metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis[1-(2-benzamido­eth­yl)-3-(2,4,6-tri­methyl­phen­yl)imidazol-2-yl­­idene]di­chloridopalladium(II)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, South Africa
*Correspondence e-mail: 2011009426@ufs4life.ac.za

(Received 10 July 2012; accepted 12 July 2012; online 18 July 2012)

In the title compound, [PdCl2(C21H23N3O)2], the PdII atom is located on an inversion centre and is coordinated in a slightly distorted square-planar environment by the chloride and N-heterocyclic carbene (NHC) ligands in mutual trans positions. There are several hydrogen-bonding inter­actions, the most significant of which is a hydrogen bond between the amide moiety of the NHC and the chloride ligand. These hydrogen-bond interactions form a three-dimensional network.

Related literature

For a review on N-heterocyclic carbenes (NHCs) and their coordination chemistry, see: Hahn & Jahnke (2008[Hahn, F. E. & Jahnke, M. C. (2008). Angew. Chem. Int. Ed. 47, 3122-3172.]). For seminal papers on NHC structure and coordination chemistry, see: Arduengo et al. (1991[Arduengo, A. J. III, Harlow, R. H. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.]); Wang & Lin (1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]). For Pd(NHC) complexes, see, for example: Meij et al. (2005[Meij, A. M. M., Otto, S. & Roodt, A. (2005). Inorg. Chim. Acta, 358, 1005-1011.]); Warsink et al. (2009[Warsink, S., Hauwert, P., Siegler, M. A., Spek, A. L. & Elsevier, C. J. (2009). Appl. Organomet. Chem. 23, 225-228.], 2010[Warsink, S., van Aubel, C. M. S., Weigand, J. J., Liu, S.-T. & Elsevier, C. J. (2010). Eur. J. Inorg. Chem. 35, 5556-5562.]); Fu et al. (2010[Fu, C.-F., Lee, C.-C., Liu, Y.-H., Peng, S.-M., Warsink, S., Elsevier, C. J., Chen, J.-T. & Liu, S.-T. (2010). Inorg. Chem. 49, 3011-3018.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C21H23N3O)2]

  • Mr = 844.15

  • Monoclinic, P 21 /c

  • a = 12.594 (4) Å

  • b = 11.736 (4) Å

  • c = 14.403 (4) Å

  • β = 113.3098 (10)°

  • V = 1955.0 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 100 K

  • 0.73 × 0.58 × 0.25 mm

Data collection
  • Bruker X8 APEXII KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.640, Tmax = 0.849

  • 28432 measured reflections

  • 4845 independent reflections

  • 4441 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.055

  • S = 1.03

  • 4845 reflections

  • 248 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected geometric parameters (Å, °)

C01—Pd1 2.0335 (14)
Cl1—Pd1 2.3188 (6)
C01—Pd1—Cl1 87.55 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯Cl1i 0.797 (19) 2.549 (19) 3.3181 (15) 162.6 (17)
C09—H09⋯O1ii 0.95 2.49 3.386 (2) 157
C10—H10⋯O1iii 0.95 2.44 3.201 (2) 137
C19—H19C⋯Cl1 0.98 2.81 3.772 (2) 167
C21—H21B⋯Cl1i 0.98 2.78 3.567 (2) 137
Symmetry codes: (i) -x+2, -y, -z+2; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Palladium complexes bearing NHC ligands are well documented in literature (Hahn & Jahnke, 2008), even before the first free NHC was crystallographically characterized (Arduengo et al., 1991). As part of our focus on ligand manipulation for palladium complexes (Meij et al., 2005), we concentrated on the development of complexes bearing NHC ligands. NHCs are well-known for being very good σ-donors, but because of the empty p-orbital on the carbene carbon, complexes with high electron density are not necessarily destabilized by the presence of an NHC (Warsink et al., 2010). Several examples exist where an NHC is present on an electron-rich palladium(0) atom (Warsink et al., 2009), or where more than one NHC is present on palladium(II) (Fu et al., 2010).

With the addition of two NHCs to palladium(II), two possible isomers can result. Both have been prepared, with reaction conditions normally favouring the kinetic trans-product. The cis-product can be obtained by performing the reaction under thermodynamic control. When this type of complex is prepared from the silver(I) NHC complex (Wang & Lin, 1998), transfer of the carbene ligand usually takes place in minutes, even when two NHC moieties are transferred. The precipitation of the silver salt ensures the reaction goes to completion.

The geometric parameters of the title compound, [PdCl2(C21H23N3O)2], (I), show that the complex is square-planar, with bond lengths between palladium and its ligands being in the expected range. The Pd2+ cation lies on an inversion centre, generating half of the molecule by symmetry. The C1—Pd1—Cl1 angle is 87.55 (4) °, slightly distorting the geometry of the complex. The NHC is twisted out of the coordination plane to alleviate the steric bulk induced by the mesityl-substituent; the dihedral angle between the carbene core and the coordination plane is 72.37 (13) °.

There are several hydrogen bonding interactions, both inter- and intramolecular. The most significant of these is a hydrogen bond between the amide H atoms and the chlorido ligands (Table 2)

Related literature top

For a review on N-heterocyclic carbenes (NHCs) and their coordination chemistry, see: Hahn & Jahnke (2008). For seminal papers on NHC structure and coordination chemistry, see: Arduengo et al. (1991); Wang & Lin (1998). For Pd(NHC) complexes, see, for example: Meij et al. (2005); Warsink et al. (2009, 2010); Fu et al. (2010).

Experimental top

To a dichloromethane solution of chlorido[(1-(2-benzamido)-ethylene-3-mesityl)-imidazol-2-ylidene]silver(I) (0.175 g, 0.36 mmol) was added 0.5 equivalent of dichlorido bis(acetonitrile)palladium(II). The resulting orange solution changed to a suspension in 5 minutes time. This suspension was filtered over a celite pad and the pale yellow solution was concentrated to give the product as a pale orange solid in a yield of 98% (150 mg). 1H NMR (300 MHz, CDCl3): δ 7.75 (d, 3J(HH) = 7.4 Hz, 4H, o-Ph—H), 7.45 (t, 3J(HH) = 7.3 Hz, 2H, p-Ph—H), 7.35 (dt, 3J(HH) = 7.4 Hz, 3J(HH) = 7.3 Hz, 4H, m-Ph—H), 7.08 (broad t, 3J(HH) = 5.9 Hz, 2H, NH), 6.93 (s, 4H, Mes-H), 6.89 (d, 3J(HH) = 1.6 Hz, 2H, CH), 6.69 (d, 3J(HH) = 1.6 Hz, 2H, CH), 4.41 (t, 3J(HH) = 5.6 Hz, 4H, NCH2), 4.02 (dt, 3J(HH) = 5.6 Hz, 3J(HH) = 5.9 Hz, 4H, NHCH2), 2.31 (s, 6H, p-Mes-CH3), 2.09 (s, 12H, o-Mes-CH3). Colourless crystals were obtained by vapour diffusion of diethyl ether into a concentrated dichloromethane solution.

Structure description top

Palladium complexes bearing NHC ligands are well documented in literature (Hahn & Jahnke, 2008), even before the first free NHC was crystallographically characterized (Arduengo et al., 1991). As part of our focus on ligand manipulation for palladium complexes (Meij et al., 2005), we concentrated on the development of complexes bearing NHC ligands. NHCs are well-known for being very good σ-donors, but because of the empty p-orbital on the carbene carbon, complexes with high electron density are not necessarily destabilized by the presence of an NHC (Warsink et al., 2010). Several examples exist where an NHC is present on an electron-rich palladium(0) atom (Warsink et al., 2009), or where more than one NHC is present on palladium(II) (Fu et al., 2010).

With the addition of two NHCs to palladium(II), two possible isomers can result. Both have been prepared, with reaction conditions normally favouring the kinetic trans-product. The cis-product can be obtained by performing the reaction under thermodynamic control. When this type of complex is prepared from the silver(I) NHC complex (Wang & Lin, 1998), transfer of the carbene ligand usually takes place in minutes, even when two NHC moieties are transferred. The precipitation of the silver salt ensures the reaction goes to completion.

The geometric parameters of the title compound, [PdCl2(C21H23N3O)2], (I), show that the complex is square-planar, with bond lengths between palladium and its ligands being in the expected range. The Pd2+ cation lies on an inversion centre, generating half of the molecule by symmetry. The C1—Pd1—Cl1 angle is 87.55 (4) °, slightly distorting the geometry of the complex. The NHC is twisted out of the coordination plane to alleviate the steric bulk induced by the mesityl-substituent; the dihedral angle between the carbene core and the coordination plane is 72.37 (13) °.

There are several hydrogen bonding interactions, both inter- and intramolecular. The most significant of these is a hydrogen bond between the amide H atoms and the chlorido ligands (Table 2)

For a review on N-heterocyclic carbenes (NHCs) and their coordination chemistry, see: Hahn & Jahnke (2008). For seminal papers on NHC structure and coordination chemistry, see: Arduengo et al. (1991); Wang & Lin (1998). For Pd(NHC) complexes, see, for example: Meij et al. (2005); Warsink et al. (2009, 2010); Fu et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity. [Symmetry code to generate symmetry-related atoms marked with ' : -x + 2, -y, -z + 2.]
trans-Bis[1-(2-benzamidoethyl)-3-(2,4,6-trimethylphenyl)imidazol- 2-ylidene]dichloridopalladium(II) top
Crystal data top
[PdCl2(C21H23N3O)2]F(000) = 872
Mr = 844.15Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9963 reflections
a = 12.594 (4) Åθ = 2.5–28.3°
b = 11.736 (4) ŵ = 0.66 mm1
c = 14.403 (4) ÅT = 100 K
β = 113.3098 (10)°Plate, colourless
V = 1955.0 (10) Å30.73 × 0.58 × 0.25 mm
Z = 2
Data collection top
Bruker X8 APEXII KappaCCD
diffractometer
4845 independent reflections
Radiation source: sealed tube4441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1516
Tmin = 0.640, Tmax = 0.849k = 1515
28432 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0252P)2 + 1.206P]
where P = (Fo2 + 2Fc2)/3
4845 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.43 e Å3
0 constraints
Crystal data top
[PdCl2(C21H23N3O)2]V = 1955.0 (10) Å3
Mr = 844.15Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.594 (4) ŵ = 0.66 mm1
b = 11.736 (4) ÅT = 100 K
c = 14.403 (4) Å0.73 × 0.58 × 0.25 mm
β = 113.3098 (10)°
Data collection top
Bruker X8 APEXII KappaCCD
diffractometer
4845 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4441 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.849Rint = 0.025
28432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.37 e Å3
4845 reflectionsΔρmin = 0.43 e Å3
248 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 5 s/frame. A total of 1386 frames was collected with a frame width of 0.5° covering up to θ = 28.31° with 99.7% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C010.93466 (11)0.12682 (11)0.89676 (9)0.0151 (2)
C020.83145 (13)0.21976 (12)0.75160 (10)0.0225 (3)
H020.77780.23380.68440.027*
C030.90016 (13)0.29692 (13)0.81658 (10)0.0237 (3)
H030.9050.37580.80410.028*
C040.79774 (13)0.00921 (12)0.75366 (10)0.0195 (3)
H04A0.8550.03930.74110.023*
H04B0.73510.02690.68740.023*
C050.74689 (12)0.05763 (12)0.81778 (10)0.0204 (3)
H05A0.6870.11030.77310.025*
H05B0.80890.10450.86730.025*
C060.60980 (12)0.08742 (13)0.82388 (10)0.0207 (3)
C070.57994 (12)0.16735 (13)0.89085 (10)0.0204 (3)
C080.54646 (13)0.27752 (14)0.85645 (11)0.0269 (3)
H080.54190.29970.79150.032*
C090.51965 (15)0.35543 (15)0.91642 (13)0.0336 (4)
H090.49840.43120.89320.04*
C100.52404 (14)0.32240 (17)1.01020 (12)0.0345 (4)
H100.50570.37561.05130.041*
C110.55517 (13)0.21202 (16)1.04414 (11)0.0305 (4)
H110.55650.18941.10790.037*
C120.58435 (12)0.13441 (14)0.98548 (10)0.0240 (3)
H120.60720.05921.00960.029*
C131.04514 (12)0.29318 (11)0.99505 (9)0.0169 (2)
C141.16210 (12)0.29244 (11)1.01144 (10)0.0189 (3)
C151.23975 (12)0.34349 (12)1.09968 (11)0.0205 (3)
H151.31970.34481.11230.025*
C161.20260 (12)0.39272 (12)1.16990 (10)0.0201 (3)
C171.08462 (12)0.39442 (11)1.14869 (10)0.0191 (3)
H171.05890.42821.19610.023*
C181.00316 (12)0.34792 (11)1.05991 (10)0.0175 (3)
C191.20317 (13)0.23864 (13)0.93643 (11)0.0254 (3)
H19A1.28610.2530.95740.038*
H19B1.16080.27170.86930.038*
H19C1.18930.15630.93390.038*
C201.28891 (13)0.44417 (14)1.26630 (11)0.0269 (3)
H20A1.24780.48781.29980.04*
H20B1.34120.49481.25030.04*
H20C1.33370.38331.31130.04*
C210.87535 (12)0.36035 (12)1.03310 (10)0.0212 (3)
H21A0.8630.39951.08810.032*
H21B0.83950.28471.0230.032*
H21C0.84040.40490.97080.032*
N10.85384 (10)0.11576 (10)0.80130 (8)0.0165 (2)
N20.96271 (10)0.23883 (9)0.90550 (8)0.0167 (2)
N30.69588 (11)0.01305 (10)0.87193 (9)0.0197 (2)
O10.55957 (10)0.09075 (10)0.73122 (7)0.0289 (2)
Cl11.09679 (3)0.06511 (3)0.90286 (2)0.01787 (7)
Pd11010.01239 (4)
H10.7338 (16)0.0244 (15)0.9304 (15)0.023 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C010.0188 (6)0.0141 (6)0.0136 (5)0.0012 (5)0.0077 (5)0.0003 (4)
C020.0312 (7)0.0195 (7)0.0146 (6)0.0054 (6)0.0068 (5)0.0044 (5)
C030.0368 (8)0.0166 (7)0.0163 (6)0.0037 (6)0.0091 (6)0.0055 (5)
C040.0233 (7)0.0188 (7)0.0146 (6)0.0007 (5)0.0056 (5)0.0040 (5)
C050.0229 (7)0.0169 (7)0.0188 (6)0.0006 (5)0.0053 (5)0.0006 (5)
C060.0210 (6)0.0232 (7)0.0164 (6)0.0015 (5)0.0058 (5)0.0010 (5)
C070.0175 (6)0.0260 (7)0.0143 (6)0.0009 (5)0.0029 (5)0.0015 (5)
C080.0288 (7)0.0270 (8)0.0209 (7)0.0035 (6)0.0055 (6)0.0021 (6)
C090.0346 (9)0.0270 (8)0.0303 (8)0.0060 (7)0.0034 (7)0.0040 (6)
C100.0276 (8)0.0436 (10)0.0253 (8)0.0059 (7)0.0029 (6)0.0146 (7)
C110.0251 (7)0.0485 (10)0.0155 (6)0.0039 (7)0.0054 (6)0.0040 (6)
C120.0212 (7)0.0320 (8)0.0164 (6)0.0010 (6)0.0048 (5)0.0016 (6)
C130.0239 (6)0.0110 (6)0.0149 (6)0.0006 (5)0.0068 (5)0.0015 (4)
C140.0256 (7)0.0125 (6)0.0211 (6)0.0006 (5)0.0119 (5)0.0004 (5)
C150.0229 (7)0.0150 (6)0.0240 (7)0.0004 (5)0.0097 (5)0.0008 (5)
C160.0261 (7)0.0132 (6)0.0190 (6)0.0010 (5)0.0069 (5)0.0008 (5)
C170.0275 (7)0.0134 (6)0.0176 (6)0.0003 (5)0.0104 (5)0.0006 (5)
C180.0247 (7)0.0117 (6)0.0172 (6)0.0001 (5)0.0093 (5)0.0024 (5)
C190.0301 (8)0.0236 (7)0.0284 (7)0.0035 (6)0.0179 (6)0.0049 (6)
C200.0275 (7)0.0265 (8)0.0233 (7)0.0030 (6)0.0064 (6)0.0053 (6)
C210.0248 (7)0.0190 (7)0.0211 (6)0.0023 (5)0.0106 (5)0.0006 (5)
N10.0216 (5)0.0157 (5)0.0122 (5)0.0019 (4)0.0066 (4)0.0005 (4)
N20.0233 (6)0.0131 (5)0.0135 (5)0.0010 (4)0.0071 (4)0.0018 (4)
N30.0208 (6)0.0233 (6)0.0130 (5)0.0001 (5)0.0045 (5)0.0008 (4)
O10.0297 (6)0.0383 (6)0.0134 (4)0.0082 (5)0.0029 (4)0.0008 (4)
Cl10.02339 (15)0.01741 (15)0.01444 (13)0.00286 (12)0.00921 (11)0.00015 (11)
Pd10.01673 (7)0.01039 (7)0.00985 (7)0.00060 (5)0.00504 (5)0.00040 (4)
Geometric parameters (Å, º) top
C01—N21.3541 (18)C11—H110.95
C01—N11.3548 (16)C12—H120.95
C01—Pd12.0335 (14)C13—C141.397 (2)
C02—C031.343 (2)C13—C181.3985 (19)
C02—N11.3864 (18)C13—N21.4451 (17)
C02—H020.95C14—C151.395 (2)
C03—N21.3882 (17)C14—C191.5085 (19)
C03—H030.95C15—C161.396 (2)
C04—N11.4663 (18)C15—H150.95
C04—C051.532 (2)C16—C171.394 (2)
C04—H04A0.99C16—C201.510 (2)
C04—H04B0.99C17—C181.3955 (19)
C05—N31.4512 (19)C17—H170.95
C05—H05A0.99C18—C211.506 (2)
C05—H05B0.99C19—H19A0.98
C06—O11.2307 (17)C19—H19B0.98
C06—N31.3498 (19)C19—H19C0.98
C06—C071.496 (2)C20—H20A0.98
C07—C081.389 (2)C20—H20B0.98
C07—C121.3965 (19)C20—H20C0.98
C08—C091.388 (2)C21—H21A0.98
C08—H080.95C21—H21B0.98
C09—C101.385 (3)C21—H21C0.98
C09—H090.95N3—H10.797 (19)
C10—C111.385 (3)Cl1—Pd12.3188 (6)
C10—H100.95Pd1—C01i2.0335 (14)
C11—C121.387 (2)Pd1—Cl1i2.3188 (6)
N2—C01—N1104.54 (11)C13—C14—C19121.28 (12)
N2—C01—Pd1128.86 (10)C14—C15—C16121.50 (14)
N1—C01—Pd1126.59 (10)C14—C15—H15119.3
C03—C02—N1106.89 (12)C16—C15—H15119.3
C03—C02—H02126.6C17—C16—C15118.74 (13)
N1—C02—H02126.6C17—C16—C20120.87 (13)
C02—C03—N2106.60 (13)C15—C16—C20120.39 (13)
C02—C03—H03126.7C16—C17—C18121.92 (13)
N2—C03—H03126.7C16—C17—H17119
N1—C04—C05113.17 (11)C18—C17—H17119
N1—C04—H04A108.9C17—C18—C13117.17 (13)
C05—C04—H04A108.9C17—C18—C21121.37 (12)
N1—C04—H04B108.9C13—C18—C21121.42 (12)
C05—C04—H04B108.9C14—C19—H19A109.5
H04A—C04—H04B107.8C14—C19—H19B109.5
N3—C05—C04114.26 (12)H19A—C19—H19B109.5
N3—C05—H05A108.7C14—C19—H19C109.5
C04—C05—H05A108.7H19A—C19—H19C109.5
N3—C05—H05B108.7H19B—C19—H19C109.5
C04—C05—H05B108.7C16—C20—H20A109.5
H05A—C05—H05B107.6C16—C20—H20B109.5
O1—C06—N3122.72 (14)H20A—C20—H20B109.5
O1—C06—C07121.78 (13)C16—C20—H20C109.5
N3—C06—C07115.50 (12)H20A—C20—H20C109.5
C08—C07—C12119.67 (14)H20B—C20—H20C109.5
C08—C07—C06118.15 (13)C18—C21—H21A109.5
C12—C07—C06122.18 (14)C18—C21—H21B109.5
C09—C08—C07120.36 (15)H21A—C21—H21B109.5
C09—C08—H08119.8C18—C21—H21C109.5
C07—C08—H08119.8H21A—C21—H21C109.5
C10—C09—C08119.78 (16)H21B—C21—H21C109.5
C10—C09—H09120.1C01—N1—C02110.93 (12)
C08—C09—H09120.1C01—N1—C04125.88 (11)
C09—C10—C11120.16 (15)C02—N1—C04123.18 (11)
C09—C10—H10119.9C01—N2—C03111.05 (11)
C11—C10—H10119.9C01—N2—C13125.47 (11)
C10—C11—C12120.35 (15)C03—N2—C13123.48 (12)
C10—C11—H11119.8C06—N3—C05122.04 (12)
C12—C11—H11119.8C06—N3—H1117.2 (13)
C11—C12—C07119.66 (15)C05—N3—H1117.1 (13)
C11—C12—H12120.2C01i—Pd1—C01180
C07—C12—H12120.2C01i—Pd1—Cl192.45 (4)
C14—C13—C18122.83 (12)C01—Pd1—Cl187.55 (4)
C14—C13—N2119.03 (12)C01i—Pd1—Cl1i87.55 (4)
C18—C13—N2118.10 (12)C01—Pd1—Cl1i92.45 (4)
C15—C14—C13117.61 (12)Cl1—Pd1—Cl1i180
C15—C14—C19121.11 (13)
N1—C02—C03—N20.59 (16)C14—C13—C18—C21171.86 (12)
N1—C04—C05—N337.27 (16)N2—C13—C18—C215.84 (19)
O1—C06—C07—C0834.5 (2)N2—C01—N1—C020.38 (15)
N3—C06—C07—C08144.81 (14)Pd1—C01—N1—C02178.84 (10)
O1—C06—C07—C12145.30 (15)N2—C01—N1—C04178.29 (12)
N3—C06—C07—C1235.44 (19)Pd1—C01—N1—C040.18 (19)
C12—C07—C08—C091.3 (2)C03—C02—N1—C010.62 (16)
C06—C07—C08—C09178.98 (14)C03—C02—N1—C04178.08 (13)
C07—C08—C09—C101.3 (2)C05—C04—N1—C0151.09 (18)
C08—C09—C10—C110.1 (3)C05—C04—N1—C02130.40 (14)
C09—C10—C11—C121.3 (2)N1—C01—N2—C030.00 (15)
C10—C11—C12—C071.3 (2)Pd1—C01—N2—C03178.42 (10)
C08—C07—C12—C110.1 (2)N1—C01—N2—C13179.11 (12)
C06—C07—C12—C11179.70 (13)Pd1—C01—N2—C132.47 (19)
C18—C13—C14—C153.7 (2)C02—C03—N2—C010.38 (17)
N2—C13—C14—C15178.65 (12)C02—C03—N2—C13178.75 (13)
C18—C13—C14—C19176.21 (13)C14—C13—N2—C0185.73 (17)
N2—C13—C14—C191.47 (19)C18—C13—N2—C0196.48 (16)
C13—C14—C15—C160.6 (2)C14—C13—N2—C0395.26 (16)
C19—C14—C15—C16179.50 (13)C18—C13—N2—C0382.53 (17)
C14—C15—C16—C172.6 (2)O1—C06—N3—C059.0 (2)
C14—C15—C16—C20178.11 (13)C07—C06—N3—C05170.29 (12)
C15—C16—C17—C180.4 (2)C04—C05—N3—C0657.45 (18)
C20—C16—C17—C18179.69 (13)N2—C01—Pd1—Cl1106.64 (12)
C16—C17—C18—C133.61 (19)N1—C01—Pd1—Cl171.46 (11)
C16—C17—C18—C21173.97 (13)N2—C01—Pd1—Cl1i73.36 (12)
C14—C13—C18—C175.72 (19)N1—C01—Pd1—Cl1i108.54 (11)
N2—C13—C18—C17176.58 (11)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···Cl1i0.797 (19)2.549 (19)3.3181 (15)162.6 (17)
C09—H09···O1ii0.952.493.386 (2)157
C10—H10···O1iii0.952.443.201 (2)137
C19—H19C···Cl10.982.813.772 (2)167
C21—H21B···Cl1i0.982.783.567 (2)137
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[PdCl2(C21H23N3O)2]
Mr844.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.594 (4), 11.736 (4), 14.403 (4)
β (°) 113.3098 (10)
V3)1955.0 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.73 × 0.58 × 0.25
Data collection
DiffractometerBruker X8 APEXII KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.640, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
28432, 4845, 4441
Rint0.025
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.055, 1.03
No. of reflections4845
No. of parameters248
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.43

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C01—Pd12.0335 (14)Cl1—Pd12.3188 (6)
C01—Pd1—Cl187.55 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···Cl1i0.797 (19)2.549 (19)3.3181 (15)162.6 (17)
C09—H09···O1ii0.952.493.386 (2)156.5
C10—H10···O1iii0.952.443.201 (2)137.4
C19—H19C···Cl10.982.813.772 (2)166.9
C21—H21B···Cl1i0.982.783.567 (2)137.3
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

Mr Theuns Muller is kindly acknowledged for collection of the diffraction data. The authors thank SASOL, the South African NRF and THRIP, the University of the Free State Research Fund and the UFS Materials and Nanosciences Strategic Research Cluster initiative for financial support. The views expressed do not necessarily represent those of the NRF.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArduengo, A. J. III, Harlow, R. H. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFu, C.-F., Lee, C.-C., Liu, Y.-H., Peng, S.-M., Warsink, S., Elsevier, C. J., Chen, J.-T. & Liu, S.-T. (2010). Inorg. Chem. 49, 3011–3018.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHahn, F. E. & Jahnke, M. C. (2008). Angew. Chem. Int. Ed. 47, 3122–3172.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeij, A. M. M., Otto, S. & Roodt, A. (2005). Inorg. Chim. Acta, 358, 1005–1011.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationWarsink, S., Hauwert, P., Siegler, M. A., Spek, A. L. & Elsevier, C. J. (2009). Appl. Organomet. Chem. 23, 225–228.  Web of Science CSD CrossRef CAS Google Scholar
First citationWarsink, S., van Aubel, C. M. S., Weigand, J. J., Liu, S.-T. & Elsevier, C. J. (2010). Eur. J. Inorg. Chem. 35, 5556–5562.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds