organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­ethyl 3,4-di­methyl 5-(4-cyano­phen­yl)pyrrolidine-2,2,3,4-tetra­carboxyl­ate

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: helongcwnu@yahoo.com.cn

(Received 4 June 2012; accepted 28 June 2012; online 7 July 2012)

The title compound, C21H24N2O8, was synthesized by a 1,3-dipolar cyclo­addition reaction of dimethyl fumarate, diethyl 2-amino­malonate and 4-cyano­benzaldehyde. Both methyl ester groups display a trans configuration and the pyrrolidine ring possesses an envelope conformation, with the C atom in the 3-position as the flap. In the crystal, N—H⋯N hydrogen bonds and weak C—H⋯O inter­actions occur.

Related literature

For the biological activity of pyrrolidine derivatives, see: Coldham & Hufton (2005[Coldham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765-2810.]); Pandey et al. (2006[Pandey, G., Banerjee, P. & Gadre, S. R. (2006). Chem. Rev. 106, 4484-4517.]); Schreiber et al. (2000[Schreiber, S. L. (2000). Science, 287, 1964-1969.]). For a related structure, see: He et al. (2010[He, L. (2010). Acta Cryst. E66, o3205.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24N2O8

  • Mr = 432.42

  • Orthorhombic, P 21 21 21

  • a = 8.4720 (2) Å

  • b = 10.3043 (2) Å

  • c = 25.8774 (5) Å

  • V = 2259.05 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.83 mm−1

  • T = 291 K

  • 0.38 × 0.30 × 0.30 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.744, Tmax = 0.789

  • 26556 measured reflections

  • 2565 independent reflections

  • 2050 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.141

  • S = 1.03

  • 2565 reflections

  • 288 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯N1i 0.86 (4) 2.47 (4) 3.240 (5) 148 (4)
C8—H8⋯O1ii 0.98 2.39 3.333 (4) 161 (1)
C13—H13C⋯O7ii 0.96 2.46 3.388 (6) 163
C18—H18C⋯O5iii 0.96 2.55 3.453 (9) 157
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Facile synthesis of structurally diverse heterocycles is important in chemical biology. Five-membered pyrrolidines compounds is an important class of heterocyclic compounds with wide spread applications to the synthesis of biologically active compounds and natural alkaloids (Coldham & Hufton, 2005; Pandey et al., 2006; Schreiber et al., 2000). Its crystal structure is reported here.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The pyrrolidine ring possesses an envelope conformation. The crystal packing is stabilized by C—H···O and N—H···N hydrogen bonds (Table 1).

Related literature top

For the biological activity of pyrrolidine derivatives, see: Coldham & Hufton (2005); Pandey et al. (2006); Schreiber et al. (2000). For a related structure, see: He et al. (2010).

Experimental top

To a solution of 4-cyanobenzaldehyde (0.065 g, 0.5 mmol), sodium sulflate (0.1 g) and diethyl 2-aminomalonate (0.070 g, 0.4 mmol) in chloroform (4 ml) was added dimethyl fumarate (0.145 g, 1 mmol). The mixture was stirred at 323 K for 2 d and then cooled to room temperature, the solvent was evaporated under reduced pressure and the residues was purified by flash chromatograghy on silica gel. The colourless powder was obtained. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

H atoms on N atoms were located in a difference Fourier map and refined isotropically. The carbon-bound hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and refined using a riding model, with Uiso(H) =1.5Ueq(C) for methyl H atoms and Uiso(H) =1.2Ueq(C) for the others. As no significant anomalous scatterings Friedel pairs were merged.

Structure description top

Facile synthesis of structurally diverse heterocycles is important in chemical biology. Five-membered pyrrolidines compounds is an important class of heterocyclic compounds with wide spread applications to the synthesis of biologically active compounds and natural alkaloids (Coldham & Hufton, 2005; Pandey et al., 2006; Schreiber et al., 2000). Its crystal structure is reported here.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The pyrrolidine ring possesses an envelope conformation. The crystal packing is stabilized by C—H···O and N—H···N hydrogen bonds (Table 1).

For the biological activity of pyrrolidine derivatives, see: Coldham & Hufton (2005); Pandey et al. (2006); Schreiber et al. (2000). For a related structure, see: He et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
2,2-Diethyl 3,4-dimethyl 5-(4-cyanophenyl)pyrrolidine-2,2,3,4-tetracarboxylate top
Crystal data top
C21H24N2O8Dx = 1.271 Mg m3
Mr = 432.42Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 10771 reflections
a = 8.4720 (2) Åθ = 1.7–72.3°
b = 10.3043 (2) ŵ = 0.83 mm1
c = 25.8774 (5) ÅT = 291 K
V = 2259.05 (8) Å3Block, colorless
Z = 40.38 × 0.30 × 0.30 mm
F(000) = 912
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
2565 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2050 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 15.9149 pixels mm-1θmax = 72.6°, θmin = 3.4°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1210
Tmin = 0.744, Tmax = 0.789l = 3131
26556 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0724P)2 + 0.5988P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2565 reflectionsΔρmax = 0.40 e Å3
288 parametersΔρmin = 0.22 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (4)
Crystal data top
C21H24N2O8V = 2259.05 (8) Å3
Mr = 432.42Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 8.4720 (2) ŵ = 0.83 mm1
b = 10.3043 (2) ÅT = 291 K
c = 25.8774 (5) Å0.38 × 0.30 × 0.30 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
2565 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
2050 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 0.789Rint = 0.027
26556 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0502 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.40 e Å3
2565 reflectionsΔρmin = 0.22 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O21.0668 (3)0.9425 (2)0.20700 (8)0.0707 (7)
O51.0369 (4)0.7873 (2)0.40309 (11)0.0880 (9)
O80.8498 (4)1.0544 (3)0.46182 (9)0.0865 (9)
N20.8356 (4)0.9769 (3)0.35733 (10)0.0622 (7)
O11.1491 (5)1.1320 (3)0.23785 (10)0.0928 (10)
C91.0464 (4)0.9727 (3)0.29624 (11)0.0548 (7)
H91.10730.89300.30160.066*
O61.1628 (4)0.9441 (3)0.44645 (10)0.0898 (9)
O41.3158 (4)1.1691 (3)0.37339 (11)0.0874 (8)
O70.9598 (5)1.2258 (3)0.42249 (12)0.1046 (12)
C50.7612 (4)1.0072 (3)0.26561 (11)0.0542 (7)
C20.5727 (4)1.1296 (3)0.19214 (13)0.0632 (9)
C80.8696 (4)0.9382 (3)0.30325 (11)0.0530 (7)
H80.85590.84420.29970.064*
C121.0926 (4)1.0266 (3)0.24488 (12)0.0597 (8)
C60.7360 (4)1.1396 (3)0.26702 (13)0.0620 (8)
H60.78251.18850.29310.074*
C101.0857 (4)1.0649 (3)0.34090 (12)0.0592 (8)
H101.05391.15350.33200.071*
C40.6885 (5)0.9354 (4)0.22681 (13)0.0668 (9)
H40.70470.84620.22510.080*
C110.9802 (4)1.0124 (3)0.38427 (12)0.0602 (8)
C70.6433 (4)1.2009 (3)0.23057 (14)0.0658 (9)
H70.62871.29030.23200.079*
C190.9328 (5)1.1127 (3)0.42459 (13)0.0716 (10)
C161.0612 (5)0.8987 (3)0.41186 (13)0.0683 (10)
C30.5921 (5)0.9951 (4)0.19062 (15)0.0754 (11)
H30.54090.94600.16560.091*
C141.2688 (5)1.0600 (4)0.35092 (14)0.0719 (10)
C131.0929 (7)0.9876 (5)0.15484 (13)0.0955 (15)
H13A1.20351.00330.14970.115*
H13B1.03521.06650.14930.115*
H13C1.05750.92280.13080.115*
C200.7915 (8)1.1323 (5)0.50465 (15)0.1021 (16)
H20A0.86681.20010.51280.122*
H20B0.69231.17290.49520.122*
C171.2540 (8)0.8528 (5)0.47718 (19)0.1127 (19)
H17A1.18480.78710.49160.135*
H17B1.33180.81000.45560.135*
C151.4850 (5)1.1640 (7)0.3860 (2)0.1114 (17)
H15A1.54351.13820.35590.167*
H15B1.50201.10220.41320.167*
H15C1.51981.24810.39710.167*
C210.7690 (9)1.0492 (6)0.54894 (18)0.121 (2)
H21A0.86701.00780.55750.145*
H21B0.69120.98450.54100.145*
H21C0.73371.10030.57780.145*
C181.3299 (11)0.9207 (8)0.5172 (3)0.189 (4)
H18A1.26020.98600.53060.227*
H18B1.42380.96100.50400.227*
H18C1.35750.86130.54430.227*
O31.3504 (4)0.9759 (4)0.33931 (18)0.1249 (14)
N10.4052 (5)1.2386 (4)0.12122 (16)0.0982 (12)
C10.4786 (5)1.1909 (4)0.15304 (15)0.0752 (10)
H10.780 (5)0.924 (4)0.3757 (16)0.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.1013 (19)0.0581 (13)0.0527 (11)0.0096 (14)0.0014 (12)0.0020 (11)
O50.126 (2)0.0517 (14)0.0863 (18)0.0007 (16)0.0135 (18)0.0065 (12)
O80.134 (3)0.0700 (15)0.0558 (12)0.0049 (18)0.0108 (16)0.0103 (12)
N20.0743 (17)0.0655 (17)0.0469 (13)0.0087 (16)0.0029 (13)0.0032 (12)
O10.148 (3)0.0629 (16)0.0677 (15)0.0344 (19)0.0105 (18)0.0011 (13)
C90.0710 (19)0.0417 (15)0.0516 (15)0.0009 (15)0.0052 (15)0.0015 (13)
O60.121 (2)0.0700 (15)0.0782 (16)0.0008 (18)0.0441 (17)0.0122 (13)
O40.0833 (17)0.094 (2)0.0853 (17)0.0168 (17)0.0061 (16)0.0093 (16)
O70.170 (4)0.0548 (16)0.089 (2)0.0019 (19)0.017 (2)0.0071 (13)
C50.0664 (18)0.0482 (16)0.0479 (15)0.0017 (15)0.0027 (14)0.0003 (13)
C20.0652 (19)0.064 (2)0.0606 (18)0.0040 (18)0.0029 (16)0.0074 (16)
C80.0706 (19)0.0414 (14)0.0472 (14)0.0014 (15)0.0051 (13)0.0015 (13)
C120.074 (2)0.0487 (16)0.0569 (17)0.0013 (16)0.0020 (16)0.0020 (14)
C60.077 (2)0.0460 (17)0.0625 (18)0.0003 (17)0.0093 (17)0.0035 (15)
C100.078 (2)0.0439 (15)0.0556 (16)0.0060 (16)0.0124 (15)0.0046 (14)
C40.085 (2)0.0502 (17)0.0648 (18)0.0030 (18)0.0177 (19)0.0071 (16)
C110.088 (2)0.0463 (16)0.0465 (14)0.0032 (17)0.0107 (16)0.0025 (13)
C70.069 (2)0.0536 (18)0.075 (2)0.0036 (17)0.0033 (19)0.0058 (17)
C190.106 (3)0.0555 (19)0.0537 (18)0.001 (2)0.013 (2)0.0007 (15)
C160.096 (3)0.0555 (19)0.0534 (17)0.0025 (19)0.0080 (19)0.0078 (15)
C30.090 (3)0.069 (2)0.068 (2)0.001 (2)0.024 (2)0.0083 (18)
C140.087 (3)0.065 (2)0.065 (2)0.011 (2)0.0043 (19)0.0079 (19)
C130.143 (4)0.092 (3)0.0511 (18)0.016 (3)0.009 (2)0.0015 (19)
C200.147 (5)0.094 (3)0.064 (2)0.014 (3)0.006 (3)0.020 (2)
C170.140 (5)0.094 (3)0.104 (3)0.014 (4)0.046 (4)0.027 (3)
C150.064 (2)0.148 (5)0.122 (4)0.008 (3)0.014 (3)0.017 (4)
C210.158 (5)0.123 (4)0.081 (3)0.002 (4)0.032 (3)0.016 (3)
C180.220 (9)0.184 (7)0.164 (6)0.007 (7)0.125 (7)0.040 (6)
O30.095 (2)0.101 (2)0.179 (4)0.024 (2)0.037 (3)0.040 (3)
N10.092 (2)0.103 (3)0.099 (3)0.012 (2)0.028 (2)0.020 (2)
C10.070 (2)0.080 (2)0.075 (2)0.004 (2)0.008 (2)0.008 (2)
Geometric parameters (Å, º) top
O2—C121.327 (4)C10—C141.573 (6)
O2—C131.445 (4)C10—H100.9800
O5—C161.188 (4)C4—C31.386 (5)
O8—C191.335 (5)C4—H40.9300
O8—C201.455 (5)C11—C191.523 (5)
N2—C111.456 (5)C11—C161.534 (5)
N2—C81.484 (4)C7—H70.9300
N2—H10.86 (2)C3—H30.9300
O1—C121.201 (4)C14—O31.149 (5)
C9—C121.493 (4)C13—H13A0.9600
C9—C101.532 (4)C13—H13B0.9600
C9—C81.550 (5)C13—H13C0.9600
C9—H90.9800C20—C211.443 (7)
O6—C161.327 (5)C20—H20A0.9700
O6—C171.454 (5)C20—H20B0.9700
O4—C141.327 (5)C17—C181.405 (8)
O4—C151.471 (5)C17—H17A0.9700
O7—C191.189 (5)C17—H17B0.9700
C5—C61.381 (4)C15—H15A0.9600
C5—C41.391 (5)C15—H15B0.9600
C5—C81.516 (4)C15—H15C0.9600
C2—C71.374 (5)C21—H21A0.9600
C2—C31.396 (5)C21—H21B0.9600
C2—C11.435 (5)C21—H21C0.9600
C8—H80.9800C18—H18A0.9600
C6—C71.380 (5)C18—H18B0.9600
C6—H60.9300C18—H18C0.9600
C10—C111.534 (5)N1—C11.143 (5)
C12—O2—C13117.1 (3)O7—C19—O8125.1 (4)
C19—O8—C20118.7 (3)O7—C19—C11125.7 (4)
C11—N2—C8110.8 (3)O8—C19—C11109.1 (3)
C11—N2—H1111 (3)O5—C16—O6125.6 (4)
C8—N2—H1117 (3)O5—C16—C11124.8 (4)
C12—C9—C10112.6 (3)O6—C16—C11109.6 (3)
C12—C9—C8116.3 (3)C4—C3—C2119.4 (4)
C10—C9—C8105.3 (3)C4—C3—H3120.3
C12—C9—H9107.4C2—C3—H3120.3
C10—C9—H9107.4O3—C14—O4124.9 (4)
C8—C9—H9107.4O3—C14—C10125.1 (4)
C16—O6—C17119.1 (3)O4—C14—C10110.0 (4)
C14—O4—C15111.1 (4)O2—C13—H13A109.5
C6—C5—C4118.4 (3)O2—C13—H13B109.5
C6—C5—C8122.7 (3)H13A—C13—H13B109.5
C4—C5—C8118.8 (3)O2—C13—H13C109.5
C7—C2—C3120.0 (3)H13A—C13—H13C109.5
C7—C2—C1121.1 (3)H13B—C13—H13C109.5
C3—C2—C1118.9 (4)C21—C20—O8108.8 (4)
N2—C8—C5111.2 (3)C21—C20—H20A109.9
N2—C8—C9103.7 (3)O8—C20—H20A109.9
C5—C8—C9113.7 (3)C21—C20—H20B109.9
N2—C8—H8109.4O8—C20—H20B109.9
C5—C8—H8109.4H20A—C20—H20B108.3
C9—C8—H8109.4C18—C17—O6108.9 (5)
O1—C12—O2123.0 (3)C18—C17—H17A109.9
O1—C12—C9125.2 (3)O6—C17—H17A109.9
O2—C12—C9111.8 (3)C18—C17—H17B109.9
C7—C6—C5121.5 (3)O6—C17—H17B109.9
C7—C6—H6119.3H17A—C17—H17B108.3
C5—C6—H6119.3O4—C15—H15A109.5
C9—C10—C11101.9 (3)O4—C15—H15B109.5
C9—C10—C14108.6 (3)H15A—C15—H15B109.5
C11—C10—C14116.3 (3)O4—C15—H15C109.5
C9—C10—H10109.9H15A—C15—H15C109.5
C11—C10—H10109.9H15B—C15—H15C109.5
C14—C10—H10109.9C20—C21—H21A109.5
C3—C4—C5120.8 (3)C20—C21—H21B109.5
C3—C4—H4119.6H21A—C21—H21B109.5
C5—C4—H4119.6C20—C21—H21C109.5
N2—C11—C19106.1 (3)H21A—C21—H21C109.5
N2—C11—C10103.2 (2)H21B—C21—H21C109.5
C19—C11—C10114.6 (3)C17—C18—H18A109.5
N2—C11—C16114.0 (3)C17—C18—H18B109.5
C19—C11—C16108.5 (3)H18A—C18—H18B109.5
C10—C11—C16110.4 (3)C17—C18—H18C109.5
C2—C7—C6119.8 (3)H18A—C18—H18C109.5
C2—C7—H7120.1H18B—C18—H18C109.5
C6—C7—H7120.1N1—C1—C2178.8 (5)
C11—N2—C8—C5130.9 (3)C3—C2—C7—C61.3 (6)
C11—N2—C8—C98.3 (3)C1—C2—C7—C6178.6 (4)
C6—C5—C8—N248.9 (4)C5—C6—C7—C20.6 (6)
C4—C5—C8—N2133.6 (3)C20—O8—C19—O72.4 (7)
C6—C5—C8—C967.7 (4)C20—O8—C19—C11179.8 (4)
C4—C5—C8—C9109.8 (4)N2—C11—C19—O7106.8 (5)
C12—C9—C8—N2142.0 (3)C10—C11—C19—O76.4 (6)
C10—C9—C8—N216.5 (3)C16—C11—C19—O7130.3 (5)
C12—C9—C8—C521.1 (4)N2—C11—C19—O870.6 (4)
C10—C9—C8—C5104.4 (3)C10—C11—C19—O8176.2 (3)
C13—O2—C12—O16.8 (6)C16—C11—C19—O852.3 (4)
C13—O2—C12—C9174.4 (4)C17—O6—C16—O50.3 (7)
C10—C9—C12—O12.6 (6)C17—O6—C16—C11179.8 (4)
C8—C9—C12—O1119.0 (4)N2—C11—C16—O518.0 (6)
C10—C9—C12—O2176.1 (3)C19—C11—C16—O5136.0 (4)
C8—C9—C12—O262.2 (4)C10—C11—C16—O597.7 (5)
C4—C5—C6—C71.1 (6)N2—C11—C16—O6162.5 (3)
C8—C5—C6—C7176.5 (3)C19—C11—C16—O644.5 (4)
C12—C9—C10—C11161.4 (3)C10—C11—C16—O681.8 (4)
C8—C9—C10—C1133.7 (3)C5—C4—C3—C22.3 (6)
C12—C9—C10—C1475.3 (4)C7—C2—C3—C42.7 (6)
C8—C9—C10—C14157.0 (3)C1—C2—C3—C4177.1 (4)
C6—C5—C4—C30.5 (6)C15—O4—C14—O35.2 (7)
C8—C5—C4—C3178.1 (4)C15—O4—C14—C10176.6 (4)
C8—N2—C11—C19150.5 (3)C9—C10—C14—O322.5 (6)
C8—N2—C11—C1029.7 (3)C11—C10—C14—O391.7 (5)
C8—N2—C11—C1690.1 (3)C9—C10—C14—O4155.7 (3)
C9—C10—C11—N238.3 (3)C11—C10—C14—O490.1 (4)
C14—C10—C11—N2156.2 (3)C19—O8—C20—C21155.3 (5)
C9—C10—C11—C19153.2 (3)C16—O6—C17—C18169.0 (6)
C14—C10—C11—C1988.9 (4)C7—C2—C1—N1126 (23)
C9—C10—C11—C1683.9 (3)C3—C2—C1—N154 (23)
C14—C10—C11—C1634.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.86 (4)2.47 (4)3.240 (5)148 (4)
C8—H8···O1ii0.982.393.333 (4)161 (1)
C13—H13C···O7ii0.962.463.388 (6)163
C18—H18C···O5iii0.962.553.453 (9)157
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H24N2O8
Mr432.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)8.4720 (2), 10.3043 (2), 25.8774 (5)
V3)2259.05 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.83
Crystal size (mm)0.38 × 0.30 × 0.30
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.744, 0.789
No. of measured, independent and
observed [I > 2σ(I)] reflections
26556, 2565, 2050
Rint0.027
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.141, 1.03
No. of reflections2565
No. of parameters288
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.86 (4)2.47 (4)3.240 (5)148 (4)
C8—H8···O1ii0.982.393.333 (4)160.6 (2)
C13—H13C···O7ii0.962.463.388 (6)162.9
C18—H18C···O5iii0.962.553.453 (9)156.6
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z+1.
 

Acknowledgements

The author acknowledges financial support from China West Normal University (11B004).

References

First citationColdham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765–2810.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHe, L. (2010). Acta Cryst. E66, o3205.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPandey, G., Banerjee, P. & Gadre, S. R. (2006). Chem. Rev. 106, 4484–4517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchreiber, S. L. (2000). Science, 287, 1964–1969.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds