metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­{4,4′-dimeth­­oxy-2,2′-[pyridine-2,3-diylbis(nitrilo­methanylyl­­idene)]­diphenolato}copper(II)

aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, and bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri–Constantine 25000, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 30 June 2012; accepted 9 July 2012; online 14 July 2012)

Mol­ecules of the title compound, [Cu(C21H17N3O4)(H2O)], lie across a crystallographic mirror plane. The CuII atom is five-coordinated in a distorted square-pyramidal environment by two phenolate O atoms and two imine N atoms of the tetra­dentate Schiff base anion in the basal plane and one water mol­ecule in the apical position. Because of symmetry, the pyridine N atom and the corresponding C atom at the 4-position of the pyridine ring are disordered. The crystal packing can be described as being composed of alternating layers stacked along [001]. Intra­molecular C—H⋯N and inter­molecular C—H⋯O and O—H⋯O hydrogen-bonding inter­actions, as well as C—H⋯π and ππ stacking inter­actions [shortest centroid–centroid distance = 3.799 (8) Å and inter­planar distance = 3.469 (2) Å] are observed.

Related literature

For background, see Ourari et al. (2006[Ourari, A., Ouari, K., Moumeni, W., Sibous, L., Bouet, G. & Khan, M. A. (2006). Transition Met. Chem. 31, 169-175.]); Ouari et al. (2010[Ouari, K., Ourari, A. & Weiss, J. (2010). J. Chem. Crystallogr. 40, 831-836.]); Ourari, Ouari et al. (2008[Ourari, A., Ouari, K., Bouet, G. & Khan, M. A. (2008). J. Coord. Chem. 61, 3846-3859.]); Vyas & Shah (1963[Vyas, G. N. & Shah, N. M. (1963). Org. Synth. Coll. Vol. IV, p. 836.]); Kataoka et al. (1979[Kataoka, K., Ohki, N., Tsuruta, T., Doukai, N. & Inagaki, H. (1979). Macromol. Chem. Phys. 180, 65-77.]). For applications, see: Ourari, Baameur et al. (2008[Ourari, A., Baameur, L., Bouet, G. & Khan, M. A. (2008). Electrochem. Commun. 10, 1736-1739.]); Coche-Guerente et al. (1995[Coche-Guerente, L., Cosnier, S., Innocent, C. & Mailly, P. (1995). Anal. Chim. Acta, 11, 161-169.]). For the synthesis, see: Huo et al. (1999[Huo, L. H., Cao, L. X., Wang, D. M., Cui, N. N., Zeng, G. F. & Xi, S. Q. (1999). Thin Solid Films, 350, 5-9.]); Khedkar & Radhakrishnan (1997[Khedkar, S. P. & Radhakrishnan, S. (1997). Thin Solid Films, 303, 167-172.]); Guo & Wong (1999[Guo, P. & Wong, K. Y. (1999). Electrochem. Commun. 1, 559-562.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C21H17N3O4)(H2O)]

  • Mr = 456.93

  • Orthorhombic, P m n 21

  • a = 23.162 (7) Å

  • b = 5.0997 (14) Å

  • c = 7.769 (2) Å

  • V = 917.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 296 K

  • 0.12 × 0.06 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 10830 measured reflections

  • 3026 independent reflections

  • 2384 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.060

  • S = 0.89

  • 3026 reflections

  • 142 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1361 Friedel pairs

  • Flack parameter: −0.015 (11)

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9126 (14)
Cu1—N1 1.9561 (16)
Cu1—O3 2.416 (3)

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1W⋯O1i 0.84 (2) 2.19 (2) 2.933 (3) 146 (2)
C8—H8A⋯O2ii 0.93 2.57 3.330 (3) 139
C8—H8A⋯N2 0.93 2.49 2.844 (3) 103
C1—H1BCgiii 0.96 2.71 3.528 (4) 143
Symmetry codes: (i) -x, y+1, z; (ii) [-x-{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is one of the targeted materials to elaborate modified electrodes in order to use them in heterogeneous electrocatalysis. Therefore, this work is a continuation of investigations where 2,3-diaminophenol and 2,3-diaminopyridine were involved (Ourari et al., 2006; Ouari et al., 2010; Ourari, Ouari et al., 2008). The resulting ligands or complexes may be functionalized by etherification (Vyas & Shah, 1963) or quaternization (Kataoka et al., 1979) reactions using N-(3-bromopropyl)pyrrole. These materials are mainly applied in catalysis, electrocatalysis and sensors (Ourari, Baameur et al., 2008; Coche-Guerente et al., 1995). The synthesis of new salicylaldehyde derivatives containing electropolymerizable units can be considered as the main source of functionalized π-conjugated conducting polymers as those of poly(pyrrole), poly(thiophene) and poly(aniline) (Huo et al., 1999; Khedkar & Radhakrishnan, 1997; Guo & Wong, 1999). We report here the synthesis of the title compound, [Cu(C21H17N3O4)(H2O)], (I) and its crystal structure.

The molecular geometry of (I), and the atomic numbering used, is illustrated in Fig. 1. The asymmetric unit of (I) consists of one-half of the molecule, with the other half generated by a crystallographic mirror plane. Due to this symmetry the N2 and C10 atoms of the pyridine ring are equally disordered. The CuII atom is five-coordinate in a distorted square pyramidal geometry by the O atoms of two 5-methoxysalicylidene groups, the imine N atoms and one molecule of water in the apical position. The bond lengths of the coordination sphere range from 1.9126 (14) to 2.416 (3) Å for Cu—O distances and is 1.9561 (16) Å for the Cu—N distance. The crystal packing in (I) can be described by alterning layers along [001] (Fig. 2). There are one intramolecular C—H···N and two intermolecular C—H···O and O—H···O hydrogen bonding interactions in this packing (Fig. 3), which is further stabilized by C—H···π interactions (Table 2) and ππ stacking (shortest centroid-to-centroid distance 3.799 (8); interplanar distance of 3.469 (2) Å).

Related literature top

For background, see Ourari et al. (2006); Ouari et al. (2010); Ourari, Ouari et al. (200843); Vyas & Shah (1963); Kataoka et al. (1979). For applications, see: Ourari, Baameur et al. (2008); Coche-Guerente et al. (1995). For the synthesis, see: Huo et al. (1999); Khedkar & Radhakrishnan (1997); Guo & Wong (1999). [This section ok as edited?]

Experimental top

All reagents were obtained from commercial sources and used without any further purification. 59 mg (0.3 mmol) of copper acetate monohydrate were dissolved in MeOH (10 ml). This solution was added dropwise to a stirred methanolic solution (5 ml) containing 113 mg (0.3 mmol) of the Schiff base ligand (N,N-bis(5-Methoxysalicyidene)-2,3-diaminopyridine). This mixture was stirred and refluxed for 90 minutes under nitrogen atmosphere to give a brown precipitate which was collected by filtration and washed successively with methanol and diethyl ether. After drying in vacuum in the presence of CaCl2, 93.5 mg of the copper complex were obtained (71%). Suitable crystals of green color were obtained from the filtrate after about twenty days. The microanalysis of (I) showed that one molecule of water is present (calc. / found %: C:55.20 /54.78; H:04.19 / 04.12; N: 09.20 / 09.17). Moreover, analysis by infrared spectrometry showing a spectrum with an absorption band at 1628 cm-1 attesting the presence of lattice water with its characteristic vibration band (H—O—H bending) accompanied by the stretching band at about 3500 cm-1 (Fig. 4).

Refinement top

H atoms were localized in Fourier difference maps but introduced in calculated positions and treated as riding on their parent atom (C) with C—H = 0.93 Å (methine), 0.96 Å (methyl), and 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(Caromatic and Cmethine) and Uiso(H) = 1.5Ueq(Cmethyl). The H1W proton of the water molecule was located in a difference Fourier map and refined isotropically with Uiso(H) = 1.5Ueq(O). Atoms N2 and C10 (with the attached proton) are disordered due to symmetry and were refined with a 0.5 occupancy each.

Structure description top

The title compound is one of the targeted materials to elaborate modified electrodes in order to use them in heterogeneous electrocatalysis. Therefore, this work is a continuation of investigations where 2,3-diaminophenol and 2,3-diaminopyridine were involved (Ourari et al., 2006; Ouari et al., 2010; Ourari, Ouari et al., 2008). The resulting ligands or complexes may be functionalized by etherification (Vyas & Shah, 1963) or quaternization (Kataoka et al., 1979) reactions using N-(3-bromopropyl)pyrrole. These materials are mainly applied in catalysis, electrocatalysis and sensors (Ourari, Baameur et al., 2008; Coche-Guerente et al., 1995). The synthesis of new salicylaldehyde derivatives containing electropolymerizable units can be considered as the main source of functionalized π-conjugated conducting polymers as those of poly(pyrrole), poly(thiophene) and poly(aniline) (Huo et al., 1999; Khedkar & Radhakrishnan, 1997; Guo & Wong, 1999). We report here the synthesis of the title compound, [Cu(C21H17N3O4)(H2O)], (I) and its crystal structure.

The molecular geometry of (I), and the atomic numbering used, is illustrated in Fig. 1. The asymmetric unit of (I) consists of one-half of the molecule, with the other half generated by a crystallographic mirror plane. Due to this symmetry the N2 and C10 atoms of the pyridine ring are equally disordered. The CuII atom is five-coordinate in a distorted square pyramidal geometry by the O atoms of two 5-methoxysalicylidene groups, the imine N atoms and one molecule of water in the apical position. The bond lengths of the coordination sphere range from 1.9126 (14) to 2.416 (3) Å for Cu—O distances and is 1.9561 (16) Å for the Cu—N distance. The crystal packing in (I) can be described by alterning layers along [001] (Fig. 2). There are one intramolecular C—H···N and two intermolecular C—H···O and O—H···O hydrogen bonding interactions in this packing (Fig. 3), which is further stabilized by C—H···π interactions (Table 2) and ππ stacking (shortest centroid-to-centroid distance 3.799 (8); interplanar distance of 3.469 (2) Å).

For background, see Ourari et al. (2006); Ouari et al. (2010); Ourari, Ouari et al. (200843); Vyas & Shah (1963); Kataoka et al. (1979). For applications, see: Ourari, Baameur et al. (2008); Coche-Guerente et al. (1995). For the synthesis, see: Huo et al. (1999); Khedkar & Radhakrishnan (1997); Guo & Wong (1999). [This section ok as edited?]

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular geometry of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius. Only the contents of the asymmetric unit are numbered.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the a axis showing alterning zigzag layers.
[Figure 3] Fig. 3. The crystal packing of (I) viewed along the b axis showing intermolecular hydrogen bonding interactions [C—H···O and O—H···O] as dashed lines.
[Figure 4] Fig. 4. The infrared spectrum of the title complex (I), attesting the presence of water.
Aqua{4,4'-dimethoxy-2,2'-[pyridine-2,3- diylbis(nitrilomethanylylidene)]diphenolato}copper(II) top
Crystal data top
[Cu(C21H17N3O4)(H2O)]F(000) = 470
Mr = 456.93Dx = 1.654 Mg m3
Orthorhombic, Pmn21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac -2Cell parameters from 2879 reflections
a = 23.162 (7) Åθ = 2.8–24.8°
b = 5.0997 (14) ŵ = 1.23 mm1
c = 7.769 (2) ÅT = 296 K
V = 917.7 (4) Å3Prismatic, green
Z = 20.12 × 0.06 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
2384 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 31.5°, θmin = 2.8°
φ and ω scansh = 3332
10830 measured reflectionsk = 77
3026 independent reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0215P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
3026 reflectionsΔρmax = 0.28 e Å3
142 parametersΔρmin = 0.42 e Å3
2 restraintsAbsolute structure: Flack (1983), 1361 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (11)
Crystal data top
[Cu(C21H17N3O4)(H2O)]V = 917.7 (4) Å3
Mr = 456.93Z = 2
Orthorhombic, Pmn21Mo Kα radiation
a = 23.162 (7) ŵ = 1.23 mm1
b = 5.0997 (14) ÅT = 296 K
c = 7.769 (2) Å0.12 × 0.06 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
2384 reflections with I > 2σ(I)
10830 measured reflectionsRint = 0.056
3026 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060Δρmax = 0.28 e Å3
S = 0.89Δρmin = 0.42 e Å3
3026 reflectionsAbsolute structure: Flack (1983), 1361 Friedel pairs
142 parametersAbsolute structure parameter: 0.015 (11)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu100.93278 (6)0.79259 (5)0.02848 (9)
N10.05624 (7)1.1402 (3)0.9220 (2)0.0272 (4)
O10.05783 (6)0.7137 (3)0.69157 (18)0.0362 (4)
O20.29533 (6)0.7498 (3)0.72580 (17)0.0380 (4)
O301.2442 (5)0.5582 (4)0.0721 (10)
H1W0.0259 (10)1.360 (4)0.562 (4)0.086*
C10.32485 (8)0.9589 (4)0.8080 (5)0.0432 (6)
H1A0.36570.93210.79830.065*
H1B0.31461.12160.7540.065*
H1C0.31420.96440.92740.065*
C20.23570 (8)0.7593 (4)0.7284 (2)0.0300 (4)
C30.20813 (9)0.5675 (4)0.6291 (3)0.0346 (5)
H3A0.23020.44580.5690.042*
C40.14955 (9)0.5563 (4)0.6192 (3)0.0342 (5)
H4A0.13250.42670.5520.041*
C50.11349 (8)0.7371 (4)0.7087 (3)0.0295 (4)
C60.14200 (7)0.9290 (3)0.8104 (4)0.0279 (5)
C70.20319 (8)0.9363 (4)0.8174 (3)0.0305 (5)
H7A0.22141.06360.88370.037*
C80.11190 (8)1.1207 (4)0.9096 (2)0.0298 (4)
H8A0.1341.24140.97050.036*
C90.03027 (8)1.3274 (4)1.0308 (3)0.0274 (4)
C100.06016 (8)1.4952 (4)1.1327 (3)0.0356 (4)0.5
H100.10031.49591.13260.043*0.5
N20.06016 (8)1.4952 (4)1.1327 (3)0.0356 (4)0.5
C110.03003 (9)1.6617 (4)1.2347 (3)0.0388 (5)
H110.04981.77781.30570.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02368 (14)0.02800 (15)0.03375 (16)000.0046 (2)
N10.0238 (8)0.0287 (9)0.0291 (9)0.0019 (6)0.0017 (7)0.0028 (7)
O10.0257 (7)0.0348 (8)0.0480 (9)0.0006 (6)0.0017 (7)0.0130 (7)
O20.0247 (7)0.0460 (8)0.0433 (9)0.0026 (6)0.0047 (6)0.0076 (7)
O30.118 (3)0.0387 (15)0.0594 (18)000.0015 (15)
C10.0270 (9)0.0522 (12)0.0504 (16)0.0024 (8)0.0035 (15)0.0011 (14)
C20.0248 (10)0.0335 (10)0.0316 (10)0.0030 (8)0.0023 (8)0.0045 (8)
C30.0356 (12)0.0313 (11)0.0370 (11)0.0061 (9)0.0064 (9)0.0034 (11)
C40.0336 (11)0.0279 (10)0.0410 (12)0.0004 (9)0.0020 (9)0.0058 (10)
C50.0265 (10)0.0284 (10)0.0337 (10)0.0021 (8)0.0013 (9)0.0023 (9)
C60.0263 (8)0.0291 (8)0.0283 (13)0.0029 (7)0.0004 (11)0.0010 (9)
C70.0292 (9)0.0327 (9)0.0296 (16)0.0002 (8)0.0014 (9)0.0012 (9)
C80.0280 (10)0.0315 (11)0.0299 (11)0.0002 (8)0.0027 (8)0.0016 (8)
C90.0268 (10)0.0287 (10)0.0266 (10)0.0023 (9)0.0003 (8)0.0006 (9)
C100.0250 (9)0.0442 (11)0.0375 (11)0.0022 (8)0.0018 (8)0.0065 (9)
N20.0250 (9)0.0442 (11)0.0375 (11)0.0022 (8)0.0018 (8)0.0065 (9)
C110.0381 (11)0.0387 (11)0.0397 (13)0.0083 (9)0.0036 (8)0.0074 (10)
Geometric parameters (Å, º) top
Cu1—O11.9126 (14)C3—C41.360 (3)
Cu1—O1i1.9126 (14)C3—H3A0.93
Cu1—N1i1.9561 (16)C4—C51.425 (3)
Cu1—N11.9561 (16)C4—H4A0.93
Cu1—O32.416 (3)C5—C61.421 (3)
N1—C81.297 (2)C6—C71.419 (3)
N1—C91.410 (2)C6—C81.427 (3)
O1—C51.302 (2)C7—H7A0.93
O2—C21.382 (2)C8—H8A0.93
O2—C11.419 (3)C9—C101.356 (3)
O3—H1W0.843 (16)C9—C9i1.402 (4)
C1—H1A0.96C10—C111.355 (3)
C1—H1B0.96C10—H100.93
C1—H1C0.96C11—C11i1.391 (4)
C2—C71.364 (3)C11—H110.93
C2—C31.400 (3)
O1—Cu1—O1i88.90 (8)C4—C3—H3A119.5
O1—Cu1—N1i173.28 (7)C2—C3—H3A119.5
O1i—Cu1—N1i93.47 (6)C3—C4—C5122.00 (19)
O1—Cu1—N193.47 (6)C3—C4—H4A119
O1i—Cu1—N1173.28 (7)C5—C4—H4A119
N1i—Cu1—N183.50 (9)O1—C5—C6125.46 (18)
O1—Cu1—O394.28 (7)O1—C5—C4118.15 (18)
O1i—Cu1—O394.28 (7)C6—C5—C4116.40 (17)
N1i—Cu1—O391.82 (7)C7—C6—C5120.2 (2)
N1—Cu1—O391.82 (7)C7—C6—C8116.7 (2)
C8—N1—C9121.37 (16)C5—C6—C8123.06 (16)
C8—N1—Cu1125.63 (13)C2—C7—C6121.0 (2)
C9—N1—Cu1112.97 (13)C2—C7—H7A119.5
C5—O1—Cu1126.75 (12)C6—C7—H7A119.5
C2—O2—C1116.66 (16)N1—C8—C6125.34 (18)
Cu1—O3—H1W116 (2)N1—C8—H8A117.3
O2—C1—H1A109.5C6—C8—H8A117.3
O2—C1—H1B109.5C10—C9—C9i120.71 (11)
H1A—C1—H1B109.5C10—C9—N1124.03 (17)
O2—C1—H1C109.5C9i—C9—N1115.26 (10)
H1A—C1—H1C109.5C11—C10—C9118.30 (18)
H1B—C1—H1C109.5C11—C10—H10120.9
C7—C2—O2125.62 (19)C9—C10—H10120.9
C7—C2—C3119.34 (18)C10—C11—C11i120.99 (12)
O2—C2—C3115.05 (17)C10—C11—H11119.5
C4—C3—C2121.04 (18)C11i—C11—H11119.5
O1—Cu1—N1—C86.06 (17)C4—C5—C6—C70.8 (3)
N1i—Cu1—N1—C8179.97 (13)O1—C5—C6—C80.9 (4)
O3—Cu1—N1—C888.35 (16)C4—C5—C6—C8178.9 (2)
O1—Cu1—N1—C9175.92 (12)O2—C2—C7—C6179.7 (2)
N1i—Cu1—N1—C91.95 (15)C3—C2—C7—C60.2 (3)
O3—Cu1—N1—C989.67 (13)C5—C6—C7—C20.5 (4)
O1i—Cu1—O1—C5177.79 (13)C8—C6—C7—C2179.27 (19)
N1—Cu1—O1—C54.09 (17)C9—N1—C8—C6176.49 (19)
O3—Cu1—O1—C588.00 (16)Cu1—N1—C8—C65.6 (3)
C1—O2—C2—C77.1 (3)C7—C6—C8—N1178.4 (2)
C1—O2—C2—C3172.8 (2)C5—C6—C8—N11.4 (4)
C7—C2—C3—C40.5 (3)C8—N1—C9—C101.6 (3)
O2—C2—C3—C4179.41 (18)Cu1—N1—C9—C10179.67 (16)
C2—C3—C4—C50.1 (3)C8—N1—C9—C9i179.72 (13)
Cu1—O1—C5—C61.6 (3)Cu1—N1—C9—C9i1.61 (12)
Cu1—O1—C5—C4178.60 (14)C9i—C9—C10—C110.2 (2)
C3—C4—C5—O1179.63 (19)N1—C9—C10—C11178.43 (17)
C3—C4—C5—C60.5 (3)C9—C10—C11—C11i0.2 (2)
O1—C5—C6—C7179.4 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Please define Cg
D—H···AD—HH···AD···AD—H···A
O3—H1W···O1ii0.84 (2)2.19 (2)2.933 (3)146 (2)
C8—H8A···O2iii0.932.573.330 (3)139
C8—H8A···N20.932.492.844 (3)103
C1—H1B···Cgiv0.962.713.528 (4)143
Symmetry codes: (ii) x, y+1, z; (iii) x1/2, y+2, z+1/2; (iv) x+3/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C21H17N3O4)(H2O)]
Mr456.93
Crystal system, space groupOrthorhombic, Pmn21
Temperature (K)296
a, b, c (Å)23.162 (7), 5.0997 (14), 7.769 (2)
V3)917.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.12 × 0.06 × 0.04
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10830, 3026, 2384
Rint0.056
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.060, 0.89
No. of reflections3026
No. of parameters142
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.42
Absolute structureFlack (1983), 1361 Friedel pairs
Absolute structure parameter0.015 (11)

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu1—O11.9126 (14)Cu1—O32.416 (3)
Cu1—N11.9561 (16)
Hydrogen-bond geometry (Å, º) top
Please define Cg
D—H···AD—HH···AD···AD—H···A
O3—H1W···O1i0.84 (2)2.19 (2)2.933 (3)146 (2)
C8—H8A···O2ii0.93002.57003.330 (3)139.00
C8—H8A···N20.93002.49002.844 (3)103.00
C1—H1B···Cgiii0.96002.71003.528 (4)143.00
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+2, z+1/2; (iii) x+3/2, y+2, z+1/2.
 

Acknowledgements

The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support and Professor L. Ouahab (Laboratoire des Sciences Chimiques, Rennes 1, France) for helpful discussions.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCoche-Guerente, L., Cosnier, S., Innocent, C. & Mailly, P. (1995). Anal. Chim. Acta, 11, 161–169.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuo, P. & Wong, K. Y. (1999). Electrochem. Commun. 1, 559–562.  Web of Science CrossRef CAS Google Scholar
First citationHuo, L. H., Cao, L. X., Wang, D. M., Cui, N. N., Zeng, G. F. & Xi, S. Q. (1999). Thin Solid Films, 350, 5–9.  Web of Science CrossRef CAS Google Scholar
First citationKataoka, K., Ohki, N., Tsuruta, T., Doukai, N. & Inagaki, H. (1979). Macromol. Chem. Phys. 180, 65–77.  CrossRef CAS Google Scholar
First citationKhedkar, S. P. & Radhakrishnan, S. (1997). Thin Solid Films, 303, 167–172.  CrossRef CAS Web of Science Google Scholar
First citationOuari, K., Ourari, A. & Weiss, J. (2010). J. Chem. Crystallogr. 40, 831–836.  Web of Science CSD CrossRef CAS Google Scholar
First citationOurari, A., Baameur, L., Bouet, G. & Khan, M. A. (2008). Electrochem. Commun. 10, 1736–1739.  Web of Science CrossRef CAS Google Scholar
First citationOurari, A., Ouari, K., Bouet, G. & Khan, M. A. (2008). J. Coord. Chem. 61, 3846–3859.  Web of Science CrossRef CAS Google Scholar
First citationOurari, A., Ouari, K., Moumeni, W., Sibous, L., Bouet, G. & Khan, M. A. (2006). Transition Met. Chem. 31, 169–175.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVyas, G. N. & Shah, N. M. (1963). Org. Synth. Coll. Vol. IV, p. 836.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds