metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aquadi-μ-formato-bis­­{μ-2,2′-[propane-1,3-diylbis(nitrilo­methanylyl­­idene)]diphenolato}cadmium(II)dinickel(II) dihydrate

aCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
*Correspondence e-mail: shiq@wzu.edu.cn

(Received 27 June 2012; accepted 28 June 2012; online 28 July 2012)

In the centrosymmetric title compound, [CdNi2(C17H16N2O2)2(HCOO)2(H2O)2]·2H2O, The NiII cation is chelated by a 2,2′-[propane-1,3-diylbis(nitrilo­methanylyl­idene)]diphen­olate (salpn) anion, and further coordinated by a formate anion and a water mol­ecule in a distorted NiN2O4 octa­hedral geometry. The CdII cation, located on an inversion center, is coordinated by four deprotonated hy­droxy groups from two salpn anions and two carboxyl­ate O atoms from formate anions in a distorted octa­hedral geometry. Both formate and salpn anions bridge the Cd and Ni cations, forming a trinuclear complex. Within the salpn anion, the benzene rings are twisted to each other at a dihedral angle of 61.46 (18)°. Inter­molecular O—H⋯O hydrogen bonding is present in the crystal structure. The lattice water mol­ecule is disorder over two positions with an occupancy ratio of 0.75:0.25.

Related literature

For background and applications of metal complexes with Schiff base ligands, see: Niederhoffer et al. (1984[Niederhoffer, E. C., Timmons, J. H. & Martell, A. E. (1984). Chem. Rev. 84, 137-203.]); Tisato et al. (1994[Tisato, J., Refosco, F. & Bandoli, F. (1994). Coord. Chem. Rev. 135, 325-397.]); Yamada (1999[Yamada, S. (1999). Coord. Chem. Rev. 192, 537-557.]). For the decomposition reaction of solvent DMF, see: Wang et al. (2004[Wang, X.-Y., Gan, L., Zhang, S.-W. & Gao, S. (2004). Inorg. Chem. 43, 4615-4625.]); Zhang et al. (2007[Zhang, J., Chen, S. M., Valle, H., Wong, M., Austria, C., Cruz, M. & Bu, X. (2007). J. Am. Chem. Soc. 129, 14168-14169.]).

[Scheme 1]

Experimental

Crystal data
  • [CdNi2(C17H16N2O2)2(HCO2)2(H2O)2]·2H2O

  • Mr = 952.56

  • Triclinic, [P \overline 1]

  • a = 9.6769 (9) Å

  • b = 10.6596 (10) Å

  • c = 10.7996 (10) Å

  • α = 72.851 (1)°

  • β = 63.551 (1)°

  • γ = 81.478 (1)°

  • V = 952.87 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 298 K

  • 0.26 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]) Tmin = 0.681, Tmax = 0.751

  • 4842 measured reflections

  • 3423 independent reflections

  • 2910 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.074

  • S = 1.06

  • 3423 reflections

  • 259 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.2809 (18)
Cd1—O2 2.2799 (18)
Cd1—O4 2.300 (2)
Ni1—O1 2.0098 (19)
Ni1—O2 2.0313 (19)
Ni1—O3 2.080 (2)
Ni1—O5 2.205 (2)
Ni1—N1 2.035 (2)
Ni1—N2 2.026 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O6′i 0.85 2.04 2.662 (12) 130
O5—H5B⋯O6i 0.85 2.29 2.812 (4) 120
O6—H6B⋯O4ii 0.85 1.98 2.737 (4) 147
O6′—H6′B⋯O4ii 0.85 2.19 2.769 (12) 125
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecular design and synthesis of Ni(II) complexes with the salen type Schiff-base ligands have attracted much attention in the past few years (Niederhoffer et al., 1984; Tisato et al., 1994; Yamada, 1999). Hererin we reported the structure of the title complex containing the Schiff base compound, N,N'-bis(salicylidene)-1,3-propanediaminato (salpn). In the compound, the formate anion may be generated from the decomposition of DMF solvents in solvothermal conditions, it has been reported by Wang et al. (2004) and by Zhang et al. (2007) previously.

In the title compound, the Cd(II) ion is situated on an inversion centre and two terminal Ni(II) ions are located on the symmetrical sides, forming a linear Ni—Cd—Ni trinuclear complex (Fig. 1). The Cd(II) ion has a distorted octahedral coordination environment, formed by four O atoms from two salpn ligands in the equatorial plane and two O atoms from two formate ligands at the axial positions. The coordination bond lengths and angles around the Cd(II) ion range between 2.2799 (18)–2.300 (2) Å, and 73.23 (7)–106.77 (7)°, respectively. The terminal Ni(II) ions have slightly distorted octahedral coordination environments formed by two O atoms and two N atoms from salpn ligands in the equatorial plane and two O atoms from formate ligand and auqa at the axial positions. In the Ni coordination sphere bond lengths and angles range between 2.0098 (2)–2.205 (2) Å, and 84.62 (8) - 177.57 (8)°, respectively. Each pair of metal ions is triply bridged via O atoms from salpn ligands and formate ligands. The crystal structure is stabilized by weak O—H···O hydrogen bonds.

Related literature top

For background and applications of metal complexes with Schiff base ligands, see: Niederhoffer et al. (1984); Tisato et al. (1994); Yamada (1999). For the decomposition reaction of solvent DMF, see: Wang et al. (2004); Zhang et al. (2007).

Experimental top

A mixture of Cd(NO3)2.4H2O (0.125 mmol, 0.0418 g), Ni(NO3)2.6H2O (0.125 mmol, 0.0347 g), 1,3-diaminopropane (0.125 mmol, 0.0102 g), salicyladehyde (0.300 mmol, 0.0366 g), DMF (5 ml), CH3OH (5 ml) and ditilled water in a 30 ml Telfon-lined reactor was heated at 373 K for two days. After cooling to room temperature, green crystals are obtained for X-ray analysis.

Refinement top

All H atoms were positioned geometrically with C—H = 0.93 (aromatic), 0.97 Å (methylene) and O—H = 0.85 Å, and allowed to ride in their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). The lattice water molecule is disorder over two sites, occupancies were fixed as 0.75 and 0.25 for two components.

Structure description top

The molecular design and synthesis of Ni(II) complexes with the salen type Schiff-base ligands have attracted much attention in the past few years (Niederhoffer et al., 1984; Tisato et al., 1994; Yamada, 1999). Hererin we reported the structure of the title complex containing the Schiff base compound, N,N'-bis(salicylidene)-1,3-propanediaminato (salpn). In the compound, the formate anion may be generated from the decomposition of DMF solvents in solvothermal conditions, it has been reported by Wang et al. (2004) and by Zhang et al. (2007) previously.

In the title compound, the Cd(II) ion is situated on an inversion centre and two terminal Ni(II) ions are located on the symmetrical sides, forming a linear Ni—Cd—Ni trinuclear complex (Fig. 1). The Cd(II) ion has a distorted octahedral coordination environment, formed by four O atoms from two salpn ligands in the equatorial plane and two O atoms from two formate ligands at the axial positions. The coordination bond lengths and angles around the Cd(II) ion range between 2.2799 (18)–2.300 (2) Å, and 73.23 (7)–106.77 (7)°, respectively. The terminal Ni(II) ions have slightly distorted octahedral coordination environments formed by two O atoms and two N atoms from salpn ligands in the equatorial plane and two O atoms from formate ligand and auqa at the axial positions. In the Ni coordination sphere bond lengths and angles range between 2.0098 (2)–2.205 (2) Å, and 84.62 (8) - 177.57 (8)°, respectively. Each pair of metal ions is triply bridged via O atoms from salpn ligands and formate ligands. The crystal structure is stabilized by weak O—H···O hydrogen bonds.

For background and applications of metal complexes with Schiff base ligands, see: Niederhoffer et al. (1984); Tisato et al. (1994); Yamada (1999). For the decomposition reaction of solvent DMF, see: Wang et al. (2004); Zhang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at 30% probability level [symmetry code: (i) -x, 1-y, 2-z].
Diaqua-1κO,3κO-di-µ-formato- 1:2κ2O:O';2:3κ2O:O'-bis{µ-2,2'-[propane- 1,3-diylbis(nitrilomethanylylidene)]diphenolato}- 1:2κ6O,N,N',O':O,O'; 2:3κ6O,O':O,N,N',O'- 2-cadmium(II)-1,3-dinickel(II) dihydrate top
Crystal data top
[CdNi2(C17H16N2O2)2(HCO2)2(H2O)2]·2H2OZ = 1
Mr = 952.56F(000) = 486
Triclinic, P1Dx = 1.660 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6769 (9) ÅCell parameters from 2961 reflections
b = 10.6596 (10) Åθ = 2.4–27.5°
c = 10.7996 (10) ŵ = 1.60 mm1
α = 72.851 (1)°T = 298 K
β = 63.551 (1)°Block, green
γ = 81.478 (1)°0.26 × 0.20 × 0.19 mm
V = 952.87 (15) Å3
Data collection top
Bruker SMART 1000
diffractometer
3423 independent reflections
Radiation source: fine-focus sealed tube2910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
φ and ω scanθmax = 25.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1111
Tmin = 0.681, Tmax = 0.751k = 1212
4842 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.035P)2 + 0.566P]
where P = (Fo2 + 2Fc2)/3
3423 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[CdNi2(C17H16N2O2)2(HCO2)2(H2O)2]·2H2Oγ = 81.478 (1)°
Mr = 952.56V = 952.87 (15) Å3
Triclinic, P1Z = 1
a = 9.6769 (9) ÅMo Kα radiation
b = 10.6596 (10) ŵ = 1.60 mm1
c = 10.7996 (10) ÅT = 298 K
α = 72.851 (1)°0.26 × 0.20 × 0.19 mm
β = 63.551 (1)°
Data collection top
Bruker SMART 1000
diffractometer
3423 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2910 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.751Rint = 0.013
4842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.06Δρmax = 0.46 e Å3
3423 reflectionsΔρmin = 0.38 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.00000.50001.00000.03673 (10)
Ni10.14492 (4)0.34996 (3)0.74567 (3)0.03560 (11)
N10.3127 (3)0.3988 (3)0.5419 (3)0.0436 (6)
N20.1331 (3)0.1589 (2)0.7553 (3)0.0422 (6)
C180.3150 (4)0.3266 (3)0.9271 (3)0.0505 (8)
H180.40120.29460.94430.061*
C10.1565 (3)0.6410 (3)0.6481 (3)0.0400 (6)
C20.0920 (4)0.7624 (3)0.6718 (3)0.0513 (8)
H2A0.03200.76880.76510.062*
C30.1151 (4)0.8742 (3)0.5589 (4)0.0612 (9)
H3A0.06950.95380.57740.073*
C40.2056 (5)0.8674 (4)0.4197 (4)0.0648 (10)
H4A0.22140.94210.34410.078*
C50.2714 (4)0.7498 (4)0.3942 (3)0.0564 (9)
H50.33320.74630.30020.068*
C60.2496 (3)0.6343 (3)0.5041 (3)0.0414 (7)
C70.3309 (3)0.5174 (3)0.4631 (3)0.0464 (7)
H7A0.40490.52940.36900.056*
C80.4152 (4)0.2974 (4)0.4767 (4)0.0570 (9)
H8A0.49480.27430.51140.068*
H8B0.46550.33320.37380.068*
C90.3312 (4)0.1736 (3)0.5090 (3)0.0560 (8)
H9A0.24480.19790.48350.067*
H9B0.40100.11780.44960.067*
C100.2717 (4)0.0959 (3)0.6650 (3)0.0538 (8)
H10A0.24750.00770.67360.065*
H10B0.35150.08910.69790.065*
C110.0120 (4)0.0914 (3)0.8338 (3)0.0456 (7)
H11A0.01810.00560.82700.055*
C120.1348 (3)0.1337 (3)0.9328 (3)0.0413 (6)
C130.2637 (4)0.0565 (3)0.9825 (3)0.0548 (8)
H13A0.25120.01860.95120.066*
C140.4076 (4)0.0884 (4)1.0757 (4)0.0604 (9)
H14A0.49200.03721.10510.072*
C150.4247 (4)0.1982 (4)1.1251 (3)0.0561 (8)
H15A0.52180.22111.18790.067*
C160.3002 (4)0.2741 (3)1.0828 (3)0.0481 (7)
H16A0.31430.34551.12040.058*
C170.1523 (3)0.2462 (3)0.9842 (3)0.0381 (6)
O10.1331 (2)0.53609 (19)0.75777 (19)0.0421 (5)
O20.0344 (2)0.32089 (19)0.9431 (2)0.0417 (5)
O30.3110 (2)0.2997 (2)0.8257 (2)0.0511 (5)
O40.2196 (3)0.3909 (2)1.0107 (2)0.0526 (5)
O50.0232 (2)0.4059 (2)0.6516 (2)0.0500 (5)
H5A0.03080.48880.63830.075*
H5B0.11510.38080.70730.075*
O60.7024 (5)0.5266 (5)0.8119 (5)0.0835 (12)0.75
H6A0.62200.48530.83540.125*0.75
H6B0.71550.52060.88620.125*0.75
O6'0.7860 (15)0.6031 (14)0.7325 (14)0.080 (3)0.25
H6'A0.81870.67740.67490.120*0.25
H6'B0.72230.61360.81410.120*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04646 (18)0.03992 (17)0.02905 (16)0.00391 (12)0.01648 (13)0.01410 (12)
Ni10.0396 (2)0.0408 (2)0.0300 (2)0.00399 (15)0.01343 (16)0.01492 (15)
N10.0385 (13)0.0612 (17)0.0360 (13)0.0067 (11)0.0126 (11)0.0221 (12)
N20.0485 (14)0.0436 (14)0.0400 (13)0.0036 (11)0.0197 (12)0.0190 (11)
C180.0474 (17)0.063 (2)0.0515 (19)0.0053 (15)0.0289 (15)0.0198 (16)
C10.0450 (16)0.0472 (17)0.0335 (14)0.0146 (13)0.0195 (13)0.0074 (12)
C20.067 (2)0.0481 (18)0.0425 (17)0.0047 (15)0.0257 (16)0.0108 (14)
C30.081 (2)0.050 (2)0.059 (2)0.0018 (17)0.039 (2)0.0084 (16)
C40.084 (3)0.057 (2)0.050 (2)0.0139 (19)0.0354 (19)0.0084 (17)
C50.056 (2)0.076 (2)0.0336 (16)0.0190 (17)0.0180 (15)0.0025 (16)
C60.0412 (15)0.0542 (18)0.0317 (14)0.0138 (13)0.0167 (12)0.0069 (13)
C70.0400 (16)0.070 (2)0.0305 (14)0.0145 (15)0.0100 (13)0.0168 (15)
C80.0408 (17)0.080 (2)0.053 (2)0.0002 (16)0.0107 (15)0.0364 (18)
C90.057 (2)0.067 (2)0.0493 (19)0.0056 (16)0.0175 (16)0.0351 (17)
C100.0561 (19)0.056 (2)0.057 (2)0.0106 (15)0.0255 (16)0.0295 (16)
C110.066 (2)0.0333 (15)0.0457 (17)0.0001 (14)0.0289 (16)0.0145 (13)
C120.0546 (17)0.0387 (15)0.0327 (14)0.0104 (13)0.0201 (13)0.0052 (12)
C130.074 (2)0.0514 (19)0.0453 (18)0.0232 (16)0.0268 (17)0.0083 (15)
C140.060 (2)0.073 (2)0.0476 (19)0.0314 (18)0.0198 (17)0.0063 (17)
C150.0500 (18)0.074 (2)0.0412 (17)0.0136 (16)0.0160 (15)0.0095 (16)
C160.0530 (18)0.0515 (18)0.0388 (16)0.0081 (14)0.0161 (14)0.0124 (14)
C170.0480 (16)0.0388 (15)0.0277 (13)0.0096 (12)0.0166 (12)0.0036 (11)
O10.0574 (12)0.0413 (11)0.0281 (10)0.0093 (9)0.0155 (9)0.0099 (8)
O20.0470 (11)0.0442 (11)0.0349 (10)0.0105 (9)0.0110 (9)0.0173 (9)
O30.0514 (12)0.0668 (14)0.0488 (12)0.0087 (10)0.0282 (11)0.0278 (11)
O40.0573 (13)0.0668 (14)0.0501 (13)0.0111 (11)0.0320 (11)0.0294 (11)
O50.0472 (12)0.0574 (13)0.0495 (12)0.0086 (10)0.0220 (10)0.0135 (10)
O60.088 (3)0.119 (4)0.084 (3)0.033 (3)0.061 (3)0.060 (3)
O6'0.083 (9)0.096 (10)0.081 (9)0.016 (7)0.052 (7)0.032 (7)
Geometric parameters (Å, º) top
Cd1—O12.2809 (18)C6—C71.446 (4)
Cd1—O1i2.2809 (18)C7—H7A0.9300
Cd1—O22.2799 (18)C8—C91.522 (5)
Cd1—O2i2.2799 (18)C8—H8A0.9700
Cd1—O4i2.300 (2)C8—H8B0.9700
Cd1—O42.300 (2)C9—C101.520 (5)
Ni1—O12.0098 (19)C9—H9A0.9700
Ni1—O22.0313 (19)C9—H9B0.9700
Ni1—O32.080 (2)C10—H10A0.9700
Ni1—O52.205 (2)C10—H10B0.9700
Ni1—N12.035 (2)C11—C121.451 (4)
Ni1—N22.026 (2)C11—H11A0.9300
N1—C71.285 (4)C12—C131.403 (4)
N1—C81.469 (4)C12—C171.423 (4)
N2—C111.271 (4)C13—C141.371 (5)
N2—C101.469 (4)C13—H13A0.9300
C18—O31.228 (4)C14—C151.384 (5)
C18—O41.254 (4)C14—H14A0.9300
C18—H180.9300C15—C161.377 (4)
C1—O11.326 (3)C15—H15A0.9300
C1—C21.394 (4)C16—C171.404 (4)
C1—C61.426 (4)C16—H16A0.9300
C2—C31.391 (4)C17—O21.320 (3)
C2—H2A0.9300O5—H5A0.8500
C3—C41.381 (5)O5—H5B0.8500
C3—H3A0.9300O6—H6A0.8501
C4—C51.365 (5)O6—H6B0.8499
C4—H4A0.9300O6—H6'B0.9835
C5—C61.401 (4)O6'—H6'A0.8500
C5—H50.9300O6'—H6'B0.8500
O2—Cd1—O2i180.0N1—C7—C6127.5 (3)
O2—Cd1—O173.23 (7)N1—C7—H7A116.3
O2i—Cd1—O1106.77 (7)C6—C7—H7A116.3
O2—Cd1—O1i106.77 (7)N1—C8—C9113.2 (3)
O2i—Cd1—O1i73.23 (7)N1—C8—H8A108.9
O1—Cd1—O1i180.0C9—C8—H8A108.9
O2—Cd1—O4i94.86 (7)N1—C8—H8B108.9
O2i—Cd1—O4i85.14 (7)C9—C8—H8B108.9
O1—Cd1—O4i94.24 (7)H8A—C8—H8B107.7
O1i—Cd1—O4i85.76 (7)C10—C9—C8113.5 (3)
O2—Cd1—O485.14 (7)C10—C9—H9A108.9
O2i—Cd1—O494.86 (7)C8—C9—H9A108.9
O1—Cd1—O485.76 (7)C10—C9—H9B108.9
O1i—Cd1—O494.24 (7)C8—C9—H9B108.9
O4i—Cd1—O4180.0H9A—C9—H9B107.7
O1—Ni1—N2173.13 (9)N2—C10—C9111.2 (3)
O1—Ni1—O284.62 (8)N2—C10—H10A109.4
N2—Ni1—O288.57 (9)C9—C10—H10A109.4
O1—Ni1—N190.47 (9)N2—C10—H10B109.4
N2—Ni1—N196.25 (10)C9—C10—H10B109.4
O2—Ni1—N1173.51 (9)H10A—C10—H10B108.0
O1—Ni1—O391.60 (8)N2—C11—C12127.0 (3)
N2—Ni1—O389.79 (9)N2—C11—H11A116.5
O2—Ni1—O393.73 (8)C12—C11—H11A116.5
N1—Ni1—O390.65 (9)C13—C12—C17119.2 (3)
O1—Ni1—O588.29 (8)C13—C12—C11117.6 (3)
N2—Ni1—O590.61 (9)C17—C12—C11123.2 (3)
O2—Ni1—O588.68 (8)C14—C13—C12122.1 (3)
N1—Ni1—O586.92 (9)C14—C13—H13A119.0
O3—Ni1—O5177.57 (8)C12—C13—H13A119.0
C7—N1—C8117.0 (3)C13—C14—C15118.7 (3)
C7—N1—Ni1122.2 (2)C13—C14—H14A120.6
C8—N1—Ni1120.7 (2)C15—C14—H14A120.6
C11—N2—C10118.3 (3)C16—C15—C14121.0 (3)
C11—N2—Ni1123.6 (2)C16—C15—H15A119.5
C10—N2—Ni1118.0 (2)C14—C15—H15A119.5
O3—C18—O4129.4 (3)C15—C16—C17121.5 (3)
O3—C18—H18115.3C15—C16—H16A119.2
O4—C18—H18115.3C17—C16—H16A119.2
O1—C1—C2120.2 (3)O2—C17—C16120.9 (3)
O1—C1—C6121.7 (3)O2—C17—C12121.7 (3)
C2—C1—C6118.1 (3)C16—C17—C12117.4 (3)
C3—C2—C1121.5 (3)C1—O1—Ni1124.49 (17)
C3—C2—H2A119.2C1—O1—Cd1134.11 (18)
C1—C2—H2A119.2Ni1—O1—Cd198.29 (8)
C4—C3—C2120.2 (3)C17—O2—Ni1123.09 (16)
C4—C3—H3A119.9C17—O2—Cd1135.04 (17)
C2—C3—H3A119.9Ni1—O2—Cd197.69 (7)
C5—C4—C3119.2 (3)C18—O3—Ni1129.3 (2)
C5—C4—H4A120.4C18—O4—Cd1127.57 (19)
C3—C4—H4A120.4Ni1—O5—H5A103.0
C4—C5—C6122.6 (3)Ni1—O5—H5B115.7
C4—C5—H5118.7H5A—O5—H5B103.2
C6—C5—H5118.7H6A—O6—H6B109.5
C5—C6—C1118.3 (3)H6A—O6—H6'B135.0
C5—C6—C7117.0 (3)H6B—O6—H6'B69.8
C1—C6—C7124.5 (3)H6'A—O6'—H6'B109.5
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6ii0.852.042.662 (12)130
O5—H5B···O6ii0.852.292.812 (4)120
O6—H6B···O4iii0.851.982.737 (4)147
O6—H6B···O4iii0.852.192.769 (12)125
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[CdNi2(C17H16N2O2)2(HCO2)2(H2O)2]·2H2O
Mr952.56
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.6769 (9), 10.6596 (10), 10.7996 (10)
α, β, γ (°)72.851 (1), 63.551 (1), 81.478 (1)
V3)952.87 (15)
Z1
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.26 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART 1000
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.681, 0.751
No. of measured, independent and
observed [I > 2σ(I)] reflections
4842, 3423, 2910
Rint0.013
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.074, 1.06
No. of reflections3423
No. of parameters259
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.38

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O12.2809 (18)Ni1—O32.080 (2)
Cd1—O22.2799 (18)Ni1—O52.205 (2)
Cd1—O42.300 (2)Ni1—N12.035 (2)
Ni1—O12.0098 (19)Ni1—N22.026 (2)
Ni1—O22.0313 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6'i0.852.042.662 (12)129.8
O5—H5B···O6i0.852.292.812 (4)119.7
O6—H6B···O4ii0.851.982.737 (4)147.0
O6'—H6'B···O4ii0.852.192.769 (12)125.4
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors acknowledge financial support by the National Natural Science Foundation of China (grant No. 20971101).

References

First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationNiederhoffer, E. C., Timmons, J. H. & Martell, A. E. (1984). Chem. Rev. 84, 137–203.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTisato, J., Refosco, F. & Bandoli, F. (1994). Coord. Chem. Rev. 135, 325–397.  CrossRef Web of Science Google Scholar
First citationWang, X.-Y., Gan, L., Zhang, S.-W. & Gao, S. (2004). Inorg. Chem. 43, 4615–4625.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYamada, S. (1999). Coord. Chem. Rev. 192, 537–557.  CrossRef Google Scholar
First citationZhang, J., Chen, S. M., Valle, H., Wong, M., Austria, C., Cruz, M. & Bu, X. (2007). J. Am. Chem. Soc. 129, 14168–14169.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds