metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(nitrato-κO)tetra­kis­(1-vinyl-1H-imidazole-κN3)copper(II)

aKilis 7 Aralık University, Vocational High School of Health Services, Department of Opticianry, 79000 Kilis, Turkey, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey, and cGiresun University, Arts and Sciences Faculty, Department of Chemistry, 28000 Giresun, Turkey
*Correspondence e-mail: fatihsen55@gmail.com

(Received 27 June 2012; accepted 4 July 2012; online 10 July 2012)

In the title compound, [Cu(NO3)2(C5H6N2)4], the CuII ion is located on an inversion centre. It features a Jahn–Teller-distorted octa­hedral coordination geometry, defined by four N atoms of four 1-vinyl­imidazole ligands in the equatorial plane and two nitrate O atoms in the axial positions. The nitrate anion is disordered over two sets of sites in a 0.801 (6):0.199 (6) ratio. In the crystal, the complex mol­ecules are linked by weak inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For applications and characterisation of related compounds, see: Sundberg & Martin (1974[Sundberg, R. J. & Martin, R. B. (1974). Chem. Rev. 74, 471-517.]); Kurimura et al. (1994[Kurimura, Y., Abe, T., Usui, Y., Tsuchida, E., Nishide, H. & Challa, G. (1994). J. Chem. Soc. Faraday Trans. 90, 3563-3568.]); Baran (1999[Baran, Y. (1999). J. Chem. Crystallogr. 29, 1077-1079.]); Zhao (2008[Zhao, J. (2008). Acta Cryst. E64, m1321.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C5H6N2)4]

  • Mr = 564.03

  • Monoclinic, P 21 /c

  • a = 8.9415 (4) Å

  • b = 8.7618 (3) Å

  • c = 16.3172 (6) Å

  • β = 102.281 (4)°

  • V = 1249.10 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 296 K

  • 0.1 × 0.1 × 0.1 mm

Data collection
  • Oxford Diffraction SuperNova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.911, Tmax = 0.911

  • 6658 measured reflections

  • 3820 independent reflections

  • 2908 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.109

  • S = 1.03

  • 3820 reflections

  • 198 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the imidazole (N1/C1/N2/C3/C2) ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3A 0.93 2.41 3.273 (3) 155
C1—H1⋯O1Ai 0.93 2.52 3.273 (3) 139
C4—H4⋯O1Ai 0.93 2.38 3.217 (4) 149
C5—H5BCg1ii 0.93 2.78 3.6515 156
C10—H10ACg1iii 0.93 2.95 3.6691 136
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Numerous complexes derived from d-block metals and imidazole ligands are well-known (Sundberg & Martin, 1974). A large number of investigations on the complexation of copper(II) with imidazole ligands and vinylimidazol ligands have been reported, with some of them reporting structures determined crystallographically (Kurimura et al., 1994). We report here the crystal structure of the title compound, [Cu(C5H6N2)4(NO3)2], a mixed-ligand CuII complex, (I).

The molecular structure of compound (I) (Fig. 1) is similar to those of analogous derivatives (Baran, 1999). The CuII atom displays a Jahn-Teller distorted octahedral coordination geometry, with four N atoms from four 1-vinylimidazole ligands in the equatorial plane (with Cu—N1 and Cu—N3 bond lengths of 2.0091 (15) and 2.0147 (16) Å) and two nitrate molecules in axial positions (with Cu—O2B and Cu—O2A bond lengths of 2.531 (9) and 2.651 (3) Å). These bond lengths are comparable with those reported by Baran (1999).

The imidazole rings have a maximum deviation of 0.004 Å and 0.002 Å from planarity for atoms N2 and N3, respectively. The bond lengths and angles of the 1-vinyl-imidazole molecules in (I) show no significant differences to those of the related 2-chlorobenzoato structure (Zhao, 2008).

In the crystal structure (Fig. 2) the molecules are linked by two intermolecular C—H···O hydrogen bonds and two C—H···π hydrogen-bonding associations (Table 1).

Related literature top

For applications and characterisation of related compounds, see: Sundberg & Martin (1974); Kurimura et al. (1994); Baran (1999); Zhao (2008).

Experimental top

Complex (I) was prepared from a mixtures of solutions containing copper(II) nitrate trihydrate (2.42 g, 10 mmol) and 1-vinylimidazole (1.98 g, 20 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1 h, then 20 ml dissolved succinic acid (1.18 g, 10 mmol) was added. Then the reaction mixture solution was again stirred for 30 min and finally the solution was filtered. Blue single crystals of (I) were isolated after one day. Suitable crystals of (I) for structure determination were obtained from ethanol by slow evaporation (yield %55).

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.93 Å for the sp2 C atoms. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq(C). The nitrate anion was shown to be disordered over two sets of sites in a 0.801 (6):0.199 (6) ratio.

Structure description top

Numerous complexes derived from d-block metals and imidazole ligands are well-known (Sundberg & Martin, 1974). A large number of investigations on the complexation of copper(II) with imidazole ligands and vinylimidazol ligands have been reported, with some of them reporting structures determined crystallographically (Kurimura et al., 1994). We report here the crystal structure of the title compound, [Cu(C5H6N2)4(NO3)2], a mixed-ligand CuII complex, (I).

The molecular structure of compound (I) (Fig. 1) is similar to those of analogous derivatives (Baran, 1999). The CuII atom displays a Jahn-Teller distorted octahedral coordination geometry, with four N atoms from four 1-vinylimidazole ligands in the equatorial plane (with Cu—N1 and Cu—N3 bond lengths of 2.0091 (15) and 2.0147 (16) Å) and two nitrate molecules in axial positions (with Cu—O2B and Cu—O2A bond lengths of 2.531 (9) and 2.651 (3) Å). These bond lengths are comparable with those reported by Baran (1999).

The imidazole rings have a maximum deviation of 0.004 Å and 0.002 Å from planarity for atoms N2 and N3, respectively. The bond lengths and angles of the 1-vinyl-imidazole molecules in (I) show no significant differences to those of the related 2-chlorobenzoato structure (Zhao, 2008).

In the crystal structure (Fig. 2) the molecules are linked by two intermolecular C—H···O hydrogen bonds and two C—H···π hydrogen-bonding associations (Table 1).

For applications and characterisation of related compounds, see: Sundberg & Martin (1974); Kurimura et al. (1994); Baran (1999); Zhao (2008).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The disorder of the nitrate anion is shown, however only the shorter of the two Cu—O bonds is indicated.
[Figure 2] Fig. 2. Packing of (I).
trans-Bis(nitrato-κO)tetrakis(1-vinyl-1H-imidazole- κN3)copper(II) top
Crystal data top
[Cu(NO3)2(C5H6N2)4]F(000) = 582
Mr = 564.03Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 452 reflections
a = 8.9415 (4) Åθ = 3.3–30.4°
b = 8.7618 (3) ŵ = 0.93 mm1
c = 16.3172 (6) ÅT = 296 K
β = 102.281 (4)°Prism, blue
V = 1249.10 (8) Å30.1 × 0.1 × 0.1 mm
Z = 2
Data collection top
Oxford Diffraction SuperNova
diffractometer
3820 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2908 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 16.0454 pixels mm-1θmax = 30.5°, θmin = 3.3°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 712
Tmin = 0.911, Tmax = 0.911l = 2223
6658 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.3004P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3820 reflectionsΔρmax = 0.26 e Å3
198 parametersΔρmin = 0.32 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0069 (15)
Crystal data top
[Cu(NO3)2(C5H6N2)4]V = 1249.10 (8) Å3
Mr = 564.03Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.9415 (4) ŵ = 0.93 mm1
b = 8.7618 (3) ÅT = 296 K
c = 16.3172 (6) Å0.1 × 0.1 × 0.1 mm
β = 102.281 (4)°
Data collection top
Oxford Diffraction SuperNova
diffractometer
3820 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
2908 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.911Rint = 0.018
6658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.109H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
3820 reflectionsΔρmin = 0.32 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu11.00000.00001.00000.03972 (13)
O1A0.8327 (4)0.0665 (4)1.25474 (18)0.0831 (11)0.801 (6)
O1B0.7861 (14)0.031 (2)1.1897 (19)0.185 (15)0.199 (6)
O2A0.8731 (3)0.0287 (3)1.13193 (14)0.0624 (8)0.801 (6)
O2B0.9871 (18)0.0315 (12)1.1525 (6)0.092 (5)0.199 (6)
O3B0.9566 (15)0.1935 (15)1.2426 (8)0.096 (5)0.199 (6)
O3A1.0438 (4)0.1280 (6)1.22800 (15)0.116 (2)0.801 (6)
N11.20913 (18)0.05380 (19)1.06665 (9)0.0390 (3)
N21.39690 (17)0.1596 (2)1.15773 (9)0.0411 (4)
N31.07291 (18)0.21679 (18)0.99548 (9)0.0396 (3)
N41.1880 (2)0.42052 (19)0.96108 (10)0.0460 (4)
N50.91506 (19)0.0750 (2)1.20390 (10)0.0474 (4)
C11.2438 (2)0.1520 (2)1.12881 (11)0.0410 (4)
H11.17250.20851.15000.049*
C21.3466 (2)0.0048 (2)1.05604 (13)0.0464 (5)
H21.35730.07761.01620.056*
C31.4628 (2)0.0580 (3)1.11142 (12)0.0467 (5)
H31.56660.03731.11730.056*
C41.4720 (3)0.2583 (3)1.22233 (13)0.0547 (5)
H41.41210.32541.24570.066*
C51.6189 (3)0.2611 (3)1.25094 (16)0.0709 (7)
H5A1.68200.19541.22890.085*
H5B1.66120.32881.29350.085*
C61.1213 (2)0.2877 (2)0.93488 (11)0.0430 (4)
H61.11030.25000.88060.052*
C71.1104 (2)0.3105 (2)1.06447 (11)0.0459 (4)
H71.08980.29041.11690.055*
C81.1817 (3)0.4360 (3)1.04412 (13)0.0526 (5)
H81.21920.51711.07930.063*
C91.2511 (3)0.5242 (3)0.90989 (19)0.0670 (7)
H91.22700.50830.85220.080*
C101.3381 (4)0.6372 (4)0.9373 (2)0.1013 (11)
H10A1.36470.65680.99450.122*
H10B1.37470.69970.89990.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04072 (19)0.03473 (19)0.03982 (18)0.00283 (14)0.00020 (12)0.00636 (13)
O1A0.081 (2)0.104 (2)0.0780 (17)0.0103 (18)0.0492 (15)0.0192 (16)
O1B0.047 (7)0.116 (13)0.40 (5)0.024 (8)0.072 (15)0.016 (19)
O2A0.0630 (17)0.0759 (16)0.0460 (11)0.0037 (13)0.0064 (10)0.0199 (10)
O2B0.144 (15)0.076 (7)0.076 (8)0.012 (8)0.069 (9)0.023 (6)
O3B0.060 (7)0.116 (9)0.105 (8)0.002 (6)0.002 (6)0.079 (7)
O3A0.074 (2)0.213 (5)0.0536 (14)0.074 (3)0.0024 (13)0.012 (2)
N10.0414 (8)0.0401 (8)0.0343 (7)0.0005 (7)0.0051 (6)0.0040 (6)
N20.0405 (8)0.0454 (9)0.0348 (7)0.0000 (7)0.0025 (6)0.0032 (7)
N30.0436 (8)0.0355 (8)0.0369 (7)0.0018 (7)0.0025 (6)0.0019 (6)
N40.0513 (9)0.0370 (8)0.0487 (9)0.0059 (8)0.0087 (7)0.0027 (7)
N50.0426 (9)0.0559 (11)0.0433 (8)0.0038 (8)0.0085 (7)0.0015 (8)
C10.0403 (9)0.0416 (10)0.0390 (8)0.0032 (8)0.0039 (7)0.0042 (8)
C20.0466 (10)0.0526 (12)0.0417 (9)0.0010 (9)0.0132 (8)0.0090 (8)
C30.0399 (9)0.0564 (12)0.0452 (10)0.0006 (10)0.0121 (8)0.0061 (9)
C40.0536 (12)0.0599 (14)0.0458 (10)0.0003 (11)0.0000 (8)0.0153 (10)
C50.0552 (13)0.0848 (19)0.0652 (14)0.0027 (14)0.0041 (11)0.0248 (14)
C60.0500 (10)0.0401 (10)0.0374 (8)0.0025 (9)0.0061 (7)0.0007 (8)
C70.0516 (11)0.0469 (11)0.0385 (9)0.0001 (9)0.0075 (8)0.0008 (8)
C80.0643 (13)0.0415 (11)0.0498 (11)0.0055 (11)0.0071 (9)0.0087 (9)
C90.0806 (18)0.0566 (14)0.0671 (15)0.0165 (13)0.0230 (13)0.0094 (12)
C100.135 (3)0.0703 (19)0.110 (2)0.041 (2)0.051 (2)0.0040 (18)
Geometric parameters (Å, º) top
Cu1—N1i2.0091 (15)N2—C31.378 (3)
Cu1—N12.0091 (15)N2—C41.418 (2)
Cu1—N3i2.0147 (16)N3—C61.316 (2)
Cu1—N32.0147 (16)N3—C71.376 (2)
Cu1—O2B2.531 (9)N4—C61.336 (2)
Cu1—O2Bi2.531 (9)N4—C81.375 (3)
Cu1—O2Ai2.651 (3)N4—C91.428 (3)
Cu1—O2A2.651 (3)C1—H10.9300
O1A—O1B1.10 (3)C2—C31.342 (3)
O1A—N51.223 (3)C2—H20.9300
O1A—O3B1.612 (16)C3—H30.9300
O1B—N51.191 (13)C4—C51.297 (3)
O1B—O2A1.34 (2)C4—H40.9300
O2A—O2B1.004 (15)C5—H5A0.9300
O2A—N51.223 (3)C5—H5B0.9300
O2B—N51.221 (10)C6—H60.9300
O2B—O3A1.490 (12)C7—C81.347 (3)
O3B—O3A1.036 (10)C7—H70.9300
O3B—N51.231 (11)C8—H80.9300
O3A—N51.226 (3)C9—C101.280 (4)
N1—C11.316 (2)C9—H90.9300
N1—C21.376 (3)C10—H10A0.9300
N2—C11.351 (2)C10—H10B0.9300
N1i—Cu1—N1180.000 (1)C6—N4—C9124.9 (2)
N1i—Cu1—N3i88.27 (6)C8—N4—C9128.2 (2)
N1—Cu1—N3i91.73 (6)C8—N4—Cu180.44 (12)
N1i—Cu1—N391.73 (6)C9—N4—Cu1151.17 (15)
N1—Cu1—N388.27 (6)O1B—N5—O2B113.3 (16)
N3i—Cu1—N3180.000 (1)O2A—N5—O1A121.6 (3)
N1i—Cu1—O2B106.0 (3)O2A—N5—O3A120.6 (2)
N1—Cu1—O2B74.0 (3)O1A—N5—O3A117.7 (3)
N3i—Cu1—O2B89.1 (3)O1B—N5—O3B123.1 (12)
N3—Cu1—O2B90.9 (3)O2B—N5—O3B118.0 (9)
N1i—Cu1—O2Bi74.0 (3)N1—C1—N2110.89 (17)
N1—Cu1—O2Bi106.0 (3)N2—C1—Cu1142.94 (13)
N3i—Cu1—O2Bi90.9 (3)N1—C1—H1124.6
N3—Cu1—O2Bi89.1 (3)N2—C1—H1124.6
O2B—Cu1—O2Bi180.000 (3)Cu1—C1—H192.5
N1i—Cu1—O2Ai95.32 (7)C3—C2—N1110.28 (17)
N1—Cu1—O2Ai84.68 (7)C3—C2—Cu1142.29 (14)
N3i—Cu1—O2Ai97.93 (7)C3—C2—H2124.9
N3—Cu1—O2Ai82.07 (7)N1—C2—H2124.9
O2B—Cu1—O2Ai157.8 (3)Cu1—C2—H292.8
O2Bi—Cu1—O2Ai22.2 (3)C2—C3—N2105.89 (17)
N1i—Cu1—O2A84.68 (7)N2—C3—Cu179.50 (10)
N1—Cu1—O2A95.32 (7)C2—C3—H3127.1
N3i—Cu1—O2A82.07 (7)N2—C3—H3127.1
N3—Cu1—O2A97.93 (7)Cu1—C3—H3153.4
O2B—Cu1—O2A22.2 (3)C5—C4—N2124.2 (2)
O2Bi—Cu1—O2A157.8 (3)C5—C4—H4117.9
O2Ai—Cu1—O2A180.000 (1)N2—C4—H4117.9
O1B—O1A—N561.4 (8)C4—C5—H5A120.0
O1B—O1A—O3B101.9 (10)C4—C5—H5B120.0
N5—O1A—O3B49.2 (4)H5A—C5—H5B120.0
O1A—O1B—N564.4 (11)N3—C6—N4111.49 (17)
O1A—O1B—O2A121.6 (11)N4—C6—Cu1141.50 (13)
N5—O1B—O2A57.3 (8)N3—C6—H6124.3
O1A—O1B—Cu1128.6 (8)N4—C6—H6124.3
N5—O1B—Cu164.4 (12)Cu1—C6—H693.8
N5—O2A—Cu1135.6 (2)C8—C7—N3109.33 (17)
N5—O2B—Cu1148.2 (9)C8—C7—H7125.3
N5—O3A—Cu171.46 (17)N3—C7—H7125.3
C1—N1—C2105.69 (16)C7—C8—N4106.46 (18)
C1—N1—Cu1127.61 (14)N4—C8—Cu180.51 (12)
C2—N1—Cu1126.69 (13)C7—C8—H8126.8
C1—N2—C3107.24 (15)N4—C8—H8126.8
C1—N2—C4125.05 (18)Cu1—C8—H8152.4
C3—N2—C4127.69 (18)C10—C9—N4125.0 (3)
C3—N2—Cu181.48 (10)C10—C9—H9117.5
C4—N2—Cu1150.75 (13)N4—C9—H9117.5
C6—N3—C7105.73 (16)C9—C10—H10A120.0
C6—N3—Cu1129.27 (13)C9—C10—H10B120.0
C7—N3—Cu1123.86 (13)H10A—C10—H10B120.0
C6—N4—C8106.98 (17)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the imidazole (N1/C1/N2/C3/C2) ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O3A0.932.413.273 (3)155
C1—H1···O1Aii0.932.523.273 (3)139
C4—H4···O1Aii0.932.383.217 (4)149
C5—H5B···Cg1iii0.932.783.6515156
C10—H10A···Cg1iv0.932.953.6691136
Symmetry codes: (ii) x+2, y1/2, z+5/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C5H6N2)4]
Mr564.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.9415 (4), 8.7618 (3), 16.3172 (6)
β (°) 102.281 (4)
V3)1249.10 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.1 × 0.1 × 0.1
Data collection
DiffractometerOxford Diffraction SuperNova
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.911, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
6658, 3820, 2908
Rint0.018
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.03
No. of reflections3820
No. of parameters198
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.32

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the imidazole (N1/C1/N2/C3/C2) ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O3A0.932.413.273 (3)154.7
C1—H1···O1Ai0.932.523.273 (3)138.7
C4—H4···O1Ai0.932.383.217 (4)149.1
C5—H5B···Cg1ii0.932.783.6515156
C10—H10A···Cg1iii0.932.953.6691136
Symmetry codes: (i) x+2, y1/2, z+5/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by TÜBİTAK – The Scientific and Technological Research Council of Turkey (grant No. 110 T131 PROJECT)

References

First citationBaran, Y. (1999). J. Chem. Crystallogr. 29, 1077–1079.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKurimura, Y., Abe, T., Usui, Y., Tsuchida, E., Nishide, H. & Challa, G. (1994). J. Chem. Soc. Faraday Trans. 90, 3563–3568.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundberg, R. J. & Martin, R. B. (1974). Chem. Rev. 74, 471–517.  CrossRef CAS Web of Science Google Scholar
First citationZhao, J. (2008). Acta Cryst. E64, m1321.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds