metal-organic compounds
trans-Bis[1-(2-benzamidoethyl)-3-(2,4,6-trimethylphenyl)imidazol-2-ylidene]dichloridopalladium(II)
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, South Africa
*Correspondence e-mail: 2011009426@ufs4life.ac.za
In the title compound, [PdCl2(C21H23N3O)2], the PdII atom is located on an inversion centre and is coordinated in a slightly distorted square-planar environment by the chloride and N-heterocyclic carbene (NHC) ligands in mutual trans positions. There are several hydrogen-bonding interactions, the most significant of which is a hydrogen bond between the amide moiety of the NHC and the chloride ligand. These hydrogen-bond interactions form a three-dimensional network.
Related literature
For a review on N-heterocyclic (NHCs) and their coordination chemistry, see: Hahn & Jahnke (2008). For seminal papers on NHC structure and coordination chemistry, see: Arduengo et al. (1991); Wang & Lin (1998). For Pd(NHC) complexes, see, for example: Meij et al. (2005); Warsink et al. (2009, 2010); Fu et al. (2010).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812031868/wm2660sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812031868/wm2660Isup2.hkl
To a dichloromethane solution of chlorido[(1-(2-benzamido)-ethylene-3-mesityl)-imidazol-2-ylidene]silver(I) (0.175 g, 0.36 mmol) was added 0.5 equivalent of dichlorido bis(acetonitrile)palladium(II). The resulting orange solution changed to a suspension in 5 minutes time. This suspension was filtered over a celite pad and the pale yellow solution was concentrated to give the product as a pale orange solid in a yield of 98% (150 mg). 1H NMR (300 MHz, CDCl3): δ 7.75 (d, 3J(HH) = 7.4 Hz, 4H, o-Ph—H), 7.45 (t, 3J(HH) = 7.3 Hz, 2H, p-Ph—H), 7.35 (dt, 3J(HH) = 7.4 Hz, 3J(HH) = 7.3 Hz, 4H, m-Ph—H), 7.08 (broad t, 3J(HH) = 5.9 Hz, 2H, NH), 6.93 (s, 4H, Mes-H), 6.89 (d, 3J(HH) = 1.6 Hz, 2H, CH), 6.69 (d, 3J(HH) = 1.6 Hz, 2H, CH), 4.41 (t, 3J(HH) = 5.6 Hz, 4H, NCH2), 4.02 (dt, 3J(HH) = 5.6 Hz, 3J(HH) = 5.9 Hz, 4H, NHCH2), 2.31 (s, 6H, p-Mes-CH3), 2.09 (s, 12H, o-Mes-CH3). Colourless crystals were obtained by vapour diffusion of diethyl ether into a concentrated dichloromethane solution.
Palladium complexes bearing NHC ligands are well documented in literature (Hahn & Jahnke, 2008), even before the first free NHC was crystallographically characterized (Arduengo et al., 1991). As part of our focus on ligand manipulation for palladium complexes (Meij et al., 2005), we concentrated on the development of complexes bearing NHC ligands. NHCs are well-known for being very good σ-donors, but because of the empty p-orbital on the carbene carbon, complexes with high electron density are not necessarily destabilized by the presence of an NHC (Warsink et al., 2010). Several examples exist where an NHC is present on an electron-rich palladium(0) atom (Warsink et al., 2009), or where more than one NHC is present on palladium(II) (Fu et al., 2010).
With the addition of two NHCs to palladium(II), two possible isomers can result. Both have been prepared, with reaction conditions normally favouring the kinetic trans-product. The cis-product can be obtained by performing the reaction under
When this type of complex is prepared from the silver(I) NHC complex (Wang & Lin, 1998), transfer of the carbene ligand usually takes place in minutes, even when two NHC moieties are transferred. The precipitation of the silver salt ensures the reaction goes to completion.The geometric parameters of the title compound, [PdCl2(C21H23N3O)2], (I), show that the complex is square-planar, with bond lengths between palladium and its ligands being in the expected range. The Pd2+ cation lies on an inversion centre, generating half of the molecule by symmetry. The C1—Pd1—Cl1 angle is 87.55 (4) °, slightly distorting the geometry of the complex. The NHC is twisted out of the coordination plane to alleviate the steric bulk induced by the mesityl-substituent; the dihedral angle between the carbene core and the coordination plane is 72.37 (13) °.
There are several hydrogen bonding interactions, both inter- and intramolecular. The most significant of these is a hydrogen bond between the amide H atoms and the chlorido ligands (Table 2)
For a review on N-heterocyclic
(NHCs) and their coordination chemistry, see: Hahn & Jahnke (2008). For seminal papers on NHC structure and coordination chemistry, see: Arduengo et al. (1991); Wang & Lin (1998). For Pd(NHC) complexes, see, for example: Meij et al. (2005); Warsink et al. (2009, 2010); Fu et al. (2010).Data collection: APEX2 (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).[PdCl2(C21H23N3O)2] | F(000) = 872 |
Mr = 844.15 | Dx = 1.434 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9963 reflections |
a = 12.594 (4) Å | θ = 2.5–28.3° |
b = 11.736 (4) Å | µ = 0.66 mm−1 |
c = 14.403 (4) Å | T = 100 K |
β = 113.3098 (10)° | Plate, colourless |
V = 1955.0 (10) Å3 | 0.73 × 0.58 × 0.25 mm |
Z = 2 |
Bruker X8 APEXII KappaCCD diffractometer | 4845 independent reflections |
Radiation source: sealed tube | 4441 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
φ and ω scans | θmax = 28.3°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −15→16 |
Tmin = 0.640, Tmax = 0.849 | k = −15→15 |
28432 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0252P)2 + 1.206P] where P = (Fo2 + 2Fc2)/3 |
4845 reflections | (Δ/σ)max = 0.001 |
248 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
0 constraints |
[PdCl2(C21H23N3O)2] | V = 1955.0 (10) Å3 |
Mr = 844.15 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.594 (4) Å | µ = 0.66 mm−1 |
b = 11.736 (4) Å | T = 100 K |
c = 14.403 (4) Å | 0.73 × 0.58 × 0.25 mm |
β = 113.3098 (10)° |
Bruker X8 APEXII KappaCCD diffractometer | 4845 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 4441 reflections with I > 2σ(I) |
Tmin = 0.640, Tmax = 0.849 | Rint = 0.025 |
28432 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 0 restraints |
wR(F2) = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.37 e Å−3 |
4845 reflections | Δρmin = −0.43 e Å−3 |
248 parameters |
Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 5 s/frame. A total of 1386 frames was collected with a frame width of 0.5° covering up to θ = 28.31° with 99.7% completeness accomplished. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C01 | 0.93466 (11) | 0.12682 (11) | 0.89676 (9) | 0.0151 (2) | |
C02 | 0.83145 (13) | 0.21976 (12) | 0.75160 (10) | 0.0225 (3) | |
H02 | 0.7778 | 0.2338 | 0.6844 | 0.027* | |
C03 | 0.90016 (13) | 0.29692 (13) | 0.81658 (10) | 0.0237 (3) | |
H03 | 0.905 | 0.3758 | 0.8041 | 0.028* | |
C04 | 0.79774 (13) | 0.00921 (12) | 0.75366 (10) | 0.0195 (3) | |
H04A | 0.855 | −0.0393 | 0.7411 | 0.023* | |
H04B | 0.7351 | 0.0269 | 0.6874 | 0.023* | |
C05 | 0.74689 (12) | −0.05763 (12) | 0.81778 (10) | 0.0204 (3) | |
H05A | 0.687 | −0.1103 | 0.7731 | 0.025* | |
H05B | 0.8089 | −0.1045 | 0.8673 | 0.025* | |
C06 | 0.60980 (12) | 0.08742 (13) | 0.82388 (10) | 0.0207 (3) | |
C07 | 0.57994 (12) | 0.16735 (13) | 0.89085 (10) | 0.0204 (3) | |
C08 | 0.54646 (13) | 0.27752 (14) | 0.85645 (11) | 0.0269 (3) | |
H08 | 0.5419 | 0.2997 | 0.7915 | 0.032* | |
C09 | 0.51965 (15) | 0.35543 (15) | 0.91642 (13) | 0.0336 (4) | |
H09 | 0.4984 | 0.4312 | 0.8932 | 0.04* | |
C10 | 0.52404 (14) | 0.32240 (17) | 1.01020 (12) | 0.0345 (4) | |
H10 | 0.5057 | 0.3756 | 1.0513 | 0.041* | |
C11 | 0.55517 (13) | 0.21202 (16) | 1.04414 (11) | 0.0305 (4) | |
H11 | 0.5565 | 0.1894 | 1.1079 | 0.037* | |
C12 | 0.58435 (12) | 0.13441 (14) | 0.98548 (10) | 0.0240 (3) | |
H12 | 0.6072 | 0.0592 | 1.0096 | 0.029* | |
C13 | 1.04514 (12) | 0.29318 (11) | 0.99505 (9) | 0.0169 (2) | |
C14 | 1.16210 (12) | 0.29244 (11) | 1.01144 (10) | 0.0189 (3) | |
C15 | 1.23975 (12) | 0.34349 (12) | 1.09968 (11) | 0.0205 (3) | |
H15 | 1.3197 | 0.3448 | 1.1123 | 0.025* | |
C16 | 1.20260 (12) | 0.39272 (12) | 1.16990 (10) | 0.0201 (3) | |
C17 | 1.08462 (12) | 0.39442 (11) | 1.14869 (10) | 0.0191 (3) | |
H17 | 1.0589 | 0.4282 | 1.1961 | 0.023* | |
C18 | 1.00316 (12) | 0.34792 (11) | 1.05991 (10) | 0.0175 (3) | |
C19 | 1.20317 (13) | 0.23864 (13) | 0.93643 (11) | 0.0254 (3) | |
H19A | 1.2861 | 0.253 | 0.9574 | 0.038* | |
H19B | 1.1608 | 0.2717 | 0.8693 | 0.038* | |
H19C | 1.1893 | 0.1563 | 0.9339 | 0.038* | |
C20 | 1.28891 (13) | 0.44417 (14) | 1.26630 (11) | 0.0269 (3) | |
H20A | 1.2478 | 0.4878 | 1.2998 | 0.04* | |
H20B | 1.3412 | 0.4948 | 1.2503 | 0.04* | |
H20C | 1.3337 | 0.3833 | 1.3113 | 0.04* | |
C21 | 0.87535 (12) | 0.36035 (12) | 1.03310 (10) | 0.0212 (3) | |
H21A | 0.863 | 0.3995 | 1.0881 | 0.032* | |
H21B | 0.8395 | 0.2847 | 1.023 | 0.032* | |
H21C | 0.8404 | 0.4049 | 0.9708 | 0.032* | |
N1 | 0.85384 (10) | 0.11576 (10) | 0.80130 (8) | 0.0165 (2) | |
N2 | 0.96271 (10) | 0.23883 (9) | 0.90550 (8) | 0.0167 (2) | |
N3 | 0.69588 (11) | 0.01305 (10) | 0.87193 (9) | 0.0197 (2) | |
O1 | 0.55957 (10) | 0.09075 (10) | 0.73122 (7) | 0.0289 (2) | |
Cl1 | 1.09679 (3) | −0.06511 (3) | 0.90286 (2) | 0.01787 (7) | |
Pd1 | 1 | 0 | 1 | 0.01239 (4) | |
H1 | 0.7338 (16) | 0.0244 (15) | 0.9304 (15) | 0.023 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C01 | 0.0188 (6) | 0.0141 (6) | 0.0136 (5) | 0.0012 (5) | 0.0077 (5) | −0.0003 (4) |
C02 | 0.0312 (7) | 0.0195 (7) | 0.0146 (6) | 0.0054 (6) | 0.0068 (5) | 0.0044 (5) |
C03 | 0.0368 (8) | 0.0166 (7) | 0.0163 (6) | 0.0037 (6) | 0.0091 (6) | 0.0055 (5) |
C04 | 0.0233 (7) | 0.0188 (7) | 0.0146 (6) | −0.0007 (5) | 0.0056 (5) | −0.0040 (5) |
C05 | 0.0229 (7) | 0.0169 (7) | 0.0188 (6) | −0.0006 (5) | 0.0053 (5) | −0.0006 (5) |
C06 | 0.0210 (6) | 0.0232 (7) | 0.0164 (6) | −0.0015 (5) | 0.0058 (5) | 0.0010 (5) |
C07 | 0.0175 (6) | 0.0260 (7) | 0.0143 (6) | −0.0009 (5) | 0.0029 (5) | −0.0015 (5) |
C08 | 0.0288 (7) | 0.0270 (8) | 0.0209 (7) | 0.0035 (6) | 0.0055 (6) | 0.0021 (6) |
C09 | 0.0346 (9) | 0.0270 (8) | 0.0303 (8) | 0.0060 (7) | 0.0034 (7) | −0.0040 (6) |
C10 | 0.0276 (8) | 0.0436 (10) | 0.0253 (8) | 0.0059 (7) | 0.0029 (6) | −0.0146 (7) |
C11 | 0.0251 (7) | 0.0485 (10) | 0.0155 (6) | 0.0039 (7) | 0.0054 (6) | −0.0040 (6) |
C12 | 0.0212 (7) | 0.0320 (8) | 0.0164 (6) | 0.0010 (6) | 0.0048 (5) | 0.0016 (6) |
C13 | 0.0239 (6) | 0.0110 (6) | 0.0149 (6) | −0.0006 (5) | 0.0068 (5) | 0.0015 (4) |
C14 | 0.0256 (7) | 0.0125 (6) | 0.0211 (6) | −0.0006 (5) | 0.0119 (5) | 0.0004 (5) |
C15 | 0.0229 (7) | 0.0150 (6) | 0.0240 (7) | −0.0004 (5) | 0.0097 (5) | 0.0008 (5) |
C16 | 0.0261 (7) | 0.0132 (6) | 0.0190 (6) | −0.0010 (5) | 0.0069 (5) | 0.0008 (5) |
C17 | 0.0275 (7) | 0.0134 (6) | 0.0176 (6) | −0.0003 (5) | 0.0104 (5) | −0.0006 (5) |
C18 | 0.0247 (7) | 0.0117 (6) | 0.0172 (6) | −0.0001 (5) | 0.0093 (5) | 0.0024 (5) |
C19 | 0.0301 (8) | 0.0236 (7) | 0.0284 (7) | −0.0035 (6) | 0.0179 (6) | −0.0049 (6) |
C20 | 0.0275 (7) | 0.0265 (8) | 0.0233 (7) | −0.0030 (6) | 0.0064 (6) | −0.0053 (6) |
C21 | 0.0248 (7) | 0.0190 (7) | 0.0211 (6) | 0.0023 (5) | 0.0106 (5) | 0.0006 (5) |
N1 | 0.0216 (5) | 0.0157 (5) | 0.0122 (5) | 0.0019 (4) | 0.0066 (4) | 0.0005 (4) |
N2 | 0.0233 (6) | 0.0131 (5) | 0.0135 (5) | 0.0010 (4) | 0.0071 (4) | 0.0018 (4) |
N3 | 0.0208 (6) | 0.0233 (6) | 0.0130 (5) | 0.0001 (5) | 0.0045 (5) | 0.0008 (4) |
O1 | 0.0297 (6) | 0.0383 (6) | 0.0134 (4) | 0.0082 (5) | 0.0029 (4) | −0.0008 (4) |
Cl1 | 0.02339 (15) | 0.01741 (15) | 0.01444 (13) | 0.00286 (12) | 0.00921 (11) | −0.00015 (11) |
Pd1 | 0.01673 (7) | 0.01039 (7) | 0.00985 (7) | 0.00060 (5) | 0.00504 (5) | 0.00040 (4) |
C01—N2 | 1.3541 (18) | C11—H11 | 0.95 |
C01—N1 | 1.3548 (16) | C12—H12 | 0.95 |
C01—Pd1 | 2.0335 (14) | C13—C14 | 1.397 (2) |
C02—C03 | 1.343 (2) | C13—C18 | 1.3985 (19) |
C02—N1 | 1.3864 (18) | C13—N2 | 1.4451 (17) |
C02—H02 | 0.95 | C14—C15 | 1.395 (2) |
C03—N2 | 1.3882 (17) | C14—C19 | 1.5085 (19) |
C03—H03 | 0.95 | C15—C16 | 1.396 (2) |
C04—N1 | 1.4663 (18) | C15—H15 | 0.95 |
C04—C05 | 1.532 (2) | C16—C17 | 1.394 (2) |
C04—H04A | 0.99 | C16—C20 | 1.510 (2) |
C04—H04B | 0.99 | C17—C18 | 1.3955 (19) |
C05—N3 | 1.4512 (19) | C17—H17 | 0.95 |
C05—H05A | 0.99 | C18—C21 | 1.506 (2) |
C05—H05B | 0.99 | C19—H19A | 0.98 |
C06—O1 | 1.2307 (17) | C19—H19B | 0.98 |
C06—N3 | 1.3498 (19) | C19—H19C | 0.98 |
C06—C07 | 1.496 (2) | C20—H20A | 0.98 |
C07—C08 | 1.389 (2) | C20—H20B | 0.98 |
C07—C12 | 1.3965 (19) | C20—H20C | 0.98 |
C08—C09 | 1.388 (2) | C21—H21A | 0.98 |
C08—H08 | 0.95 | C21—H21B | 0.98 |
C09—C10 | 1.385 (3) | C21—H21C | 0.98 |
C09—H09 | 0.95 | N3—H1 | 0.797 (19) |
C10—C11 | 1.385 (3) | Cl1—Pd1 | 2.3188 (6) |
C10—H10 | 0.95 | Pd1—C01i | 2.0335 (14) |
C11—C12 | 1.387 (2) | Pd1—Cl1i | 2.3188 (6) |
N2—C01—N1 | 104.54 (11) | C13—C14—C19 | 121.28 (12) |
N2—C01—Pd1 | 128.86 (10) | C14—C15—C16 | 121.50 (14) |
N1—C01—Pd1 | 126.59 (10) | C14—C15—H15 | 119.3 |
C03—C02—N1 | 106.89 (12) | C16—C15—H15 | 119.3 |
C03—C02—H02 | 126.6 | C17—C16—C15 | 118.74 (13) |
N1—C02—H02 | 126.6 | C17—C16—C20 | 120.87 (13) |
C02—C03—N2 | 106.60 (13) | C15—C16—C20 | 120.39 (13) |
C02—C03—H03 | 126.7 | C16—C17—C18 | 121.92 (13) |
N2—C03—H03 | 126.7 | C16—C17—H17 | 119 |
N1—C04—C05 | 113.17 (11) | C18—C17—H17 | 119 |
N1—C04—H04A | 108.9 | C17—C18—C13 | 117.17 (13) |
C05—C04—H04A | 108.9 | C17—C18—C21 | 121.37 (12) |
N1—C04—H04B | 108.9 | C13—C18—C21 | 121.42 (12) |
C05—C04—H04B | 108.9 | C14—C19—H19A | 109.5 |
H04A—C04—H04B | 107.8 | C14—C19—H19B | 109.5 |
N3—C05—C04 | 114.26 (12) | H19A—C19—H19B | 109.5 |
N3—C05—H05A | 108.7 | C14—C19—H19C | 109.5 |
C04—C05—H05A | 108.7 | H19A—C19—H19C | 109.5 |
N3—C05—H05B | 108.7 | H19B—C19—H19C | 109.5 |
C04—C05—H05B | 108.7 | C16—C20—H20A | 109.5 |
H05A—C05—H05B | 107.6 | C16—C20—H20B | 109.5 |
O1—C06—N3 | 122.72 (14) | H20A—C20—H20B | 109.5 |
O1—C06—C07 | 121.78 (13) | C16—C20—H20C | 109.5 |
N3—C06—C07 | 115.50 (12) | H20A—C20—H20C | 109.5 |
C08—C07—C12 | 119.67 (14) | H20B—C20—H20C | 109.5 |
C08—C07—C06 | 118.15 (13) | C18—C21—H21A | 109.5 |
C12—C07—C06 | 122.18 (14) | C18—C21—H21B | 109.5 |
C09—C08—C07 | 120.36 (15) | H21A—C21—H21B | 109.5 |
C09—C08—H08 | 119.8 | C18—C21—H21C | 109.5 |
C07—C08—H08 | 119.8 | H21A—C21—H21C | 109.5 |
C10—C09—C08 | 119.78 (16) | H21B—C21—H21C | 109.5 |
C10—C09—H09 | 120.1 | C01—N1—C02 | 110.93 (12) |
C08—C09—H09 | 120.1 | C01—N1—C04 | 125.88 (11) |
C09—C10—C11 | 120.16 (15) | C02—N1—C04 | 123.18 (11) |
C09—C10—H10 | 119.9 | C01—N2—C03 | 111.05 (11) |
C11—C10—H10 | 119.9 | C01—N2—C13 | 125.47 (11) |
C10—C11—C12 | 120.35 (15) | C03—N2—C13 | 123.48 (12) |
C10—C11—H11 | 119.8 | C06—N3—C05 | 122.04 (12) |
C12—C11—H11 | 119.8 | C06—N3—H1 | 117.2 (13) |
C11—C12—C07 | 119.66 (15) | C05—N3—H1 | 117.1 (13) |
C11—C12—H12 | 120.2 | C01i—Pd1—C01 | 180 |
C07—C12—H12 | 120.2 | C01i—Pd1—Cl1 | 92.45 (4) |
C14—C13—C18 | 122.83 (12) | C01—Pd1—Cl1 | 87.55 (4) |
C14—C13—N2 | 119.03 (12) | C01i—Pd1—Cl1i | 87.55 (4) |
C18—C13—N2 | 118.10 (12) | C01—Pd1—Cl1i | 92.45 (4) |
C15—C14—C13 | 117.61 (12) | Cl1—Pd1—Cl1i | 180 |
C15—C14—C19 | 121.11 (13) | ||
N1—C02—C03—N2 | −0.59 (16) | C14—C13—C18—C21 | 171.86 (12) |
N1—C04—C05—N3 | 37.27 (16) | N2—C13—C18—C21 | −5.84 (19) |
O1—C06—C07—C08 | −34.5 (2) | N2—C01—N1—C02 | −0.38 (15) |
N3—C06—C07—C08 | 144.81 (14) | Pd1—C01—N1—C02 | −178.84 (10) |
O1—C06—C07—C12 | 145.30 (15) | N2—C01—N1—C04 | 178.29 (12) |
N3—C06—C07—C12 | −35.44 (19) | Pd1—C01—N1—C04 | −0.18 (19) |
C12—C07—C08—C09 | 1.3 (2) | C03—C02—N1—C01 | 0.62 (16) |
C06—C07—C08—C09 | −178.98 (14) | C03—C02—N1—C04 | −178.08 (13) |
C07—C08—C09—C10 | −1.3 (2) | C05—C04—N1—C01 | 51.09 (18) |
C08—C09—C10—C11 | 0.1 (3) | C05—C04—N1—C02 | −130.40 (14) |
C09—C10—C11—C12 | 1.3 (2) | N1—C01—N2—C03 | 0.00 (15) |
C10—C11—C12—C07 | −1.3 (2) | Pd1—C01—N2—C03 | 178.42 (10) |
C08—C07—C12—C11 | 0.1 (2) | N1—C01—N2—C13 | 179.11 (12) |
C06—C07—C12—C11 | −179.70 (13) | Pd1—C01—N2—C13 | −2.47 (19) |
C18—C13—C14—C15 | 3.7 (2) | C02—C03—N2—C01 | 0.38 (17) |
N2—C13—C14—C15 | −178.65 (12) | C02—C03—N2—C13 | −178.75 (13) |
C18—C13—C14—C19 | −176.21 (13) | C14—C13—N2—C01 | 85.73 (17) |
N2—C13—C14—C19 | 1.47 (19) | C18—C13—N2—C01 | −96.48 (16) |
C13—C14—C15—C16 | 0.6 (2) | C14—C13—N2—C03 | −95.26 (16) |
C19—C14—C15—C16 | −179.50 (13) | C18—C13—N2—C03 | 82.53 (17) |
C14—C15—C16—C17 | −2.6 (2) | O1—C06—N3—C05 | 9.0 (2) |
C14—C15—C16—C20 | 178.11 (13) | C07—C06—N3—C05 | −170.29 (12) |
C15—C16—C17—C18 | 0.4 (2) | C04—C05—N3—C06 | 57.45 (18) |
C20—C16—C17—C18 | 179.69 (13) | N2—C01—Pd1—Cl1 | −106.64 (12) |
C16—C17—C18—C13 | 3.61 (19) | N1—C01—Pd1—Cl1 | 71.46 (11) |
C16—C17—C18—C21 | −173.97 (13) | N2—C01—Pd1—Cl1i | 73.36 (12) |
C14—C13—C18—C17 | −5.72 (19) | N1—C01—Pd1—Cl1i | −108.54 (11) |
N2—C13—C18—C17 | 176.58 (11) |
Symmetry code: (i) −x+2, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1···Cl1i | 0.797 (19) | 2.549 (19) | 3.3181 (15) | 162.6 (17) |
C09—H09···O1ii | 0.95 | 2.49 | 3.386 (2) | 157 |
C10—H10···O1iii | 0.95 | 2.44 | 3.201 (2) | 137 |
C19—H19C···Cl1 | 0.98 | 2.81 | 3.772 (2) | 167 |
C21—H21B···Cl1i | 0.98 | 2.78 | 3.567 (2) | 137 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, y+1/2, −z+3/2; (iii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [PdCl2(C21H23N3O)2] |
Mr | 844.15 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 12.594 (4), 11.736 (4), 14.403 (4) |
β (°) | 113.3098 (10) |
V (Å3) | 1955.0 (10) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.66 |
Crystal size (mm) | 0.73 × 0.58 × 0.25 |
Data collection | |
Diffractometer | Bruker X8 APEXII KappaCCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.640, 0.849 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28432, 4845, 4441 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.055, 1.03 |
No. of reflections | 4845 |
No. of parameters | 248 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.37, −0.43 |
Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1···Cl1i | 0.797 (19) | 2.549 (19) | 3.3181 (15) | 162.6 (17) |
C09—H09···O1ii | 0.95 | 2.49 | 3.386 (2) | 156.5 |
C10—H10···O1iii | 0.95 | 2.44 | 3.201 (2) | 137.4 |
C19—H19C···Cl1 | 0.98 | 2.81 | 3.772 (2) | 166.9 |
C21—H21B···Cl1i | 0.98 | 2.78 | 3.567 (2) | 137.3 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, y+1/2, −z+3/2; (iii) x, −y+1/2, z+1/2. |
Acknowledgements
Mr Theuns Muller is kindly acknowledged for collection of the diffraction data. The authors thank SASOL, the South African NRF and THRIP, the University of the Free State Research Fund and the UFS Materials and Nanosciences Strategic Research Cluster initiative for financial support. The views expressed do not necessarily represent those of the NRF.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Arduengo, A. J. III, Harlow, R. H. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fu, C.-F., Lee, C.-C., Liu, Y.-H., Peng, S.-M., Warsink, S., Elsevier, C. J., Chen, J.-T. & Liu, S.-T. (2010). Inorg. Chem. 49, 3011–3018. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hahn, F. E. & Jahnke, M. C. (2008). Angew. Chem. Int. Ed. 47, 3122–3172. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Meij, A. M. M., Otto, S. & Roodt, A. (2005). Inorg. Chim. Acta, 358, 1005–1011. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975. Web of Science CSD CrossRef CAS Google Scholar
Warsink, S., Hauwert, P., Siegler, M. A., Spek, A. L. & Elsevier, C. J. (2009). Appl. Organomet. Chem. 23, 225–228. Web of Science CSD CrossRef CAS Google Scholar
Warsink, S., van Aubel, C. M. S., Weigand, J. J., Liu, S.-T. & Elsevier, C. J. (2010). Eur. J. Inorg. Chem. 35, 5556–5562. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Palladium complexes bearing NHC ligands are well documented in literature (Hahn & Jahnke, 2008), even before the first free NHC was crystallographically characterized (Arduengo et al., 1991). As part of our focus on ligand manipulation for palladium complexes (Meij et al., 2005), we concentrated on the development of complexes bearing NHC ligands. NHCs are well-known for being very good σ-donors, but because of the empty p-orbital on the carbene carbon, complexes with high electron density are not necessarily destabilized by the presence of an NHC (Warsink et al., 2010). Several examples exist where an NHC is present on an electron-rich palladium(0) atom (Warsink et al., 2009), or where more than one NHC is present on palladium(II) (Fu et al., 2010).
With the addition of two NHCs to palladium(II), two possible isomers can result. Both have been prepared, with reaction conditions normally favouring the kinetic trans-product. The cis-product can be obtained by performing the reaction under thermodynamic control. When this type of complex is prepared from the silver(I) NHC complex (Wang & Lin, 1998), transfer of the carbene ligand usually takes place in minutes, even when two NHC moieties are transferred. The precipitation of the silver salt ensures the reaction goes to completion.
The geometric parameters of the title compound, [PdCl2(C21H23N3O)2], (I), show that the complex is square-planar, with bond lengths between palladium and its ligands being in the expected range. The Pd2+ cation lies on an inversion centre, generating half of the molecule by symmetry. The C1—Pd1—Cl1 angle is 87.55 (4) °, slightly distorting the geometry of the complex. The NHC is twisted out of the coordination plane to alleviate the steric bulk induced by the mesityl-substituent; the dihedral angle between the carbene core and the coordination plane is 72.37 (13) °.
There are several hydrogen bonding interactions, both inter- and intramolecular. The most significant of these is a hydrogen bond between the amide H atoms and the chlorido ligands (Table 2)