metal-organic compounds
Aqua{4,4′-dimethoxy-2,2′-[pyridine-2,3-diylbis(nitrilomethanylylidene)]diphenolato}copper(II)
aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, and bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri–Constantine 25000, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
Molecules of the title compound, [Cu(C21H17N3O4)(H2O)], lie across a crystallographic mirror plane. The CuII atom is five-coordinated in a distorted square-pyramidal environment by two phenolate O atoms and two imine N atoms of the tetradentate Schiff base anion in the basal plane and one water molecule in the apical position. Because of symmetry, the pyridine N atom and the corresponding C atom at the 4-position of the pyridine ring are disordered. The crystal packing can be described as being composed of alternating layers stacked along [001]. Intramolecular C—H⋯N and intermolecular C—H⋯O and O—H⋯O hydrogen-bonding interactions, as well as C—H⋯π and π–π stacking interactions [shortest centroid–centroid distance = 3.799 (8) Å and interplanar distance = 3.469 (2) Å] are observed.
Related literature
For background, see Ourari et al. (2006); Ouari et al. (2010); Ourari, Ouari et al. (2008); Vyas & Shah (1963); Kataoka et al. (1979). For applications, see: Ourari, Baameur et al. (2008); Coche-Guerente et al. (1995). For the synthesis, see: Huo et al. (1999); Khedkar & Radhakrishnan (1997); Guo & Wong (1999).
Experimental
Crystal data
|
Data collection
|
|
Data collection: APEX2 (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812031273/wm2656sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812031273/wm2656Isup2.hkl
All reagents were obtained from commercial sources and used without any further purification. 59 mg (0.3 mmol) of copper acetate monohydrate were dissolved in MeOH (10 ml). This solution was added dropwise to a stirred methanolic solution (5 ml) containing 113 mg (0.3 mmol) of the Schiff base ligand (N,N-bis(5-Methoxysalicyidene)-2,3-diaminopyridine). This mixture was stirred and refluxed for 90 minutes under nitrogen atmosphere to give a brown precipitate which was collected by filtration and washed successively with methanol and diethyl ether. After drying in vacuum in the presence of CaCl2, 93.5 mg of the copper complex were obtained (71%). Suitable crystals of green color were obtained from the filtrate after about twenty days. The microanalysis of (I) showed that one molecule of water is present (calc. / found %: C:55.20 /54.78; H:04.19 / 04.12; N: 09.20 / 09.17). Moreover, analysis by infrared spectrometry showing a spectrum with an absorption band at 1628 cm-1 attesting the presence of lattice water with its characteristic vibration band (H—O—H bending) accompanied by the stretching band at about 3500 cm-1 (Fig. 4).
H atoms were localized in Fourier difference maps but introduced in calculated positions and treated as riding on their parent atom (C) with C—H = 0.93 Å (methine), 0.96 Å (methyl), and 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(Caromatic and Cmethine) and Uiso(H) = 1.5Ueq(Cmethyl). The H1W proton of the water molecule was located in a difference Fourier map and refined isotropically with Uiso(H) = 1.5Ueq(O). Atoms N2 and C10 (with the attached proton) are disordered due to symmetry and were refined with a 0.5 occupancy each.
The title compound is one of the targeted materials to elaborate modified electrodes in order to use them in heterogeneous electrocatalysis. Therefore, this work is a continuation of investigations where 2,3-diaminophenol and 2,3-diaminopyridine were involved (Ourari et al., 2006; Ouari et al., 2010; Ourari, Ouari et al., 2008). The resulting ligands or complexes may be functionalized by etherification (Vyas & Shah, 1963) or quaternization (Kataoka et al., 1979) reactions using N-(3-bromopropyl)pyrrole. These materials are mainly applied in catalysis, electrocatalysis and sensors (Ourari, Baameur et al., 2008; Coche-Guerente et al., 1995). The synthesis of new salicylaldehyde derivatives containing electropolymerizable units can be considered as the main source of functionalized π-conjugated conducting polymers as those of poly(pyrrole), poly(thiophene) and poly(aniline) (Huo et al., 1999; Khedkar & Radhakrishnan, 1997; Guo & Wong, 1999). We report here the synthesis of the title compound, [Cu(C21H17N3O4)(H2O)], (I) and its crystal structure.
