metal-organic compounds
trans-Bis(nitrato-κO)tetrakis(1-vinyl-1H-imidazole-κN3)copper(II)
aKilis 7 Aralık University, Vocational High School of Health Services, Department of Opticianry, 79000 Kilis, Turkey, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey, and cGiresun University, Arts and Sciences Faculty, Department of Chemistry, 28000 Giresun, Turkey
*Correspondence e-mail: fatihsen55@gmail.com
In the title compound, [Cu(NO3)2(C5H6N2)4], the CuII ion is located on an inversion centre. It features a Jahn–Teller-distorted octahedral coordination geometry, defined by four N atoms of four 1-vinylimidazole ligands in the equatorial plane and two nitrate O atoms in the axial positions. The nitrate anion is disordered over two sets of sites in a 0.801 (6):0.199 (6) ratio. In the crystal, the complex molecules are linked by weak intermolecular C—H⋯O and C—H⋯π interactions.
Related literature
For applications and characterisation of related compounds, see: Sundberg & Martin (1974); Kurimura et al. (1994); Baran (1999); Zhao (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812030607/wm2655sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812030607/wm2655Isup2.hkl
Complex (I) was prepared from a mixtures of solutions containing copper(II) nitrate trihydrate (2.42 g, 10 mmol) and 1-vinylimidazole (1.98 g, 20 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1 h, then 20 ml dissolved succinic acid (1.18 g, 10 mmol) was added. Then the reaction mixture solution was again stirred for 30 min and finally the solution was filtered. Blue single crystals of (I) were isolated after one day. Suitable crystals of (I) for
were obtained from ethanol by slow evaporation (yield %55).H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.93 Å for the sp2 C atoms. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq(C). The nitrate anion was shown to be disordered over two sets of sites in a 0.801 (6):0.199 (6) ratio.
Numerous complexes derived from d-block metals and imidazole ligands are well-known (Sundberg & Martin, 1974). A large number of investigations on the complexation of copper(II) with imidazole ligands and vinylimidazol ligands have been reported, with some of them reporting structures determined crystallographically (Kurimura et al., 1994). We report here the
of the title compound, [Cu(C5H6N2)4(NO3)2], a mixed-ligand CuII complex, (I).The molecular structure of compound (I) (Fig. 1) is similar to those of analogous derivatives (Baran, 1999). The CuII atom displays a Jahn-Teller distorted octahedral coordination geometry, with four N atoms from four 1-vinylimidazole ligands in the equatorial plane (with Cu—N1 and Cu—N3 bond lengths of 2.0091 (15) and 2.0147 (16) Å) and two nitrate molecules in axial positions (with Cu—O2B and Cu—O2A bond lengths of 2.531 (9) and 2.651 (3) Å). These bond lengths are comparable with those reported by Baran (1999).
The imidazole rings have a maximum deviation of 0.004 Å and 0.002 Å from planarity for atoms N2 and N3, respectively. The bond lengths and angles of the 1-vinyl-imidazole molecules in (I) show no significant differences to those of the related 2-chlorobenzoato structure (Zhao, 2008).
In the π hydrogen-bonding associations (Table 1).
(Fig. 2) the molecules are linked by two intermolecular C—H···O hydrogen bonds and two C—H···For applications and characterisation of related compounds, see: Sundberg & Martin (1974); Kurimura et al. (1994); Baran (1999); Zhao (2008).
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The disorder of the nitrate anion is shown, however only the shorter of the two Cu—O bonds is indicated. | |
Fig. 2. Packing of (I). |
[Cu(NO3)2(C5H6N2)4] | F(000) = 582 |
Mr = 564.03 | Dx = 1.500 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 452 reflections |
a = 8.9415 (4) Å | θ = 3.3–30.4° |
b = 8.7618 (3) Å | µ = 0.93 mm−1 |
c = 16.3172 (6) Å | T = 296 K |
β = 102.281 (4)° | Prism, blue |
V = 1249.10 (8) Å3 | 0.1 × 0.1 × 0.1 mm |
Z = 2 |
Oxford Diffraction SuperNova diffractometer | 3820 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 2908 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.018 |
Detector resolution: 16.0454 pixels mm-1 | θmax = 30.5°, θmin = 3.3° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | k = −7→12 |
Tmin = 0.911, Tmax = 0.911 | l = −22→23 |
6658 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0433P)2 + 0.3004P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3820 reflections | Δρmax = 0.26 e Å−3 |
198 parameters | Δρmin = −0.32 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0069 (15) |
[Cu(NO3)2(C5H6N2)4] | V = 1249.10 (8) Å3 |
Mr = 564.03 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.9415 (4) Å | µ = 0.93 mm−1 |
b = 8.7618 (3) Å | T = 296 K |
c = 16.3172 (6) Å | 0.1 × 0.1 × 0.1 mm |
β = 102.281 (4)° |
Oxford Diffraction SuperNova diffractometer | 3820 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | 2908 reflections with I > 2σ(I) |
Tmin = 0.911, Tmax = 0.911 | Rint = 0.018 |
6658 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 1 restraint |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.26 e Å−3 |
3820 reflections | Δρmin = −0.32 e Å−3 |
198 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 1.0000 | 0.0000 | 1.0000 | 0.03972 (13) | |
O1A | 0.8327 (4) | 0.0665 (4) | 1.25474 (18) | 0.0831 (11) | 0.801 (6) |
O1B | 0.7861 (14) | 0.031 (2) | 1.1897 (19) | 0.185 (15) | 0.199 (6) |
O2A | 0.8731 (3) | 0.0287 (3) | 1.13193 (14) | 0.0624 (8) | 0.801 (6) |
O2B | 0.9871 (18) | 0.0315 (12) | 1.1525 (6) | 0.092 (5) | 0.199 (6) |
O3B | 0.9566 (15) | 0.1935 (15) | 1.2426 (8) | 0.096 (5) | 0.199 (6) |
O3A | 1.0438 (4) | 0.1280 (6) | 1.22800 (15) | 0.116 (2) | 0.801 (6) |
N1 | 1.20913 (18) | −0.05380 (19) | 1.06665 (9) | 0.0390 (3) | |
N2 | 1.39690 (17) | −0.1596 (2) | 1.15773 (9) | 0.0411 (4) | |
N3 | 1.07291 (18) | 0.21679 (18) | 0.99548 (9) | 0.0396 (3) | |
N4 | 1.1880 (2) | 0.42052 (19) | 0.96108 (10) | 0.0460 (4) | |
N5 | 0.91506 (19) | 0.0750 (2) | 1.20390 (10) | 0.0474 (4) | |
C1 | 1.2438 (2) | −0.1520 (2) | 1.12881 (11) | 0.0410 (4) | |
H1 | 1.1725 | −0.2085 | 1.1500 | 0.049* | |
C2 | 1.3466 (2) | 0.0048 (2) | 1.05604 (13) | 0.0464 (5) | |
H2 | 1.3573 | 0.0776 | 1.0162 | 0.056* | |
C3 | 1.4628 (2) | −0.0580 (3) | 1.11142 (12) | 0.0467 (5) | |
H3 | 1.5666 | −0.0373 | 1.1173 | 0.056* | |
C4 | 1.4720 (3) | −0.2583 (3) | 1.22233 (13) | 0.0547 (5) | |
H4 | 1.4121 | −0.3254 | 1.2457 | 0.066* | |
C5 | 1.6189 (3) | −0.2611 (3) | 1.25094 (16) | 0.0709 (7) | |
H5A | 1.6820 | −0.1954 | 1.2289 | 0.085* | |
H5B | 1.6612 | −0.3288 | 1.2935 | 0.085* | |
C6 | 1.1213 (2) | 0.2877 (2) | 0.93488 (11) | 0.0430 (4) | |
H6 | 1.1103 | 0.2500 | 0.8806 | 0.052* | |
C7 | 1.1104 (2) | 0.3105 (2) | 1.06447 (11) | 0.0459 (4) | |
H7 | 1.0898 | 0.2904 | 1.1169 | 0.055* | |
C8 | 1.1817 (3) | 0.4360 (3) | 1.04412 (13) | 0.0526 (5) | |
H8 | 1.2192 | 0.5171 | 1.0793 | 0.063* | |
C9 | 1.2511 (3) | 0.5242 (3) | 0.90989 (19) | 0.0670 (7) | |
H9 | 1.2270 | 0.5083 | 0.8522 | 0.080* | |
C10 | 1.3381 (4) | 0.6372 (4) | 0.9373 (2) | 0.1013 (11) | |
H10A | 1.3647 | 0.6568 | 0.9945 | 0.122* | |
H10B | 1.3747 | 0.6997 | 0.8999 | 0.122* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.04072 (19) | 0.03473 (19) | 0.03982 (18) | −0.00283 (14) | −0.00020 (12) | 0.00636 (13) |
O1A | 0.081 (2) | 0.104 (2) | 0.0780 (17) | −0.0103 (18) | 0.0492 (15) | −0.0192 (16) |
O1B | 0.047 (7) | 0.116 (13) | 0.40 (5) | −0.024 (8) | 0.072 (15) | −0.016 (19) |
O2A | 0.0630 (17) | 0.0759 (16) | 0.0460 (11) | −0.0037 (13) | 0.0064 (10) | −0.0199 (10) |
O2B | 0.144 (15) | 0.076 (7) | 0.076 (8) | 0.012 (8) | 0.069 (9) | −0.023 (6) |
O3B | 0.060 (7) | 0.116 (9) | 0.105 (8) | 0.002 (6) | 0.002 (6) | −0.079 (7) |
O3A | 0.074 (2) | 0.213 (5) | 0.0536 (14) | −0.074 (3) | −0.0024 (13) | 0.012 (2) |
N1 | 0.0414 (8) | 0.0401 (8) | 0.0343 (7) | −0.0005 (7) | 0.0051 (6) | 0.0040 (6) |
N2 | 0.0405 (8) | 0.0454 (9) | 0.0348 (7) | 0.0000 (7) | 0.0025 (6) | 0.0032 (7) |
N3 | 0.0436 (8) | 0.0355 (8) | 0.0369 (7) | −0.0018 (7) | 0.0025 (6) | 0.0019 (6) |
N4 | 0.0513 (9) | 0.0370 (8) | 0.0487 (9) | −0.0059 (8) | 0.0087 (7) | 0.0027 (7) |
N5 | 0.0426 (9) | 0.0559 (11) | 0.0433 (8) | −0.0038 (8) | 0.0085 (7) | −0.0015 (8) |
C1 | 0.0403 (9) | 0.0416 (10) | 0.0390 (8) | −0.0032 (8) | 0.0039 (7) | 0.0042 (8) |
C2 | 0.0466 (10) | 0.0526 (12) | 0.0417 (9) | −0.0010 (9) | 0.0132 (8) | 0.0090 (8) |
C3 | 0.0399 (9) | 0.0564 (12) | 0.0452 (10) | −0.0006 (10) | 0.0121 (8) | 0.0061 (9) |
C4 | 0.0536 (12) | 0.0599 (14) | 0.0458 (10) | −0.0003 (11) | 0.0000 (8) | 0.0153 (10) |
C5 | 0.0552 (13) | 0.0848 (19) | 0.0652 (14) | 0.0027 (14) | −0.0041 (11) | 0.0248 (14) |
C6 | 0.0500 (10) | 0.0401 (10) | 0.0374 (8) | −0.0025 (9) | 0.0061 (7) | 0.0007 (8) |
C7 | 0.0516 (11) | 0.0469 (11) | 0.0385 (9) | 0.0001 (9) | 0.0075 (8) | −0.0008 (8) |
C8 | 0.0643 (13) | 0.0415 (11) | 0.0498 (11) | −0.0055 (11) | 0.0071 (9) | −0.0087 (9) |
C9 | 0.0806 (18) | 0.0566 (14) | 0.0671 (15) | −0.0165 (13) | 0.0230 (13) | 0.0094 (12) |
C10 | 0.135 (3) | 0.0703 (19) | 0.110 (2) | −0.041 (2) | 0.051 (2) | −0.0040 (18) |
Cu1—N1i | 2.0091 (15) | N2—C3 | 1.378 (3) |
Cu1—N1 | 2.0091 (15) | N2—C4 | 1.418 (2) |
Cu1—N3i | 2.0147 (16) | N3—C6 | 1.316 (2) |
Cu1—N3 | 2.0147 (16) | N3—C7 | 1.376 (2) |
Cu1—O2B | 2.531 (9) | N4—C6 | 1.336 (2) |
Cu1—O2Bi | 2.531 (9) | N4—C8 | 1.375 (3) |
Cu1—O2Ai | 2.651 (3) | N4—C9 | 1.428 (3) |
Cu1—O2A | 2.651 (3) | C1—H1 | 0.9300 |
O1A—O1B | 1.10 (3) | C2—C3 | 1.342 (3) |
O1A—N5 | 1.223 (3) | C2—H2 | 0.9300 |
O1A—O3B | 1.612 (16) | C3—H3 | 0.9300 |
O1B—N5 | 1.191 (13) | C4—C5 | 1.297 (3) |
O1B—O2A | 1.34 (2) | C4—H4 | 0.9300 |
O2A—O2B | 1.004 (15) | C5—H5A | 0.9300 |
O2A—N5 | 1.223 (3) | C5—H5B | 0.9300 |
O2B—N5 | 1.221 (10) | C6—H6 | 0.9300 |
O2B—O3A | 1.490 (12) | C7—C8 | 1.347 (3) |
O3B—O3A | 1.036 (10) | C7—H7 | 0.9300 |
O3B—N5 | 1.231 (11) | C8—H8 | 0.9300 |
O3A—N5 | 1.226 (3) | C9—C10 | 1.280 (4) |
N1—C1 | 1.316 (2) | C9—H9 | 0.9300 |
N1—C2 | 1.376 (3) | C10—H10A | 0.9300 |
N2—C1 | 1.351 (2) | C10—H10B | 0.9300 |
N1i—Cu1—N1 | 180.000 (1) | C6—N4—C9 | 124.9 (2) |
N1i—Cu1—N3i | 88.27 (6) | C8—N4—C9 | 128.2 (2) |
N1—Cu1—N3i | 91.73 (6) | C8—N4—Cu1 | 80.44 (12) |
N1i—Cu1—N3 | 91.73 (6) | C9—N4—Cu1 | 151.17 (15) |
N1—Cu1—N3 | 88.27 (6) | O1B—N5—O2B | 113.3 (16) |
N3i—Cu1—N3 | 180.000 (1) | O2A—N5—O1A | 121.6 (3) |
N1i—Cu1—O2B | 106.0 (3) | O2A—N5—O3A | 120.6 (2) |
N1—Cu1—O2B | 74.0 (3) | O1A—N5—O3A | 117.7 (3) |
N3i—Cu1—O2B | 89.1 (3) | O1B—N5—O3B | 123.1 (12) |
N3—Cu1—O2B | 90.9 (3) | O2B—N5—O3B | 118.0 (9) |
N1i—Cu1—O2Bi | 74.0 (3) | N1—C1—N2 | 110.89 (17) |
N1—Cu1—O2Bi | 106.0 (3) | N2—C1—Cu1 | 142.94 (13) |
N3i—Cu1—O2Bi | 90.9 (3) | N1—C1—H1 | 124.6 |
N3—Cu1—O2Bi | 89.1 (3) | N2—C1—H1 | 124.6 |
O2B—Cu1—O2Bi | 180.000 (3) | Cu1—C1—H1 | 92.5 |
N1i—Cu1—O2Ai | 95.32 (7) | C3—C2—N1 | 110.28 (17) |
N1—Cu1—O2Ai | 84.68 (7) | C3—C2—Cu1 | 142.29 (14) |
N3i—Cu1—O2Ai | 97.93 (7) | C3—C2—H2 | 124.9 |
N3—Cu1—O2Ai | 82.07 (7) | N1—C2—H2 | 124.9 |
O2B—Cu1—O2Ai | 157.8 (3) | Cu1—C2—H2 | 92.8 |
O2Bi—Cu1—O2Ai | 22.2 (3) | C2—C3—N2 | 105.89 (17) |
N1i—Cu1—O2A | 84.68 (7) | N2—C3—Cu1 | 79.50 (10) |
N1—Cu1—O2A | 95.32 (7) | C2—C3—H3 | 127.1 |
N3i—Cu1—O2A | 82.07 (7) | N2—C3—H3 | 127.1 |
N3—Cu1—O2A | 97.93 (7) | Cu1—C3—H3 | 153.4 |
O2B—Cu1—O2A | 22.2 (3) | C5—C4—N2 | 124.2 (2) |
O2Bi—Cu1—O2A | 157.8 (3) | C5—C4—H4 | 117.9 |
O2Ai—Cu1—O2A | 180.000 (1) | N2—C4—H4 | 117.9 |
O1B—O1A—N5 | 61.4 (8) | C4—C5—H5A | 120.0 |
O1B—O1A—O3B | 101.9 (10) | C4—C5—H5B | 120.0 |
N5—O1A—O3B | 49.2 (4) | H5A—C5—H5B | 120.0 |
O1A—O1B—N5 | 64.4 (11) | N3—C6—N4 | 111.49 (17) |
O1A—O1B—O2A | 121.6 (11) | N4—C6—Cu1 | 141.50 (13) |
N5—O1B—O2A | 57.3 (8) | N3—C6—H6 | 124.3 |
O1A—O1B—Cu1 | 128.6 (8) | N4—C6—H6 | 124.3 |
N5—O1B—Cu1 | 64.4 (12) | Cu1—C6—H6 | 93.8 |
N5—O2A—Cu1 | 135.6 (2) | C8—C7—N3 | 109.33 (17) |
N5—O2B—Cu1 | 148.2 (9) | C8—C7—H7 | 125.3 |
N5—O3A—Cu1 | 71.46 (17) | N3—C7—H7 | 125.3 |
C1—N1—C2 | 105.69 (16) | C7—C8—N4 | 106.46 (18) |
C1—N1—Cu1 | 127.61 (14) | N4—C8—Cu1 | 80.51 (12) |
C2—N1—Cu1 | 126.69 (13) | C7—C8—H8 | 126.8 |
C1—N2—C3 | 107.24 (15) | N4—C8—H8 | 126.8 |
C1—N2—C4 | 125.05 (18) | Cu1—C8—H8 | 152.4 |
C3—N2—C4 | 127.69 (18) | C10—C9—N4 | 125.0 (3) |
C3—N2—Cu1 | 81.48 (10) | C10—C9—H9 | 117.5 |
C4—N2—Cu1 | 150.75 (13) | N4—C9—H9 | 117.5 |
C6—N3—C7 | 105.73 (16) | C9—C10—H10A | 120.0 |
C6—N3—Cu1 | 129.27 (13) | C9—C10—H10B | 120.0 |
C7—N3—Cu1 | 123.86 (13) | H10A—C10—H10B | 120.0 |
C6—N4—C8 | 106.98 (17) |
Symmetry code: (i) −x+2, −y, −z+2. |
Cg1 is the centroid of the imidazole (N1/C1/N2/C3/C2) ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O3A | 0.93 | 2.41 | 3.273 (3) | 155 |
C1—H1···O1Aii | 0.93 | 2.52 | 3.273 (3) | 139 |
C4—H4···O1Aii | 0.93 | 2.38 | 3.217 (4) | 149 |
C5—H5B···Cg1iii | 0.93 | 2.78 | 3.6515 | 156 |
C10—H10A···Cg1iv | 0.93 | 2.95 | 3.6691 | 136 |
Symmetry codes: (ii) −x+2, y−1/2, −z+5/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(NO3)2(C5H6N2)4] |
Mr | 564.03 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 8.9415 (4), 8.7618 (3), 16.3172 (6) |
β (°) | 102.281 (4) |
V (Å3) | 1249.10 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.93 |
Crystal size (mm) | 0.1 × 0.1 × 0.1 |
Data collection | |
Diffractometer | Oxford Diffraction SuperNova |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.911, 0.911 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6658, 3820, 2908 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.714 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.109, 1.03 |
No. of reflections | 3820 |
No. of parameters | 198 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.32 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Cg1 is the centroid of the imidazole (N1/C1/N2/C3/C2) ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O3A | 0.93 | 2.41 | 3.273 (3) | 154.7 |
C1—H1···O1Ai | 0.93 | 2.52 | 3.273 (3) | 138.7 |
C4—H4···O1Ai | 0.93 | 2.38 | 3.217 (4) | 149.1 |
C5—H5B···Cg1ii | 0.93 | 2.78 | 3.6515 | 156 |
C10—H10A···Cg1iii | 0.93 | 2.95 | 3.6691 | 136 |
Symmetry codes: (i) −x+2, y−1/2, −z+5/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x, y+1, z. |
Acknowledgements
This work was supported by TÜBİTAK – The Scientific and Technological Research Council of Turkey (grant No. 110 T131 PROJECT)
References
Baran, Y. (1999). J. Chem. Crystallogr. 29, 1077–1079. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kurimura, Y., Abe, T., Usui, Y., Tsuchida, E., Nishide, H. & Challa, G. (1994). J. Chem. Soc. Faraday Trans. 90, 3563–3568. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sundberg, R. J. & Martin, R. B. (1974). Chem. Rev. 74, 471–517. CrossRef CAS Web of Science Google Scholar
Zhao, J. (2008). Acta Cryst. E64, m1321. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Numerous complexes derived from d-block metals and imidazole ligands are well-known (Sundberg & Martin, 1974). A large number of investigations on the complexation of copper(II) with imidazole ligands and vinylimidazol ligands have been reported, with some of them reporting structures determined crystallographically (Kurimura et al., 1994). We report here the crystal structure of the title compound, [Cu(C5H6N2)4(NO3)2], a mixed-ligand CuII complex, (I).
The molecular structure of compound (I) (Fig. 1) is similar to those of analogous derivatives (Baran, 1999). The CuII atom displays a Jahn-Teller distorted octahedral coordination geometry, with four N atoms from four 1-vinylimidazole ligands in the equatorial plane (with Cu—N1 and Cu—N3 bond lengths of 2.0091 (15) and 2.0147 (16) Å) and two nitrate molecules in axial positions (with Cu—O2B and Cu—O2A bond lengths of 2.531 (9) and 2.651 (3) Å). These bond lengths are comparable with those reported by Baran (1999).
The imidazole rings have a maximum deviation of 0.004 Å and 0.002 Å from planarity for atoms N2 and N3, respectively. The bond lengths and angles of the 1-vinyl-imidazole molecules in (I) show no significant differences to those of the related 2-chlorobenzoato structure (Zhao, 2008).
In the crystal structure (Fig. 2) the molecules are linked by two intermolecular C—H···O hydrogen bonds and two C—H···π hydrogen-bonding associations (Table 1).