monoanionic bidentate ligand, whereas an N,N'-disubstituted thiourea coordinates only through its sulfur-atom as a neutral monodentate ligand which is stabilized through intramolecular hydrogen bonding (Cauzzi et al., 1995; Kotze et al., 2010). One of these hydrogen bonds ensures that the sulfur and oxygen atoms are in a mutual trans-position, which stabilizes the pre-ligand in such a way that bidentate coordination is prevented. In the trisubstituted variation used in this study, this intramolecular interaction is not possible (Hernandez et al., 2003), which enables the ligand to coordinate through its sulfur and oxygen atoms simultaneously. This structural report is only the third in which a rhodium complex bears both cyclooctadiene and S,O-bidentate ligands (Grim et al., 1991; Hesp et al., 2007).
The geometric parameters show that the rhodium(I) atom in the title compound has an essentially square planar coordination sphere. The deviation of the rhodium ion from the least mean squares plane, defined by the rhodium, oxygen and sulfur atoms and the centroids of the cyclooctadiene alkene bonds, is 0.001 Å. The donor atoms of the thioureato ligand and the centroids do not deviate more than 0.031 and 0.011 Å, respectively. The S,O-ligand exhibits a bite angle of 92.60 (5)°, and the cyclooctadiene ligand shows a bite angle of 87.90 (8)°. The bond lengths of the ligands to rhodium are all within the expected range for a compound of this type. The monoanionic ligand shows electron delocalization so that the bond lengths fall between those of single and double C—O, C—S and C—N bonds. There are no significant intermolecular interactions.
For rhodium complexes containing related monoanionic bidentate ligands, see: Trzeciak et al. (2004); Roodt et al. (2011); Crous et al. (2005); Guiseppe et al. (2011); Venter et al. (2009). For bidentate thioureato ligands, see: Sacht et al. (2000a,b); Kemp et al. (1997). For RhI complexes bearing cyclooctadiene and S,O-bidentate ligands, see: Grim et al. (1991); Hesp et al. (2007). For RhI complexes bearing a thiourea ligand and cyclooctadiene, see: Kotze et al. (2010); Cauzzi et al. (1995). For trisubstituted thiourea ligands, see: Hernandez et al. (2003); Arslan et al. (2003).
Data collection: APEX2 (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. H-atoms have been omitted for clarity. |
[Rh(C20H15N2OS)(C8H12)] | Z = 2 |
Mr = 542.50 | F(000) = 556 |
Triclinic, P1 | Dx = 1.534 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 9.8028 (4) Å | Cell parameters from 7390 reflections |
b = 11.2293 (5) Å | θ = 2.7–28.4° |
c = 11.5316 (5) Å | µ = 0.84 mm−1 |
α = 90.408 (2)° | T = 100 K |
β = 91.684 (2)° | Cuboid, yellow |
γ = 112.1831 (18)° | 0.22 × 0.17 × 0.09 mm |
V = 1174.69 (9) Å3 |
Bruker X8 APEXII 4K KappaCCD diffractometer | 5583 independent reflections |
Radiation source: fine-focus sealed tube | 5014 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω and φ scans | θmax = 28°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −12→12 |
Tmin = 0.843, Tmax = 0.927 | k = −14→14 |
12388 measured reflections | l = −14→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.07 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0309P)2 + 0.9591P] where P = (Fo2 + 2Fc2)/3 |
5583 reflections | (Δ/σ)max = 0.001 |
298 parameters | Δρmax = 0.66 e Å−3 |
0 restraints | Δρmin = −1.01 e Å−3 |
0 constraints |
[Rh(C20H15N2OS)(C8H12)] | γ = 112.1831 (18)° |
Mr = 542.50 | V = 1174.69 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.8028 (4) Å | Mo Kα radiation |
b = 11.2293 (5) Å | µ = 0.84 mm−1 |
c = 11.5316 (5) Å | T = 100 K |
α = 90.408 (2)° | 0.22 × 0.17 × 0.09 mm |
β = 91.684 (2)° |
Bruker X8 APEXII 4K KappaCCD diffractometer | 5583 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 5014 reflections with I > 2σ(I) |
Tmin = 0.843, Tmax = 0.927 | Rint = 0.025 |
12388 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.07 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.66 e Å−3 |
5583 reflections | Δρmin = −1.01 e Å−3 |
298 parameters |
Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A total of 1166 frames was collected with a frame width of 0.5° covering up to θ = 28.00° with 98.3% completeness accomplished. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Rh1 | 0.208984 (18) | 0.353095 (14) | 0.129434 (13) | 0.01276 (6) | |
C01 | 0.2830 (2) | 0.59145 (18) | 0.28171 (17) | 0.0130 (4) | |
C02 | 0.2300 (2) | 0.41377 (19) | 0.40937 (17) | 0.0140 (4) | |
C03 | 0.3203 (2) | 0.73436 (19) | 0.28531 (18) | 0.0140 (4) | |
C04 | 0.3589 (2) | 0.8052 (2) | 0.18426 (19) | 0.0171 (4) | |
H04 | 0.3621 | 0.7631 | 0.1132 | 0.02* | |
C05 | 0.3927 (3) | 0.9370 (2) | 0.1869 (2) | 0.0219 (5) | |
H05 | 0.42 | 0.9849 | 0.118 | 0.026* | |
C06 | 0.3866 (3) | 0.9989 (2) | 0.2904 (2) | 0.0229 (5) | |
H06 | 0.4089 | 1.0889 | 0.2921 | 0.027* | |
C07 | 0.3477 (3) | 0.9289 (2) | 0.3912 (2) | 0.0212 (5) | |
H07 | 0.3431 | 0.9713 | 0.4617 | 0.025* | |
C08 | 0.3154 (2) | 0.7970 (2) | 0.38982 (19) | 0.0181 (4) | |
H08 | 0.2901 | 0.7498 | 0.4593 | 0.022* | |
C09 | 0.1983 (2) | 0.26329 (18) | 0.56941 (17) | 0.0139 (4) | |
C10 | 0.0552 (2) | 0.1837 (2) | 0.59464 (18) | 0.0175 (4) | |
H10 | −0.0243 | 0.2112 | 0.5809 | 0.021* | |
C11 | 0.0300 (3) | 0.0630 (2) | 0.64042 (19) | 0.0206 (4) | |
H11 | −0.0675 | 0.007 | 0.6568 | 0.025* | |
C12 | 0.1464 (3) | 0.0243 (2) | 0.66217 (18) | 0.0191 (4) | |
H12 | 0.1286 | −0.0581 | 0.6934 | 0.023* | |
C13 | 0.2891 (3) | 0.1056 (2) | 0.63844 (18) | 0.0177 (4) | |
H13 | 0.3688 | 0.0791 | 0.6546 | 0.021* | |
C14 | 0.3161 (2) | 0.22573 (19) | 0.59104 (18) | 0.0160 (4) | |
H14 | 0.4135 | 0.2811 | 0.5738 | 0.019* | |
C15 | 0.2466 (2) | 0.49150 (19) | 0.60976 (17) | 0.0146 (4) | |
C16 | 0.1290 (3) | 0.5237 (2) | 0.63976 (19) | 0.0193 (4) | |
H16 | 0.0346 | 0.4806 | 0.6035 | 0.023* | |
C17 | 0.1497 (3) | 0.6194 (2) | 0.7232 (2) | 0.0229 (5) | |
H17 | 0.0696 | 0.6423 | 0.7437 | 0.028* | |
C18 | 0.2883 (3) | 0.6818 (2) | 0.77667 (19) | 0.0226 (5) | |
H18 | 0.3028 | 0.7477 | 0.8332 | 0.027* | |
C19 | 0.4047 (3) | 0.6476 (2) | 0.74738 (19) | 0.0206 (5) | |
H19 | 0.4988 | 0.6895 | 0.7846 | 0.025* | |
C20 | 0.3844 (2) | 0.5520 (2) | 0.66356 (19) | 0.0179 (4) | |
H20 | 0.4642 | 0.5284 | 0.6434 | 0.021* | |
C21 | 0.2178 (3) | 0.17668 (19) | 0.07235 (18) | 0.0182 (4) | |
H21 | 0.235 | 0.1239 | 0.1364 | 0.022* | |
C22 | 0.0719 (2) | 0.16845 (19) | 0.06089 (18) | 0.0170 (4) | |
H22 | 0.0045 | 0.1112 | 0.1183 | 0.02* | |
C23 | −0.0034 (3) | 0.1745 (2) | −0.0552 (2) | 0.0214 (5) | |
H23A | −0.109 | 0.1182 | −0.0531 | 0.026* | |
H23B | 0.0411 | 0.1412 | −0.1172 | 0.026* | |
C24 | 0.0098 (3) | 0.3117 (2) | −0.0848 (2) | 0.0220 (5) | |
H24A | 0.0075 | 0.3199 | −0.1701 | 0.026* | |
H24B | −0.076 | 0.3266 | −0.0546 | 0.026* | |
C25 | 0.1499 (3) | 0.4135 (2) | −0.03437 (18) | 0.0178 (4) | |
H25 | 0.1477 | 0.5018 | −0.032 | 0.021* | |
C26 | 0.2907 (3) | 0.4124 (2) | −0.04074 (18) | 0.0186 (4) | |
H26 | 0.3709 | 0.4998 | −0.0423 | 0.022* | |
C27 | 0.3242 (3) | 0.3089 (2) | −0.10575 (19) | 0.0213 (5) | |
H27A | 0.4215 | 0.3481 | −0.1412 | 0.026* | |
H27B | 0.249 | 0.2721 | −0.169 | 0.026* | |
C28 | 0.3250 (3) | 0.2003 (2) | −0.0247 (2) | 0.0228 (5) | |
H28A | 0.3 | 0.1199 | −0.0712 | 0.027* | |
H28B | 0.4257 | 0.2227 | 0.0093 | 0.027* | |
N1 | 0.2633 (2) | 0.53861 (16) | 0.38583 (15) | 0.0151 (3) | |
N2 | 0.2253 (2) | 0.38996 (16) | 0.52418 (15) | 0.0144 (3) | |
O5 | 0.27726 (18) | 0.54244 (13) | 0.18189 (12) | 0.0178 (3) | |
S1 | 0.19325 (6) | 0.28310 (5) | 0.31682 (4) | 0.01539 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rh1 | 0.01427 (9) | 0.00972 (8) | 0.01327 (9) | 0.00346 (6) | −0.00045 (6) | −0.00109 (5) |
C01 | 0.0090 (9) | 0.0108 (9) | 0.0177 (10) | 0.0020 (7) | −0.0010 (7) | −0.0010 (7) |
C02 | 0.0112 (10) | 0.0144 (9) | 0.0156 (10) | 0.0042 (8) | −0.0005 (7) | 0.0005 (7) |
C03 | 0.0096 (9) | 0.0101 (9) | 0.0210 (10) | 0.0025 (7) | −0.0025 (8) | −0.0006 (7) |
C04 | 0.0155 (10) | 0.0154 (10) | 0.0194 (10) | 0.0049 (8) | −0.0023 (8) | 0.0003 (8) |
C05 | 0.0198 (11) | 0.0154 (10) | 0.0285 (12) | 0.0045 (9) | −0.0034 (9) | 0.0055 (9) |
C06 | 0.0176 (11) | 0.0113 (9) | 0.0398 (14) | 0.0062 (9) | −0.0055 (10) | −0.0026 (9) |
C07 | 0.0174 (11) | 0.0167 (10) | 0.0294 (12) | 0.0070 (9) | −0.0037 (9) | −0.0087 (9) |
C08 | 0.0153 (10) | 0.0154 (10) | 0.0225 (11) | 0.0046 (8) | −0.0008 (8) | −0.0015 (8) |
C09 | 0.0178 (10) | 0.0105 (9) | 0.0117 (9) | 0.0037 (8) | −0.0011 (8) | −0.0017 (7) |
C10 | 0.0146 (10) | 0.0185 (10) | 0.0194 (10) | 0.0064 (9) | 0.0012 (8) | 0.0001 (8) |
C11 | 0.0188 (11) | 0.0147 (10) | 0.0240 (11) | 0.0013 (9) | 0.0023 (9) | 0.0010 (8) |
C12 | 0.0278 (12) | 0.0131 (9) | 0.0157 (10) | 0.0066 (9) | 0.0030 (9) | 0.0017 (8) |
C13 | 0.0214 (11) | 0.0173 (10) | 0.0161 (10) | 0.0096 (9) | −0.0031 (8) | −0.0031 (8) |
C14 | 0.0146 (10) | 0.0147 (10) | 0.0169 (10) | 0.0036 (8) | −0.0007 (8) | −0.0020 (8) |
C15 | 0.0169 (10) | 0.0122 (9) | 0.0133 (9) | 0.0038 (8) | 0.0006 (8) | 0.0020 (7) |
C16 | 0.0172 (11) | 0.0208 (11) | 0.0198 (10) | 0.0074 (9) | −0.0018 (8) | −0.0012 (8) |
C17 | 0.0240 (12) | 0.0252 (11) | 0.0242 (11) | 0.0144 (10) | 0.0032 (9) | −0.0010 (9) |
C18 | 0.0310 (13) | 0.0164 (10) | 0.0198 (11) | 0.0085 (10) | 0.0004 (9) | −0.0028 (8) |
C19 | 0.0206 (11) | 0.0144 (10) | 0.0221 (11) | 0.0015 (9) | −0.0025 (9) | −0.0022 (8) |
C20 | 0.0179 (11) | 0.0148 (10) | 0.0207 (10) | 0.0058 (8) | 0.0005 (8) | 0.0000 (8) |
C21 | 0.0263 (12) | 0.0120 (9) | 0.0171 (10) | 0.0084 (9) | −0.0016 (9) | −0.0026 (8) |
C22 | 0.0198 (11) | 0.0089 (9) | 0.0196 (10) | 0.0025 (8) | −0.0016 (8) | −0.0035 (7) |
C23 | 0.0216 (12) | 0.0159 (10) | 0.0236 (11) | 0.0040 (9) | −0.0057 (9) | −0.0037 (8) |
C24 | 0.0233 (12) | 0.0205 (11) | 0.0226 (11) | 0.0094 (9) | −0.0064 (9) | −0.0014 (9) |
C25 | 0.0256 (12) | 0.0125 (9) | 0.0145 (10) | 0.0068 (9) | −0.0045 (8) | 0.0008 (7) |
C26 | 0.0232 (12) | 0.0158 (10) | 0.0140 (10) | 0.0040 (9) | 0.0018 (8) | 0.0014 (8) |
C27 | 0.0249 (12) | 0.0232 (11) | 0.0169 (10) | 0.0099 (10) | 0.0043 (9) | −0.0005 (8) |
C28 | 0.0254 (12) | 0.0251 (11) | 0.0218 (11) | 0.0142 (10) | 0.0001 (9) | −0.0044 (9) |
N1 | 0.0148 (9) | 0.0123 (8) | 0.0174 (9) | 0.0044 (7) | −0.0007 (7) | −0.0003 (6) |
N2 | 0.0151 (9) | 0.0104 (8) | 0.0152 (8) | 0.0023 (7) | −0.0012 (7) | −0.0016 (6) |
O5 | 0.0244 (8) | 0.0101 (7) | 0.0153 (7) | 0.0026 (6) | 0.0004 (6) | −0.0016 (5) |
S1 | 0.0199 (3) | 0.0101 (2) | 0.0143 (2) | 0.0037 (2) | −0.00070 (19) | −0.00073 (18) |
Rh1—O5 | 2.0537 (16) | C14—H14 | 0.95 |
Rh1—C21 | 2.116 (2) | C15—C16 | 1.384 (3) |
Rh1—C22 | 2.131 (2) | C15—C20 | 1.387 (3) |
Rh1—C25 | 2.148 (2) | C15—N2 | 1.453 (3) |
Rh1—C26 | 2.155 (2) | C16—C17 | 1.390 (3) |
Rh1—S1 | 2.2942 (10) | C16—H16 | 0.95 |
C01—O5 | 1.263 (2) | C17—C18 | 1.393 (3) |
C01—N1 | 1.330 (3) | C17—H17 | 0.95 |
C01—C03 | 1.505 (3) | C18—C19 | 1.384 (3) |
C02—N1 | 1.346 (3) | C18—H18 | 0.95 |
C02—N2 | 1.351 (3) | C19—C20 | 1.393 (3) |
C02—S1 | 1.726 (2) | C19—H19 | 0.95 |
C03—C04 | 1.395 (3) | C20—H20 | 0.95 |
C03—C08 | 1.403 (3) | C21—C22 | 1.400 (3) |
C04—C05 | 1.389 (3) | C21—C28 | 1.514 (3) |
C04—H04 | 0.95 | C21—H21 | 1 |
C05—C06 | 1.390 (3) | C22—C23 | 1.524 (3) |
C05—H05 | 0.95 | C22—H22 | 1 |
C06—C07 | 1.389 (3) | C23—C24 | 1.538 (3) |
C06—H06 | 0.95 | C23—H23A | 0.99 |
C07—C08 | 1.392 (3) | C23—H23B | 0.99 |
C07—H07 | 0.95 | C24—C25 | 1.512 (3) |
C08—H08 | 0.95 | C24—H24A | 0.99 |
C09—C14 | 1.388 (3) | C24—H24B | 0.99 |
C09—C10 | 1.390 (3) | C25—C26 | 1.389 (3) |
C09—N2 | 1.449 (2) | C25—H25 | 1 |
C10—C11 | 1.394 (3) | C26—C27 | 1.520 (3) |
C10—H10 | 0.95 | C26—H26 | 1 |
C11—C12 | 1.382 (3) | C27—C28 | 1.544 (3) |
C11—H11 | 0.95 | C27—H27A | 0.99 |
C12—C13 | 1.388 (3) | C27—H27B | 0.99 |
C12—H12 | 0.95 | C28—H28A | 0.99 |
C13—C14 | 1.392 (3) | C28—H28B | 0.99 |
C13—H13 | 0.95 | ||
O5—Rh1—C21 | 160.27 (8) | C18—C17—H17 | 120.1 |
O5—Rh1—C22 | 160.44 (8) | C19—C18—C17 | 120.0 (2) |
C21—Rh1—C22 | 38.48 (9) | C19—C18—H18 | 120 |
O5—Rh1—C25 | 86.38 (7) | C17—C18—H18 | 120 |
C21—Rh1—C25 | 98.03 (8) | C18—C19—C20 | 120.3 (2) |
C22—Rh1—C25 | 81.92 (8) | C18—C19—H19 | 119.9 |
O5—Rh1—C26 | 89.94 (7) | C20—C19—H19 | 119.9 |
C21—Rh1—C26 | 82.25 (8) | C15—C20—C19 | 119.4 (2) |
C22—Rh1—C26 | 90.31 (9) | C15—C20—H20 | 120.3 |
C25—Rh1—C26 | 37.66 (9) | C19—C20—H20 | 120.3 |
O5—Rh1—S1 | 92.60 (5) | C22—C21—C28 | 125.9 (2) |
C21—Rh1—S1 | 89.41 (6) | C22—C21—Rh1 | 71.31 (12) |
C22—Rh1—S1 | 93.30 (6) | C28—C21—Rh1 | 109.86 (14) |
C25—Rh1—S1 | 160.68 (7) | C22—C21—H21 | 113.9 |
C26—Rh1—S1 | 161.63 (7) | C28—C21—H21 | 113.9 |
O5—C01—N1 | 131.01 (18) | Rh1—C21—H21 | 113.9 |
O5—C01—C03 | 115.41 (17) | C21—C22—C23 | 123.5 (2) |
N1—C01—C03 | 113.57 (18) | C21—C22—Rh1 | 70.21 (12) |
N1—C02—N2 | 113.29 (18) | C23—C22—Rh1 | 113.14 (14) |
N1—C02—S1 | 130.18 (16) | C21—C22—H22 | 114.1 |
N2—C02—S1 | 116.53 (15) | C23—C22—H22 | 114.1 |
C04—C03—C08 | 119.53 (19) | Rh1—C22—H22 | 114.1 |
C04—C03—C01 | 120.11 (19) | C22—C23—C24 | 112.68 (18) |
C08—C03—C01 | 120.36 (18) | C22—C23—H23A | 109.1 |
C05—C04—C03 | 120.4 (2) | C24—C23—H23A | 109.1 |
C05—C04—H04 | 119.8 | C22—C23—H23B | 109.1 |
C03—C04—H04 | 119.8 | C24—C23—H23B | 109.1 |
C04—C05—C06 | 120.1 (2) | H23A—C23—H23B | 107.8 |
C04—C05—H05 | 120 | C25—C24—C23 | 112.62 (18) |
C06—C05—H05 | 120 | C25—C24—H24A | 109.1 |
C07—C06—C05 | 119.9 (2) | C23—C24—H24A | 109.1 |
C07—C06—H06 | 120.1 | C25—C24—H24B | 109.1 |
C05—C06—H06 | 120.1 | C23—C24—H24B | 109.1 |
C06—C07—C08 | 120.5 (2) | H24A—C24—H24B | 107.8 |
C06—C07—H07 | 119.7 | C26—C25—C24 | 125.8 (2) |
C08—C07—H07 | 119.7 | C26—C25—Rh1 | 71.44 (12) |
C07—C08—C03 | 119.6 (2) | C24—C25—Rh1 | 110.18 (14) |
C07—C08—H08 | 120.2 | C26—C25—H25 | 113.8 |
C03—C08—H08 | 120.2 | C24—C25—H25 | 113.8 |
C14—C09—C10 | 121.27 (19) | Rh1—C25—H25 | 113.8 |
C14—C09—N2 | 119.49 (19) | C25—C26—C27 | 123.3 (2) |
C10—C09—N2 | 119.20 (19) | C25—C26—Rh1 | 70.90 (12) |
C09—C10—C11 | 119.0 (2) | C27—C26—Rh1 | 112.49 (14) |
C09—C10—H10 | 120.5 | C25—C26—H26 | 114.2 |
C11—C10—H10 | 120.5 | C27—C26—H26 | 114.2 |
C12—C11—C10 | 120.3 (2) | Rh1—C26—H26 | 114.2 |
C12—C11—H11 | 119.9 | C26—C27—C28 | 111.68 (18) |
C10—C11—H11 | 119.9 | C26—C27—H27A | 109.3 |
C11—C12—C13 | 120.1 (2) | C28—C27—H27A | 109.3 |
C11—C12—H12 | 119.9 | C26—C27—H27B | 109.3 |
C13—C12—H12 | 119.9 | C28—C27—H27B | 109.3 |
C12—C13—C14 | 120.4 (2) | H27A—C27—H27B | 107.9 |
C12—C13—H13 | 119.8 | C21—C28—C27 | 113.09 (19) |
C14—C13—H13 | 119.8 | C21—C28—H28A | 109 |
C09—C14—C13 | 118.9 (2) | C27—C28—H28A | 109 |
C09—C14—H14 | 120.6 | C21—C28—H28B | 109 |
C13—C14—H14 | 120.6 | C27—C28—H28B | 109 |
C16—C15—C20 | 120.8 (2) | H28A—C28—H28B | 107.8 |
C16—C15—N2 | 120.08 (19) | C01—N1—C02 | 126.80 (18) |
C20—C15—N2 | 119.10 (19) | C02—N2—C09 | 122.68 (17) |
C15—C16—C17 | 119.7 (2) | C02—N2—C15 | 121.22 (17) |
C15—C16—H16 | 120.1 | C09—N2—C15 | 116.10 (16) |
C17—C16—H16 | 120.1 | C01—O5—Rh1 | 130.27 (13) |
C16—C17—C18 | 119.9 (2) | C02—S1—Rh1 | 108.49 (7) |
C16—C17—H17 | 120.1 | ||
O5—C01—C03—C04 | −5.8 (3) | C21—Rh1—C25—C26 | −66.06 (14) |
N1—C01—C03—C04 | 173.41 (18) | C22—Rh1—C25—C26 | −101.12 (14) |
O5—C01—C03—C08 | 173.64 (19) | S1—Rh1—C25—C26 | −177.86 (13) |
N1—C01—C03—C08 | −7.2 (3) | O5—Rh1—C25—C24 | −143.13 (16) |
C08—C03—C04—C05 | 0.2 (3) | C21—Rh1—C25—C24 | 56.21 (17) |
C01—C03—C04—C05 | 179.6 (2) | C22—Rh1—C25—C24 | 21.15 (16) |
C03—C04—C05—C06 | −0.7 (3) | C26—Rh1—C25—C24 | 122.3 (2) |
C04—C05—C06—C07 | 0.5 (3) | S1—Rh1—C25—C24 | −55.6 (3) |
C05—C06—C07—C08 | 0.3 (3) | C24—C25—C26—C27 | 3.0 (3) |
C06—C07—C08—C03 | −0.8 (3) | Rh1—C25—C26—C27 | 104.9 (2) |
C04—C03—C08—C07 | 0.6 (3) | C24—C25—C26—Rh1 | −101.9 (2) |
C01—C03—C08—C07 | −178.84 (19) | O5—Rh1—C26—C25 | −84.15 (13) |
C14—C09—C10—C11 | −1.3 (3) | C21—Rh1—C26—C25 | 114.02 (13) |
N2—C09—C10—C11 | −178.66 (19) | C22—Rh1—C26—C25 | 76.28 (13) |
C09—C10—C11—C12 | 1.1 (3) | S1—Rh1—C26—C25 | 177.75 (14) |
C10—C11—C12—C13 | 0.0 (3) | O5—Rh1—C26—C27 | 156.78 (16) |
C11—C12—C13—C14 | −1.0 (3) | C21—Rh1—C26—C27 | −5.04 (16) |
C10—C09—C14—C13 | 0.3 (3) | C22—Rh1—C26—C27 | −42.78 (17) |
N2—C09—C14—C13 | 177.69 (18) | C25—Rh1—C26—C27 | −119.1 (2) |
C12—C13—C14—C09 | 0.8 (3) | S1—Rh1—C26—C27 | 58.7 (3) |
C20—C15—C16—C17 | 1.2 (3) | C25—C26—C27—C28 | −94.1 (3) |
N2—C15—C16—C17 | 178.88 (19) | Rh1—C26—C27—C28 | −12.9 (2) |
C15—C16—C17—C18 | −0.4 (3) | C22—C21—C28—C27 | 44.9 (3) |
C16—C17—C18—C19 | −0.6 (3) | Rh1—C21—C28—C27 | −35.9 (2) |
C17—C18—C19—C20 | 0.7 (3) | C26—C27—C28—C21 | 32.2 (3) |
C16—C15—C20—C19 | −1.0 (3) | O5—C01—N1—C02 | −0.6 (4) |
N2—C15—C20—C19 | −178.70 (18) | C03—C01—N1—C02 | −179.59 (19) |
C18—C19—C20—C15 | 0.0 (3) | N2—C02—N1—C01 | 176.38 (19) |
O5—Rh1—C21—C22 | −167.87 (17) | S1—C02—N1—C01 | −3.7 (3) |
C25—Rh1—C21—C22 | −66.06 (14) | N1—C02—N2—C09 | −177.07 (18) |
C26—Rh1—C21—C22 | −100.37 (14) | S1—C02—N2—C09 | 3.0 (3) |
S1—Rh1—C21—C22 | 96.05 (12) | N1—C02—N2—C15 | 3.3 (3) |
O5—Rh1—C21—C28 | −45.4 (3) | S1—C02—N2—C15 | −176.63 (15) |
C22—Rh1—C21—C28 | 122.4 (2) | C14—C09—N2—C02 | 88.4 (2) |
C25—Rh1—C21—C28 | 56.38 (17) | C10—C09—N2—C02 | −94.2 (2) |
C26—Rh1—C21—C28 | 22.07 (15) | C14—C09—N2—C15 | −92.0 (2) |
S1—Rh1—C21—C28 | −141.51 (15) | C10—C09—N2—C15 | 85.4 (2) |
C28—C21—C22—C23 | 3.8 (3) | C16—C15—N2—C02 | 84.2 (3) |
Rh1—C21—C22—C23 | 105.22 (19) | C20—C15—N2—C02 | −98.1 (2) |
C28—C21—C22—Rh1 | −101.4 (2) | C16—C15—N2—C09 | −95.4 (2) |
O5—Rh1—C22—C21 | 167.77 (18) | C20—C15—N2—C09 | 82.3 (2) |
C25—Rh1—C22—C21 | 113.92 (14) | N1—C01—O5—Rh1 | 8.8 (3) |
C26—Rh1—C22—C21 | 77.09 (13) | C03—C01—O5—Rh1 | −172.15 (13) |
S1—Rh1—C22—C21 | −84.89 (12) | C21—Rh1—O5—C01 | −104.8 (3) |
O5—Rh1—C22—C23 | 48.8 (3) | C22—Rh1—O5—C01 | 98.2 (3) |
C21—Rh1—C22—C23 | −119.0 (2) | C25—Rh1—O5—C01 | 151.38 (19) |
C25—Rh1—C22—C23 | −5.05 (17) | C26—Rh1—O5—C01 | −171.10 (19) |
C26—Rh1—C22—C23 | −41.89 (17) | S1—Rh1—O5—C01 | −9.30 (18) |
S1—Rh1—C22—C23 | 156.14 (16) | N1—C02—S1—Rh1 | 0.0 (2) |
C21—C22—C23—C24 | −92.8 (3) | N2—C02—S1—Rh1 | 179.91 (14) |
Rh1—C22—C23—C24 | −12.0 (3) | O5—Rh1—S1—C02 | 4.43 (9) |
C22—C23—C24—C25 | 30.3 (3) | C21—Rh1—S1—C02 | 164.79 (10) |
C23—C24—C25—C26 | 47.4 (3) | C22—Rh1—S1—C02 | −156.91 (10) |
C23—C24—C25—Rh1 | −33.8 (2) | C25—Rh1—S1—C02 | −82.05 (19) |
O5—Rh1—C25—C26 | 94.60 (13) | C26—Rh1—S1—C02 | 102.1 (2) |
Experimental details
Crystal data | |
Chemical formula | [Rh(C20H15N2OS)(C8H12)] |
Mr | 542.50 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 9.8028 (4), 11.2293 (5), 11.5316 (5) |
α, β, γ (°) | 90.408 (2), 91.684 (2), 112.1831 (18) |
V (Å3) | 1174.69 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.84 |
Crystal size (mm) | 0.22 × 0.17 × 0.09 |
Data collection | |
Diffractometer | Bruker X8 APEXII 4K KappaCCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.843, 0.927 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12388, 5583, 5014 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.07, 1.04 |
No. of reflections | 5583 |
No. of parameters | 298 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.66, −1.01 |
Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999).
Rh1—O5 | 2.0537 (16) | Rh1—S1 | 2.2942 (10) |
Rh1—C21 | 2.116 (2) | C01—O5 | 1.263 (2) |
Rh1—C22 | 2.131 (2) | C01—N1 | 1.330 (3) |
Rh1—C25 | 2.148 (2) | C02—N1 | 1.346 (3) |
Rh1—C26 | 2.155 (2) | C02—S1 | 1.726 (2) |
Acknowledgements
The authors thank SASOL, the South African NRF and THRIP, the University of the Free State Research Fund and the UFS Materials and Nanosciences SStrategic Research Cluster initiative for financial support. The views expressed do not necessarily represent those of the NRF.
References
Arslan, H., Flörke, U. & Külcü, N. (2003). Acta Cryst. E59, o641–o642. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cauzzi, D., Lanfranchi, M., Marzolini, G., Predieri, G., Tiripicchio, A., Costa, M. & Zanoni, R. (1995). J. Organomet. Chem. 488, 115–125. CSD CrossRef CAS Web of Science Google Scholar
Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108–1116. Web of Science CSD CrossRef PubMed Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Grim, S. O., Kettler, P. B. & Thoden, J. B. (1991). Organometallics, 10, 2399–2403. CSD CrossRef CAS Web of Science Google Scholar
Guiseppe, A. D., Casterlenas, R., Perez-Torrente, J. J., Lahoz, F. H., Polo, V. & Oro, L. A. (2011). Angew. Chem. Int. Ed. 50, 3938–3942. Google Scholar
Hernandez, W., Spodine, E., Munoz, J. C., Beyer, L., Schroder, U., Ferreira, J. & Pavani, M. (2003). Bioinorg. Chem. Appl. 1, 271–284. CAS Google Scholar
Hesp, K. D., Wechsler, D., Cipot, J., Myers, A., McDonald, R., Ferguson, M. J., Schatte, G. & Stradiotto, M. (2007). Organometallics, 26, 5430–5437. Web of Science CSD CrossRef CAS Google Scholar
Kemp, G., Purcell, W., Roodt, A. & Koch, K. R. (1997). J. Chem. Soc. Dalton Trans. pp. 4481–4483. Web of Science CSD CrossRef Google Scholar
Kotze, P. D. R., Roodt, A., Venter, J. A. & Otto, S. (2010). Acta Cryst. E66, m1028–m1029. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Roodt, A., Visser, H. G. & Brink, A. (2011). Crystallogr. Rev. 17, 241–280. Web of Science CrossRef CAS Google Scholar
Sacht, C. I., Datt, M. S., Otto, S. & Roodt, A. (2000a). J. Chem. Soc. Dalton Trans. pp. 727–73. Web of Science CSD CrossRef Google Scholar
Sacht, C. I., Datt, M. S., Otto, S. & Roodt, A. (2000b). J. Chem. Soc. Dalton Trans. pp. 4579–4586. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trzeciak, A. M., Borak, B., Cinnik, Z., Ziolkowski, J. J., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2004). Eur. J. Inorg. Chem. pp. 1411–1419. Web of Science CSD CrossRef Google Scholar
Venter, J. A., Purcell, W., Visser, H. G. & Muller, T. J. (2009). Acta Cryst. E65, m1578. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rhodium complexes bearing bidentate ligands that bond through σ-interactions, such as β-diketonates and 8-hydroxyquinolates are well known (Trzeciak et al., 2004; Guiseppe et al., 2011). These bidentate ligands are compatible with a wide range of other ligands such as carbonyls and phosphines (Crous et al., 2005; Venter et al., 2009; Roodt et al., 2011). Also regularly employed are thioureato ligands (Sacht et al., 2000a,b; Kemp et al., 1997).
The title compound [Rh(C8H12)(C20H15N2OS)], (I), bears a benzoyl-functionalized thioureato moiety (Arslan et al., 2003), which can coordinate as a mono- or a bidentate ligand, depending on the metal and the other ligands present. With this specific ligand class, it was found that the peripheral substitution pattern significantly influences the coordination behaviour. When an N,N',N'-trisubstituted thiourea ligand was employed, as is the case in this study, the thiourea coordinates as a monoanionic bidentate ligand, whereas an N,N'-disubstituted thiourea coordinates only through its sulfur-atom as a neutral monodentate ligand which is stabilized through intramolecular hydrogen bonding (Cauzzi et al., 1995; Kotze et al., 2010). One of these hydrogen bonds ensures that the sulfur and oxygen atoms are in a mutual trans-position, which stabilizes the pre-ligand in such a way that bidentate coordination is prevented. In the trisubstituted variation used in this study, this intramolecular interaction is not possible (Hernandez et al., 2003), which enables the ligand to coordinate through its sulfur and oxygen atoms simultaneously. This structural report is only the third in which a rhodium complex bears both cyclooctadiene and S,O-bidentate ligands (Grim et al., 1991; Hesp et al., 2007).
The geometric parameters show that the rhodium(I) atom in the title compound has an essentially square planar coordination sphere. The deviation of the rhodium ion from the least mean squares plane, defined by the rhodium, oxygen and sulfur atoms and the centroids of the cyclooctadiene alkene bonds, is 0.001 Å. The donor atoms of the thioureato ligand and the centroids do not deviate more than 0.031 and 0.011 Å, respectively. The S,O-ligand exhibits a bite angle of 92.60 (5)°, and the cyclooctadiene ligand shows a bite angle of 87.90 (8)°. The bond lengths of the ligands to rhodium are all within the expected range for a compound of this type. The monoanionic ligand shows electron delocalization so that the bond lengths fall between those of single and double C—O, C—S and C—N bonds. There are no significant intermolecular interactions.