The molecular geometry of (I), and the atomic numbering used, is illustrated in Fig. 1. The π interactions (Table 2) and π–π stacking (shortest centroid-to-centroid distance 3.799 (8); interplanar distance of 3.469 (2) Å).
of (I) consists of one-half of the molecule, with the other half generated by a crystallographic mirror plane. Due to this symmetry the N2 and C10 atoms of the pyridine ring are equally disordered. The CuII atom is five-coordinate in a distorted square pyramidal geometry by the O atoms of two 5-methoxysalicylidene groups, the imine N atoms and one molecule of water in the apical position. The bond lengths of the coordination sphere range from 1.9126 (14) to 2.416 (3) Å for Cu—O distances and is 1.9561 (16) Å for the Cu—N distance. The crystal packing in (I) can be described by alterning layers along [001] (Fig. 2). There are one intramolecular C—H···N and two intermolecular C—H···O and O—H···O hydrogen bonding interactions in this packing (Fig. 3), which is further stabilized by C—H···For background, see Ourari et al. (2006); Ouari et al. (2010); Ourari, Ouari et al. (200843); Vyas & Shah (1963); Kataoka et al. (1979). For applications, see: Ourari, Baameur et al. (2008); Coche-Guerente et al. (1995). For the synthesis, see: Huo et al. (1999); Khedkar & Radhakrishnan (1997); Guo & Wong (1999). [This section ok as edited?]
Data collection: APEX2 (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).[Cu(C21H17N3O4)(H2O)] | F(000) = 470 |
Mr = 456.93 | Dx = 1.654 Mg m−3 |
Orthorhombic, Pmn21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac -2 | Cell parameters from 2879 reflections |
a = 23.162 (7) Å | θ = 2.8–24.8° |
b = 5.0997 (14) Å | µ = 1.23 mm−1 |
c = 7.769 (2) Å | T = 296 K |
V = 917.7 (4) Å3 | Prismatic, green |
Z = 2 | 0.12 × 0.06 × 0.04 mm |
Bruker APEXII CCD diffractometer | 2384 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.056 |
Graphite monochromator | θmax = 31.5°, θmin = 2.8° |
φ and ω scans | h = −33→32 |
10830 measured reflections | k = −7→7 |
3026 independent reflections | l = −11→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.060 | w = 1/[σ2(Fo2) + (0.0215P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.89 | (Δ/σ)max < 0.001 |
3026 reflections | Δρmax = 0.28 e Å−3 |
142 parameters | Δρmin = −0.42 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 1361 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.015 (11) |
[Cu(C21H17N3O4)(H2O)] | V = 917.7 (4) Å3 |
Mr = 456.93 | Z = 2 |
Orthorhombic, Pmn21 | Mo Kα radiation |
a = 23.162 (7) Å | µ = 1.23 mm−1 |
b = 5.0997 (14) Å | T = 296 K |
c = 7.769 (2) Å | 0.12 × 0.06 × 0.04 mm |
Bruker APEXII CCD diffractometer | 2384 reflections with I > 2σ(I) |
10830 measured reflections | Rint = 0.056 |
3026 independent reflections |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.060 | Δρmax = 0.28 e Å−3 |
S = 0.89 | Δρmin = −0.42 e Å−3 |
3026 reflections | Absolute structure: Flack (1983), 1361 Friedel pairs |
142 parameters | Absolute structure parameter: −0.015 (11) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0 | 0.93278 (6) | 0.79259 (5) | 0.02848 (9) | |
N1 | −0.05624 (7) | 1.1402 (3) | 0.9220 (2) | 0.0272 (4) | |
O1 | −0.05783 (6) | 0.7137 (3) | 0.69157 (18) | 0.0362 (4) | |
O2 | −0.29533 (6) | 0.7498 (3) | 0.72580 (17) | 0.0380 (4) | |
O3 | 0 | 1.2442 (5) | 0.5582 (4) | 0.0721 (10) | |
H1W | 0.0259 (10) | 1.360 (4) | 0.562 (4) | 0.086* | |
C1 | −0.32485 (8) | 0.9589 (4) | 0.8080 (5) | 0.0432 (6) | |
H1A | −0.3657 | 0.9321 | 0.7983 | 0.065* | |
H1B | −0.3146 | 1.1216 | 0.754 | 0.065* | |
H1C | −0.3142 | 0.9644 | 0.9274 | 0.065* | |
C2 | −0.23570 (8) | 0.7593 (4) | 0.7284 (2) | 0.0300 (4) | |
C3 | −0.20813 (9) | 0.5675 (4) | 0.6291 (3) | 0.0346 (5) | |
H3A | −0.2302 | 0.4458 | 0.569 | 0.042* | |
C4 | −0.14955 (9) | 0.5563 (4) | 0.6192 (3) | 0.0342 (5) | |
H4A | −0.1325 | 0.4267 | 0.552 | 0.041* | |
C5 | −0.11349 (8) | 0.7371 (4) | 0.7087 (3) | 0.0295 (4) | |
C6 | −0.14200 (7) | 0.9290 (3) | 0.8104 (4) | 0.0279 (5) | |
C7 | −0.20319 (8) | 0.9363 (4) | 0.8174 (3) | 0.0305 (5) | |
H7A | −0.2214 | 1.0636 | 0.8837 | 0.037* | |
C8 | −0.11190 (8) | 1.1207 (4) | 0.9096 (2) | 0.0298 (4) | |
H8A | −0.134 | 1.2414 | 0.9705 | 0.036* | |
C9 | −0.03027 (8) | 1.3274 (4) | 1.0308 (3) | 0.0274 (4) | |
C10 | −0.06016 (8) | 1.4952 (4) | 1.1327 (3) | 0.0356 (4) | 0.5 |
H10 | −0.1003 | 1.4959 | 1.1326 | 0.043* | 0.5 |
N2 | −0.06016 (8) | 1.4952 (4) | 1.1327 (3) | 0.0356 (4) | 0.5 |
C11 | −0.03003 (9) | 1.6617 (4) | 1.2347 (3) | 0.0388 (5) | |
H11 | −0.0498 | 1.7778 | 1.3057 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02368 (14) | 0.02800 (15) | 0.03375 (16) | 0 | 0 | −0.0046 (2) |
N1 | 0.0238 (8) | 0.0287 (9) | 0.0291 (9) | −0.0019 (6) | 0.0017 (7) | −0.0028 (7) |
O1 | 0.0257 (7) | 0.0348 (8) | 0.0480 (9) | 0.0006 (6) | 0.0017 (7) | −0.0130 (7) |
O2 | 0.0247 (7) | 0.0460 (8) | 0.0433 (9) | −0.0026 (6) | −0.0047 (6) | −0.0076 (7) |
O3 | 0.118 (3) | 0.0387 (15) | 0.0594 (18) | 0 | 0 | −0.0015 (15) |
C1 | 0.0270 (9) | 0.0522 (12) | 0.0504 (16) | 0.0024 (8) | −0.0035 (15) | −0.0011 (14) |
C2 | 0.0248 (10) | 0.0335 (10) | 0.0316 (10) | −0.0030 (8) | −0.0023 (8) | 0.0045 (8) |
C3 | 0.0356 (12) | 0.0313 (11) | 0.0370 (11) | −0.0061 (9) | −0.0064 (9) | −0.0034 (11) |
C4 | 0.0336 (11) | 0.0279 (10) | 0.0410 (12) | −0.0004 (9) | −0.0020 (9) | −0.0058 (10) |
C5 | 0.0265 (10) | 0.0284 (10) | 0.0337 (10) | −0.0021 (8) | −0.0013 (9) | 0.0023 (9) |
C6 | 0.0263 (8) | 0.0291 (8) | 0.0283 (13) | −0.0029 (7) | −0.0004 (11) | −0.0010 (9) |
C7 | 0.0292 (9) | 0.0327 (9) | 0.0296 (16) | 0.0002 (8) | 0.0014 (9) | −0.0012 (9) |
C8 | 0.0280 (10) | 0.0315 (11) | 0.0299 (11) | −0.0002 (8) | 0.0027 (8) | −0.0016 (8) |
C9 | 0.0268 (10) | 0.0287 (10) | 0.0266 (10) | −0.0023 (9) | −0.0003 (8) | −0.0006 (9) |
C10 | 0.0250 (9) | 0.0442 (11) | 0.0375 (11) | 0.0022 (8) | 0.0018 (8) | −0.0065 (9) |
N2 | 0.0250 (9) | 0.0442 (11) | 0.0375 (11) | 0.0022 (8) | 0.0018 (8) | −0.0065 (9) |
C11 | 0.0381 (11) | 0.0387 (11) | 0.0397 (13) | 0.0083 (9) | 0.0036 (8) | −0.0074 (10) |
Cu1—O1 | 1.9126 (14) | C3—C4 | 1.360 (3) |
Cu1—O1i | 1.9126 (14) | C3—H3A | 0.93 |
Cu1—N1i | 1.9561 (16) | C4—C5 | 1.425 (3) |
Cu1—N1 | 1.9561 (16) | C4—H4A | 0.93 |
Cu1—O3 | 2.416 (3) | C5—C6 | 1.421 (3) |
N1—C8 | 1.297 (2) | C6—C7 | 1.419 (3) |
N1—C9 | 1.410 (2) | C6—C8 | 1.427 (3) |
O1—C5 | 1.302 (2) | C7—H7A | 0.93 |
O2—C2 | 1.382 (2) | C8—H8A | 0.93 |
O2—C1 | 1.419 (3) | C9—C10 | 1.356 (3) |
O3—H1W | 0.843 (16) | C9—C9i | 1.402 (4) |
C1—H1A | 0.96 | C10—C11 | 1.355 (3) |
C1—H1B | 0.96 | C10—H10 | 0.93 |
C1—H1C | 0.96 | C11—C11i | 1.391 (4) |
C2—C7 | 1.364 (3) | C11—H11 | 0.93 |
C2—C3 | 1.400 (3) | ||
O1—Cu1—O1i | 88.90 (8) | C4—C3—H3A | 119.5 |
O1—Cu1—N1i | 173.28 (7) | C2—C3—H3A | 119.5 |
O1i—Cu1—N1i | 93.47 (6) | C3—C4—C5 | 122.00 (19) |
O1—Cu1—N1 | 93.47 (6) | C3—C4—H4A | 119 |
O1i—Cu1—N1 | 173.28 (7) | C5—C4—H4A | 119 |
N1i—Cu1—N1 | 83.50 (9) | O1—C5—C6 | 125.46 (18) |
O1—Cu1—O3 | 94.28 (7) | O1—C5—C4 | 118.15 (18) |
O1i—Cu1—O3 | 94.28 (7) | C6—C5—C4 | 116.40 (17) |
N1i—Cu1—O3 | 91.82 (7) | C7—C6—C5 | 120.2 (2) |
N1—Cu1—O3 | 91.82 (7) | C7—C6—C8 | 116.7 (2) |
C8—N1—C9 | 121.37 (16) | C5—C6—C8 | 123.06 (16) |
C8—N1—Cu1 | 125.63 (13) | C2—C7—C6 | 121.0 (2) |
C9—N1—Cu1 | 112.97 (13) | C2—C7—H7A | 119.5 |
C5—O1—Cu1 | 126.75 (12) | C6—C7—H7A | 119.5 |
C2—O2—C1 | 116.66 (16) | N1—C8—C6 | 125.34 (18) |
Cu1—O3—H1W | 116 (2) | N1—C8—H8A | 117.3 |
O2—C1—H1A | 109.5 | C6—C8—H8A | 117.3 |
O2—C1—H1B | 109.5 | C10—C9—C9i | 120.71 (11) |
H1A—C1—H1B | 109.5 | C10—C9—N1 | 124.03 (17) |
O2—C1—H1C | 109.5 | C9i—C9—N1 | 115.26 (10) |
H1A—C1—H1C | 109.5 | C11—C10—C9 | 118.30 (18) |
H1B—C1—H1C | 109.5 | C11—C10—H10 | 120.9 |
C7—C2—O2 | 125.62 (19) | C9—C10—H10 | 120.9 |
C7—C2—C3 | 119.34 (18) | C10—C11—C11i | 120.99 (12) |
O2—C2—C3 | 115.05 (17) | C10—C11—H11 | 119.5 |
C4—C3—C2 | 121.04 (18) | C11i—C11—H11 | 119.5 |
O1—Cu1—N1—C8 | −6.06 (17) | C4—C5—C6—C7 | −0.8 (3) |
N1i—Cu1—N1—C8 | 179.97 (13) | O1—C5—C6—C8 | −0.9 (4) |
O3—Cu1—N1—C8 | 88.35 (16) | C4—C5—C6—C8 | 178.9 (2) |
O1—Cu1—N1—C9 | 175.92 (12) | O2—C2—C7—C6 | −179.7 (2) |
N1i—Cu1—N1—C9 | 1.95 (15) | C3—C2—C7—C6 | 0.2 (3) |
O3—Cu1—N1—C9 | −89.67 (13) | C5—C6—C7—C2 | 0.5 (4) |
O1i—Cu1—O1—C5 | 177.79 (13) | C8—C6—C7—C2 | −179.27 (19) |
N1—Cu1—O1—C5 | 4.09 (17) | C9—N1—C8—C6 | −176.49 (19) |
O3—Cu1—O1—C5 | −88.00 (16) | Cu1—N1—C8—C6 | 5.6 (3) |
C1—O2—C2—C7 | 7.1 (3) | C7—C6—C8—N1 | 178.4 (2) |
C1—O2—C2—C3 | −172.8 (2) | C5—C6—C8—N1 | −1.4 (4) |
C7—C2—C3—C4 | −0.5 (3) | C8—N1—C9—C10 | 1.6 (3) |
O2—C2—C3—C4 | 179.41 (18) | Cu1—N1—C9—C10 | 179.67 (16) |
C2—C3—C4—C5 | 0.1 (3) | C8—N1—C9—C9i | −179.72 (13) |
Cu1—O1—C5—C6 | −1.6 (3) | Cu1—N1—C9—C9i | −1.61 (12) |
Cu1—O1—C5—C4 | 178.60 (14) | C9i—C9—C10—C11 | −0.2 (2) |
C3—C4—C5—O1 | −179.63 (19) | N1—C9—C10—C11 | 178.43 (17) |
C3—C4—C5—C6 | 0.5 (3) | C9—C10—C11—C11i | 0.2 (2) |
O1—C5—C6—C7 | 179.4 (2) |
Symmetry code: (i) −x, y, z. |
Please define Cg |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1W···O1ii | 0.84 (2) | 2.19 (2) | 2.933 (3) | 146 (2) |
C8—H8A···O2iii | 0.93 | 2.57 | 3.330 (3) | 139 |
C8—H8A···N2 | 0.93 | 2.49 | 2.844 (3) | 103 |
C1—H1B···Cgiv | 0.96 | 2.71 | 3.528 (4) | 143 |
Symmetry codes: (ii) −x, y+1, z; (iii) −x−1/2, −y+2, z+1/2; (iv) −x+3/2, −y+2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C21H17N3O4)(H2O)] |
Mr | 456.93 |
Crystal system, space group | Orthorhombic, Pmn21 |
Temperature (K) | 296 |
a, b, c (Å) | 23.162 (7), 5.0997 (14), 7.769 (2) |
V (Å3) | 917.7 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.23 |
Crystal size (mm) | 0.12 × 0.06 × 0.04 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10830, 3026, 2384 |
Rint | 0.056 |
(sin θ/λ)max (Å−1) | 0.735 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.060, 0.89 |
No. of reflections | 3026 |
No. of parameters | 142 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.42 |
Absolute structure | Flack (1983), 1361 Friedel pairs |
Absolute structure parameter | −0.015 (11) |
Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
Please define Cg |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1W···O1i | 0.84 (2) | 2.19 (2) | 2.933 (3) | 146 (2) |
C8—H8A···O2ii | 0.9300 | 2.5700 | 3.330 (3) | 139.00 |
C8—H8A···N2 | 0.9300 | 2.4900 | 2.844 (3) | 103.00 |
C1—H1B···Cgiii | 0.9600 | 2.7100 | 3.528 (4) | 143.00 |
Symmetry codes: (i) −x, y+1, z; (ii) −x−1/2, −y+2, z+1/2; (iii) −x+3/2, −y+2, z+1/2. |
Acknowledgements
The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support and Professor L. Ouahab (Laboratoire des Sciences Chimiques, Rennes 1, France) for helpful discussions.
References
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Coche-Guerente, L., Cosnier, S., Innocent, C. & Mailly, P. (1995). Anal. Chim. Acta, 11, 161–169. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Guo, P. & Wong, K. Y. (1999). Electrochem. Commun. 1, 559–562. Web of Science CrossRef CAS Google Scholar
Huo, L. H., Cao, L. X., Wang, D. M., Cui, N. N., Zeng, G. F. & Xi, S. Q. (1999). Thin Solid Films, 350, 5–9. Web of Science CrossRef CAS Google Scholar
Kataoka, K., Ohki, N., Tsuruta, T., Doukai, N. & Inagaki, H. (1979). Macromol. Chem. Phys. 180, 65–77. CrossRef CAS Google Scholar
Khedkar, S. P. & Radhakrishnan, S. (1997). Thin Solid Films, 303, 167–172. CrossRef CAS Web of Science Google Scholar
Ouari, K., Ourari, A. & Weiss, J. (2010). J. Chem. Crystallogr. 40, 831–836. Web of Science CSD CrossRef CAS Google Scholar
Ourari, A., Baameur, L., Bouet, G. & Khan, M. A. (2008). Electrochem. Commun. 10, 1736–1739. Web of Science CrossRef CAS Google Scholar
Ourari, A., Ouari, K., Bouet, G. & Khan, M. A. (2008). J. Coord. Chem. 61, 3846–3859. Web of Science CrossRef CAS Google Scholar
Ourari, A., Ouari, K., Moumeni, W., Sibous, L., Bouet, G. & Khan, M. A. (2006). Transition Met. Chem. 31, 169–175. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vyas, G. N. & Shah, N. M. (1963). Org. Synth. Coll. Vol. IV, p. 836. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound is one of the targeted materials to elaborate modified electrodes in order to use them in heterogeneous electrocatalysis. Therefore, this work is a continuation of investigations where 2,3-diaminophenol and 2,3-diaminopyridine were involved (Ourari et al., 2006; Ouari et al., 2010; Ourari, Ouari et al., 2008). The resulting ligands or complexes may be functionalized by etherification (Vyas & Shah, 1963) or quaternization (Kataoka et al., 1979) reactions using N-(3-bromopropyl)pyrrole. These materials are mainly applied in catalysis, electrocatalysis and sensors (Ourari, Baameur et al., 2008; Coche-Guerente et al., 1995). The synthesis of new salicylaldehyde derivatives containing electropolymerizable units can be considered as the main source of functionalized π-conjugated conducting polymers as those of poly(pyrrole), poly(thiophene) and poly(aniline) (Huo et al., 1999; Khedkar & Radhakrishnan, 1997; Guo & Wong, 1999). We report here the synthesis of the title compound, [Cu(C21H17N3O4)(H2O)], (I) and its crystal structure.
The molecular geometry of (I), and the atomic numbering used, is illustrated in Fig. 1. The asymmetric unit of (I) consists of one-half of the molecule, with the other half generated by a crystallographic mirror plane. Due to this symmetry the N2 and C10 atoms of the pyridine ring are equally disordered. The CuII atom is five-coordinate in a distorted square pyramidal geometry by the O atoms of two 5-methoxysalicylidene groups, the imine N atoms and one molecule of water in the apical position. The bond lengths of the coordination sphere range from 1.9126 (14) to 2.416 (3) Å for Cu—O distances and is 1.9561 (16) Å for the Cu—N distance. The crystal packing in (I) can be described by alterning layers along [001] (Fig. 2). There are one intramolecular C—H···N and two intermolecular C—H···O and O—H···O hydrogen bonding interactions in this packing (Fig. 3), which is further stabilized by C—H···π interactions (Table 2) and π–π stacking (shortest centroid-to-centroid distance 3.799 (8); interplanar distance of 3.469 (2) Å).