organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 4-(4-acetamido­phenyl)-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aFaculty of Pharmacy, The University of Sydney, NSW 2006, Australia
*Correspondence e-mail: yiliang.zhao@sydney.edu.au

(Received 31 May 2012; accepted 18 June 2012; online 25 July 2012)

The title compound, C21H26N2O5, was unexpectedly obtained as a by-product in the reaction of ethyl acetoacetate, 4-acetamido­benzaldehyde and urea under microwave irradiation. The dihydro­pyridine ring assumes a flattened boat conformation. Inter­molecular N—H⋯O and weak C—H⋯O hydrogen bonding occurs in the crystal.

Related literature

For the Biginelli dihydro­pyrimidone and Hantzsch dihydro­pyridine syntheses, see: Kappe & Stadler (2004[Kappe, C. O. & Stadler, A. (2004). Org. React. 63, 1-23.]); Kumar & Maurya (2008[Kumar, A. & Maurya, R. A. (2008). Synlett, pp. 883-885.]). For the microwave synthesis and melting point of 4-(3-acetamido­phen­yl)-6-methyl-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate, see: Mobinikhaledi & Foroughifar (2006[Mobinikhaledi, A. & Foroughifar, N. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 2653-2658.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26N2O5

  • Mr = 386.44

  • Monoclinic, P 21 /n

  • a = 11.3359 (7) Å

  • b = 12.1934 (7) Å

  • c = 15.3262 (9) Å

  • β = 109.745 (1)°

  • V = 1993.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.2 × 0.2 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.988

  • 15313 measured reflections

  • 4593 independent reflections

  • 3602 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.05

  • 4593 reflections

  • 266 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.892 (19) 2.022 (19) 2.8946 (17) 165.5 (16)
N2—H2⋯O3ii 0.866 (19) 2.074 (19) 2.9383 (17) 175.4 (16)
C6—H6A⋯O1iii 0.98 2.52 3.370 (2) 145
C13—H13A⋯O1iv 0.98 2.38 3.337 (2) 165
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The bond lengths and angles in the title compound are as expected. The maximum deviation from the mean plane of the central ring is 0.188 (1) A for C1. The C8 and C11 carboxylate side chains are essentially planar, with a maximum deviation of 0.077 A for C10. These groups are set at 11.64 (8)° and 25.65 (4)° to the central ring plane respectively.

Related literature top

For the Biginelli dihydropyrimidone and Hantzsch dihydropyridine syntheses, see: Kappe & Stadler (2004); Kumar & Maurya (2008). For the microwave synthesis and melting point of 4-(3-acetamidophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate, see: Mobinikhaledi & Foroughifar (2006).

Experimental top

A mixture of 4-acetamidobenzaldehyde (163 mg, 1 mmol), ethyl acetoacetate (130 mg, 1 mmol) and urea (60 mg, 1 mmol) was stirred for 2 h at 403 K under microwave irradiation. After completion of the reaction, TLC showed the presence of two main products, which were separated using silica chromatography, eluting with dichloromthane/methanol to give diethyl 4-acetamidophenyl-1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylate (120 mg, 31%, mp 254–256°C), and ethyl 4-(3-acetamidophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (72 mg, 23%, mp 284–286°C).

Refinement top

Amino H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions with C—H = 0.95 to 1.00 Å, and were refined in a riding mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Structure description top

The bond lengths and angles in the title compound are as expected. The maximum deviation from the mean plane of the central ring is 0.188 (1) A for C1. The C8 and C11 carboxylate side chains are essentially planar, with a maximum deviation of 0.077 A for C10. These groups are set at 11.64 (8)° and 25.65 (4)° to the central ring plane respectively.

For the Biginelli dihydropyrimidone and Hantzsch dihydropyridine syntheses, see: Kappe & Stadler (2004); Kumar & Maurya (2008). For the microwave synthesis and melting point of 4-(3-acetamidophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate, see: Mobinikhaledi & Foroughifar (2006).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids for non-H atoms.
Diethyl 4-(4-acetamidophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C21H26N2O5Dx = 1.287 Mg m3
Mr = 386.44Melting point: 256 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.3359 (7) ÅCell parameters from 15313 reflections
b = 12.1934 (7) Åθ = 2.0–28.3°
c = 15.3262 (9) ŵ = 0.09 mm1
β = 109.745 (1)°T = 150 K
V = 1993.9 (2) Å3Block, clear colourless
Z = 40.2 × 0.2 × 0.15 mm
F(000) = 824
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4593 independent reflections
Radiation source: sealed tube3602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8 pixels mm-1θmax = 28.3°, θmin = 2.0°
ω and φ scansh = 1514
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1514
Tmin = 0.976, Tmax = 0.988l = 1819
15313 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.5603P]
where P = (Fo2 + 2Fc2)/3
4593 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H26N2O5V = 1993.9 (2) Å3
Mr = 386.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.3359 (7) ŵ = 0.09 mm1
b = 12.1934 (7) ÅT = 150 K
c = 15.3262 (9) Å0.2 × 0.2 × 0.15 mm
β = 109.745 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4593 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3602 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.988Rint = 0.027
15313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.28 e Å3
4593 reflectionsΔρmin = 0.20 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.66512 (9)0.67514 (10)0.46869 (8)0.0399 (3)
O20.05682 (10)0.56346 (9)0.19250 (8)0.0364 (3)
N10.12494 (11)0.70015 (10)0.40319 (9)0.0314 (3)
H10.1795 (16)0.6891 (14)0.4328 (12)0.037 (5)*
O30.03829 (10)0.94192 (9)0.23298 (7)0.0334 (3)
O40.04968 (10)1.01757 (8)0.32887 (7)0.0345 (3)
C130.10344 (19)1.20435 (14)0.33222 (14)0.0474 (4)
H13A0.10561.27650.30360.071*
H13B0.05501.20900.39850.071*
H13C0.18911.18070.32410.071*
N20.53871 (11)0.64292 (10)0.55364 (9)0.0285 (3)
H20.5381 (15)0.6217 (14)0.6074 (13)0.037 (5)*
C10.03998 (12)0.72957 (11)0.30406 (10)0.0249 (3)
H1A0.04230.74410.24040.030*
C20.03113 (12)0.62288 (12)0.30116 (10)0.0281 (3)
O10.05548 (11)0.44057 (10)0.23947 (9)0.0455 (3)
C30.10251 (13)0.61059 (12)0.35593 (11)0.0304 (3)
C40.10146 (12)0.80695 (12)0.38358 (10)0.0274 (3)
C200.65040 (13)0.64295 (12)0.54023 (10)0.0291 (3)
C170.41948 (12)0.67243 (11)0.48949 (10)0.0259 (3)
C180.39430 (13)0.67984 (14)0.39484 (11)0.0334 (3)
H180.45970.67000.36990.040*
C190.27293 (13)0.70175 (13)0.33631 (10)0.0312 (3)
H190.25680.70660.27140.037*
C140.17503 (12)0.71665 (11)0.36981 (10)0.0248 (3)
C80.01382 (13)0.53303 (13)0.24354 (10)0.0318 (3)
C90.08124 (17)0.47931 (15)0.13380 (12)0.0435 (4)
H9A0.00330.46080.08250.052*
H9B0.11340.41200.17020.052*
C100.17680 (18)0.52463 (18)0.09623 (14)0.0540 (5)
H10A0.19500.47040.05530.081*
H10B0.25380.54150.14760.081*
H10C0.14430.59170.06110.081*
C60.16499 (14)0.89009 (13)0.42459 (11)0.0348 (3)
H6A0.22450.93270.37470.052*
H6B0.10210.93940.46540.052*
H6C0.20990.85250.46040.052*
C50.02787 (12)0.82421 (11)0.33070 (9)0.0251 (3)
C160.32309 (13)0.69036 (14)0.52466 (10)0.0336 (3)
H160.33970.68770.58970.040*
C150.20282 (13)0.71204 (14)0.46516 (10)0.0339 (3)
H150.13780.72400.49020.041*
C210.75834 (14)0.59981 (14)0.61983 (11)0.0377 (4)
H21A0.78630.52970.60230.057*
H21B0.73160.58890.67370.057*
H21C0.82750.65260.63540.057*
C110.00926 (12)0.93072 (12)0.29325 (10)0.0263 (3)
C120.04350 (15)1.12340 (12)0.28729 (12)0.0353 (3)
H12A0.08881.12090.21960.042*
H12B0.04481.14400.29800.042*
C70.16252 (16)0.50641 (13)0.37219 (13)0.0410 (4)
H7A0.09730.45420.40580.062*
H7B0.21300.47470.31250.062*
H7C0.21650.52230.40890.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0260 (5)0.0586 (8)0.0404 (6)0.0018 (5)0.0182 (5)0.0136 (5)
O20.0400 (6)0.0352 (6)0.0377 (6)0.0008 (5)0.0181 (5)0.0058 (5)
N10.0273 (6)0.0348 (7)0.0380 (7)0.0011 (5)0.0188 (5)0.0062 (5)
O30.0403 (6)0.0334 (6)0.0346 (6)0.0017 (4)0.0234 (5)0.0011 (4)
O40.0455 (6)0.0290 (6)0.0376 (6)0.0042 (4)0.0255 (5)0.0030 (4)
C130.0610 (11)0.0339 (9)0.0562 (11)0.0067 (8)0.0315 (9)0.0010 (8)
N20.0233 (6)0.0373 (7)0.0277 (6)0.0016 (5)0.0125 (5)0.0060 (5)
C10.0226 (6)0.0274 (7)0.0273 (7)0.0024 (5)0.0117 (5)0.0016 (5)
C20.0241 (6)0.0275 (7)0.0326 (8)0.0015 (5)0.0096 (6)0.0035 (6)
O10.0494 (7)0.0350 (7)0.0528 (8)0.0080 (5)0.0181 (6)0.0071 (5)
C30.0246 (7)0.0304 (8)0.0364 (8)0.0011 (6)0.0106 (6)0.0051 (6)
C40.0222 (6)0.0315 (8)0.0299 (7)0.0035 (5)0.0109 (5)0.0038 (6)
C200.0247 (7)0.0307 (7)0.0343 (8)0.0003 (5)0.0132 (6)0.0021 (6)
C170.0226 (6)0.0274 (7)0.0301 (7)0.0009 (5)0.0120 (5)0.0031 (6)
C180.0255 (7)0.0487 (9)0.0314 (8)0.0036 (6)0.0168 (6)0.0028 (7)
C190.0279 (7)0.0427 (9)0.0265 (7)0.0022 (6)0.0138 (6)0.0036 (6)
C140.0236 (6)0.0238 (7)0.0297 (7)0.0005 (5)0.0125 (5)0.0014 (5)
C80.0275 (7)0.0323 (8)0.0325 (8)0.0005 (6)0.0059 (6)0.0007 (6)
C90.0536 (10)0.0402 (9)0.0345 (9)0.0071 (8)0.0122 (8)0.0084 (7)
C100.0478 (10)0.0692 (13)0.0484 (11)0.0072 (9)0.0207 (9)0.0147 (10)
C60.0343 (8)0.0382 (9)0.0394 (9)0.0051 (6)0.0224 (7)0.0031 (7)
C50.0211 (6)0.0281 (7)0.0276 (7)0.0022 (5)0.0102 (5)0.0016 (5)
C160.0284 (7)0.0504 (10)0.0258 (7)0.0036 (6)0.0145 (6)0.0031 (6)
C150.0250 (7)0.0510 (10)0.0316 (8)0.0053 (6)0.0172 (6)0.0013 (7)
C210.0269 (7)0.0478 (10)0.0389 (9)0.0038 (6)0.0117 (6)0.0054 (7)
C110.0231 (6)0.0310 (7)0.0256 (7)0.0009 (5)0.0095 (5)0.0014 (6)
C120.0414 (8)0.0292 (8)0.0405 (9)0.0000 (6)0.0207 (7)0.0028 (7)
C70.0382 (8)0.0350 (9)0.0555 (10)0.0041 (7)0.0233 (8)0.0058 (8)
Geometric parameters (Å, º) top
O5—C201.2278 (18)C17—C161.3894 (19)
O2—C81.3469 (19)C18—H180.9500
O2—C91.4515 (19)C18—C191.391 (2)
N1—H10.893 (18)C19—H190.9500
N1—C31.381 (2)C19—C141.3833 (19)
N1—C41.3824 (19)C14—C151.388 (2)
O3—C111.2244 (17)C9—H9A0.9900
O4—C111.3410 (17)C9—H9B0.9900
O4—C121.4513 (18)C9—C101.494 (3)
C13—H13A0.9800C10—H10A0.9800
C13—H13B0.9800C10—H10B0.9800
C13—H13C0.9800C10—H10C0.9800
C13—C121.492 (2)C6—H6A0.9800
N2—H20.867 (18)C6—H6B0.9800
N2—C201.3495 (18)C6—H6C0.9800
N2—C171.4230 (18)C5—C111.464 (2)
C1—H1A1.0000C16—H160.9500
C1—C21.5231 (19)C16—C151.386 (2)
C1—C141.5303 (18)C15—H150.9500
C1—C51.5173 (18)C21—H21A0.9800
C2—C31.357 (2)C21—H21B0.9800
C2—C81.461 (2)C21—H21C0.9800
O1—C81.2157 (19)C12—H12A0.9900
C3—C71.501 (2)C12—H12B0.9900
C4—C61.499 (2)C7—H7A0.9800
C4—C51.3615 (19)C7—H7B0.9800
C20—C211.501 (2)C7—H7C0.9800
C17—C181.384 (2)
C8—O2—C9116.13 (13)O2—C9—H9B110.3
C3—N1—H1115.4 (11)O2—C9—C10107.00 (15)
C3—N1—C4123.22 (12)H9A—C9—H9B108.6
C4—N1—H1118.1 (11)C10—C9—H9A110.3
C11—O4—C12116.72 (11)C10—C9—H9B110.3
H13A—C13—H13B109.5C9—C10—H10A109.5
H13A—C13—H13C109.5C9—C10—H10B109.5
H13B—C13—H13C109.5C9—C10—H10C109.5
C12—C13—H13A109.5H10A—C10—H10B109.5
C12—C13—H13B109.5H10A—C10—H10C109.5
C12—C13—H13C109.5H10B—C10—H10C109.5
C20—N2—H2117.1 (11)C4—C6—H6A109.5
C20—N2—C17128.01 (13)C4—C6—H6B109.5
C17—N2—H2114.9 (11)C4—C6—H6C109.5
C2—C1—H1A108.1H6A—C6—H6B109.5
C2—C1—C14109.46 (11)H6A—C6—H6C109.5
C14—C1—H1A108.1H6B—C6—H6C109.5
C5—C1—H1A108.1C4—C5—C1120.71 (12)
C5—C1—C2110.25 (11)C4—C5—C11124.68 (13)
C5—C1—C14112.73 (11)C11—C5—C1114.59 (11)
C3—C2—C1119.78 (13)C17—C16—H16119.9
C3—C2—C8121.40 (13)C15—C16—C17120.17 (13)
C8—C2—C1118.69 (12)C15—C16—H16119.9
N1—C3—C7114.09 (13)C14—C15—H15119.2
C2—C3—N1119.42 (13)C16—C15—C14121.56 (13)
C2—C3—C7126.49 (14)C16—C15—H15119.2
N1—C4—C6113.00 (12)C20—C21—H21A109.5
C5—C4—N1118.48 (13)C20—C21—H21B109.5
C5—C4—C6128.51 (13)C20—C21—H21C109.5
O5—C20—N2123.61 (13)H21A—C21—H21B109.5
O5—C20—C21121.22 (13)H21A—C21—H21C109.5
N2—C20—C21115.17 (13)H21B—C21—H21C109.5
C18—C17—N2123.52 (12)O3—C11—O4121.14 (13)
C18—C17—C16119.06 (13)O3—C11—C5123.59 (13)
C16—C17—N2117.37 (13)O4—C11—C5115.26 (12)
C17—C18—H18120.1O4—C12—C13106.77 (13)
C17—C18—C19119.83 (13)O4—C12—H12A110.4
C19—C18—H18120.1O4—C12—H12B110.4
C18—C19—H19119.0C13—C12—H12A110.4
C14—C19—C18121.91 (13)C13—C12—H12B110.4
C14—C19—H19119.0H12A—C12—H12B108.6
C19—C14—C1121.24 (12)C3—C7—H7A109.5
C19—C14—C15117.40 (13)C3—C7—H7B109.5
C15—C14—C1121.21 (12)C3—C7—H7C109.5
O2—C8—C2111.84 (13)H7A—C7—H7B109.5
O1—C8—O2121.51 (14)H7A—C7—H7C109.5
O1—C8—C2126.65 (15)H7B—C7—H7C109.5
O2—C9—H9A110.3
C5—C1—C2—C328.32 (18)C9—O2—C8—C2179.07 (12)
C14—C1—C2—C396.23 (15)C3—C2—C8—O12.2 (2)
C5—C1—C2—C8155.75 (12)C1—C2—C8—O1173.71 (14)
C14—C1—C2—C879.70 (15)C3—C2—C8—O2178.01 (13)
C8—C2—C3—N1174.57 (13)C1—C2—C8—O26.13 (18)
C1—C2—C3—N19.6 (2)C8—O2—C9—C10170.92 (13)
C8—C2—C3—C75.6 (2)N1—C4—C5—C11170.85 (13)
C1—C2—C3—C7170.23 (14)C6—C4—C5—C118.3 (2)
C4—N1—C3—C214.1 (2)N1—C4—C5—C17.6 (2)
C4—N1—C3—C7166.00 (13)C6—C4—C5—C1173.31 (14)
C3—N1—C4—C515.2 (2)C2—C1—C5—C427.40 (18)
C3—N1—C4—C6164.06 (13)C14—C1—C5—C495.25 (15)
C17—N2—C20—O53.8 (3)C2—C1—C5—C11151.16 (12)
C17—N2—C20—C21175.95 (14)C14—C1—C5—C1186.19 (14)
C20—N2—C17—C1817.1 (2)C18—C17—C16—C151.9 (2)
C20—N2—C17—C16165.46 (15)N2—C17—C16—C15175.64 (15)
C16—C17—C18—C191.9 (2)C17—C16—C15—C140.1 (3)
N2—C17—C18—C19175.51 (14)C19—C14—C15—C161.8 (2)
C17—C18—C19—C140.0 (2)C1—C14—C15—C16174.01 (14)
C18—C19—C14—C151.8 (2)C12—O4—C11—O34.8 (2)
C18—C19—C14—C1173.97 (14)C12—O4—C11—C5174.40 (12)
C5—C1—C14—C19133.47 (14)C4—C5—C11—O3166.46 (14)
C2—C1—C14—C19103.43 (15)C1—C5—C11—O312.0 (2)
C5—C1—C14—C1550.92 (18)C4—C5—C11—O412.8 (2)
C2—C1—C14—C1572.17 (17)C1—C5—C11—O4168.74 (11)
C9—O2—C8—O10.8 (2)C11—O4—C12—C13175.03 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.892 (19)2.022 (19)2.8946 (17)165.5 (16)
N2—H2···O3ii0.866 (19)2.074 (19)2.9383 (17)175.4 (16)
C6—H6A···O1iii0.982.523.370 (2)145
C13—H13A···O1iv0.982.383.337 (2)165
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H26N2O5
Mr386.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.3359 (7), 12.1934 (7), 15.3262 (9)
β (°) 109.745 (1)
V3)1993.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.2 × 0.2 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.976, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
15313, 4593, 3602
Rint0.027
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.05
No. of reflections4593
No. of parameters266
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.892 (19)2.022 (19)2.8946 (17)165.5 (16)
N2—H2···O3ii0.866 (19)2.074 (19)2.9383 (17)175.4 (16)
C6—H6A···O1iii0.982.523.370 (2)145
C13—H13A···O1iv0.982.383.337 (2)165
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x, y+1, z.
 

Acknowledgements

The authors would like to thank the Clive and Vera Ramaciotti Foundation for a generous equipment gift, and the National Health and Medical Research Council for funding.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKappe, C. O. & Stadler, A. (2004). Org. React. 63, 1–23.  CAS Google Scholar
First citationKumar, A. & Maurya, R. A. (2008). Synlett, pp. 883–885.  Web of Science CrossRef Google Scholar
First citationMobinikhaledi, A. & Foroughifar, N. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 2653–2658.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds