metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[aqua­[μ-1,2-bis­­(pyridin-4-yl)ethene-κ2N:N′][μ-5-(di­phenyl­phosphino­yl)iso­phthalato-κ3O1,O1′:O3]nickel(II)]

aInstitute of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China, and bSchool of Biochemical and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, People's Republic of China
*Correspondence e-mail: meichongzhen@163.com

(Received 19 June 2012; accepted 8 July 2012; online 14 July 2012)

In the title compound, [Ni(C20H13O5P)(C12H10N2)(H2O)]n, the NiII cation is coordinated by three O atoms from two 5-(diphenyl­phosphino­yl)isophthalate anions, two N atoms from two 1,2-bis­(pyridin-4-yl)ethene ligands and one water mol­ecule in a distorted octa­hedral geometry. Both 1,2-bis­(pyridin-4-yl)ethene and 5-(diphenyl­phosphino­yl)iso­phthal­ate bridge the NiII cations to form polymeric layers parallel to (001). In the crystal, O—H⋯O hydrogen bonding links layers into a three-dimensional supra­molecular structure.

Related literature

For background to the network topologies and applications of coordination polymers, see: Maspoch et al. (2007[Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.]); Ockwig et al. (2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keefee, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]); Zang et al. (2011[Zang, S.-Q., Fan, Y.-J., Li, J.-B., Hou, H.-W. & Mak, T. C. W. (2011). Cryst. Growth Des. 11, 3395-3405.]). For a related structure, see: Desiraju (2004[Desiraju, G. R. (2004). Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 658-665. New York: Marcel Dekker Inc.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C20H13O5P)(C12H10N2)(H2O)]

  • Mr = 623.22

  • Monoclinic, P 21 /c

  • a = 10.1866 (3) Å

  • b = 13.6980 (3) Å

  • c = 21.7030 (6) Å

  • β = 111.174 (2)°

  • V = 2823.90 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.851, Tmax = 0.864

  • 11156 measured reflections

  • 4971 independent reflections

  • 3513 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.112

  • S = 0.99

  • 4971 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 2.145 (3)
Ni1—N2i 2.134 (3)
Ni1—O1 2.140 (2)
Ni1—O2 2.120 (2)
Ni1—O3ii 2.039 (2)
Ni1—O1W 2.046 (2)
Symmetry codes: (i) x, y-1, z; (ii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O5iii 0.85 1.84 2.684 (3) 173
O1W—H1WB⋯O4ii 0.85 1.81 2.622 (3) 158
Symmetry codes: (ii) x+1, y, z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Supramolecular coordination assemblies have received much attention due to their discovery of interesting topologies and crystal packing motifs, and the potential applications as functional materials (Maspoch et al., 2007; Ockwig et al., 2005). A great number of carboxylate-based ligands have been successfully employed in the generation of many novel structures (Zang et al., 2011). To further explore various factors that influence the properties and construction of coordination compounds, we undertake synthetic and structural studies on one novel Ni(II) complex based on 5-(oxidediphenylphosphanyl)isophthalic acid (H2L) and 1,2-bis(pyridin-4-yl)ethene (bpe): [Ni(C20H13O5P)(C12H10N2)(H2O)]n (1).

X-ray crystallographic analysis revealed that the title compound crystallizes in monoclinic space group P21/c. As shown in Fig. 1, the asymmetric unit consists of one NiII atom, one L2- anion, one bpe ligand and one coordinated water molecule. Each metal center is six-coordinated by three O atoms from two L2- anions, one O atom from the coordinated water molecule and two N atoms from different 1,2-bis(pyridin-4-yl)ethene ligands. Four atoms O1W, O1, O2 and O3#1 comprise the equatorial plane; while N1, N2#2 occupies the axial position.

Each L2- ligand acts as a µ2-bridge linking two NiII atoms with one carboxylate group in monodentate fashion and the other one in chelating mode to form an infinite Ni- L2- chain running along the a-axis. As depicted in Fig. 2, bpe ligand links adjacent chains running along the b-axis to form a (4,4)-layer with Ni1···Ni1 distance of 10.1866 (7) Å and 13.6980 (7) Å, respectively. Adjacent layers are associated together by O—H···O hydrogen bonds to achieve a three-dimensional supramolecular structure (Fig. 3). A further investigation reveals a more striking feature of title compound, i.e. two sets of symmetric related supamolecular structures are interlocked with each other to display a twofold interpenetrating architecture.

Related literature top

For background to the network topologies and applications of coordination polymers, see: Maspoch et al. (2007); Ockwig et al. (2005); Zang et al. (2011). For a related structure, see: Desiraju (2004).

Experimental top

The title compound was synthesized hydrothermally in a Teflon-lined stainless teel container by heating a mixture of 5-(oxidediphenylphosphanyl)isophthalic acid (H2L) (0.0183 g, 0.05 mmol), 1,2-bis(4-pyridyl)ethane (bpe) (0.0091 g, 0.05 mmol), Ni(NO3)2.6H2O (0.0146 g, 0.05 mmol) and NaOH (0.0040 g, 0.1 mmol) in 7 ml of distilled water at 130°C for 3 days, and then cooled to room temperature. Green block crystals of 1 were obtained in 78% yield based on nickel.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, Uiso(H) = -1.2Ueq(C) for aromatic H. The H atoms of the water molecules were located from the Fourier difference map and refined with suitable geometric restraints.

Structure description top

Supramolecular coordination assemblies have received much attention due to their discovery of interesting topologies and crystal packing motifs, and the potential applications as functional materials (Maspoch et al., 2007; Ockwig et al., 2005). A great number of carboxylate-based ligands have been successfully employed in the generation of many novel structures (Zang et al., 2011). To further explore various factors that influence the properties and construction of coordination compounds, we undertake synthetic and structural studies on one novel Ni(II) complex based on 5-(oxidediphenylphosphanyl)isophthalic acid (H2L) and 1,2-bis(pyridin-4-yl)ethene (bpe): [Ni(C20H13O5P)(C12H10N2)(H2O)]n (1).

X-ray crystallographic analysis revealed that the title compound crystallizes in monoclinic space group P21/c. As shown in Fig. 1, the asymmetric unit consists of one NiII atom, one L2- anion, one bpe ligand and one coordinated water molecule. Each metal center is six-coordinated by three O atoms from two L2- anions, one O atom from the coordinated water molecule and two N atoms from different 1,2-bis(pyridin-4-yl)ethene ligands. Four atoms O1W, O1, O2 and O3#1 comprise the equatorial plane; while N1, N2#2 occupies the axial position.

Each L2- ligand acts as a µ2-bridge linking two NiII atoms with one carboxylate group in monodentate fashion and the other one in chelating mode to form an infinite Ni- L2- chain running along the a-axis. As depicted in Fig. 2, bpe ligand links adjacent chains running along the b-axis to form a (4,4)-layer with Ni1···Ni1 distance of 10.1866 (7) Å and 13.6980 (7) Å, respectively. Adjacent layers are associated together by O—H···O hydrogen bonds to achieve a three-dimensional supramolecular structure (Fig. 3). A further investigation reveals a more striking feature of title compound, i.e. two sets of symmetric related supamolecular structures are interlocked with each other to display a twofold interpenetrating architecture.

For background to the network topologies and applications of coordination polymers, see: Maspoch et al. (2007); Ockwig et al. (2005); Zang et al. (2011). For a related structure, see: Desiraju (2004).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Metal coordination and atom labeling in title compound (thermal ellipsoids at 50% probability level). Irrespective hydrogen atoms are omitted for clarity. Symmetry codes: #1: x + 1, y, z; #2: x, y - 1, z.
[Figure 2] Fig. 2. A view of the layer in compound 1
[Figure 3] Fig. 3. The three-dimensional supramolecular structure connected by hydrogen bonds. Dotted lines represent hydrogen bonds.
Poly[aqua(µ-1,2-bis(pyridin-4-yl)ethene-κ2N:N')[µ-5- (diphenylphosphinoyl)isophthalato- κ3O1,O1':O3]nickel(II)] top
Crystal data top
[Ni(C20H13O5P)(C12H10N2)(H2O)]F(000) = 1288
Mr = 623.22Dx = 1.466 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4354 reflections
a = 10.1866 (3) Åθ = 3.0–29.2°
b = 13.6980 (3) ŵ = 0.79 mm1
c = 21.7030 (6) ÅT = 296 K
β = 111.174 (2)°Block, green
V = 2823.90 (13) Å30.21 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4971 independent reflections
Radiation source: fine-focus sealed tube3513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1211
Tmin = 0.851, Tmax = 0.864k = 1610
11156 measured reflectionsl = 2517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0554P)2]
where P = (Fo2 + 2Fc2)/3
4971 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Ni(C20H13O5P)(C12H10N2)(H2O)]V = 2823.90 (13) Å3
Mr = 623.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1866 (3) ŵ = 0.79 mm1
b = 13.6980 (3) ÅT = 296 K
c = 21.7030 (6) Å0.21 × 0.20 × 0.19 mm
β = 111.174 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4971 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3513 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.864Rint = 0.043
11156 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.99Δρmax = 0.66 e Å3
4971 reflectionsΔρmin = 0.33 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.42678 (4)0.81298 (3)0.86654 (2)0.01907 (14)
O10.2074 (2)0.81261 (16)0.85164 (11)0.0224 (5)
O20.3689 (2)0.79683 (16)0.95050 (11)0.0248 (5)
O30.3597 (2)0.81335 (18)0.91252 (11)0.0258 (6)
O40.2948 (2)0.8308 (2)0.82543 (12)0.0509 (9)
O50.2692 (2)0.75667 (19)1.15849 (12)0.0362 (7)
O1W0.4295 (2)0.82607 (17)0.77310 (11)0.0298 (6)
H1WA0.37290.80190.73730.045*
H1WB0.51710.82190.78040.045*
N10.4236 (3)0.9691 (2)0.87333 (16)0.0285 (7)
N20.4261 (3)1.65746 (19)0.86079 (14)0.0246 (7)
C10.1303 (3)0.8117 (2)0.94387 (16)0.0196 (7)
C20.1668 (3)0.7974 (2)1.01139 (17)0.0229 (8)
H20.26100.79121.03830.027*
C30.0630 (3)0.7924 (2)1.03897 (16)0.0234 (8)
C40.0783 (3)0.8035 (2)0.99786 (16)0.0232 (8)
H40.14780.80071.01620.028*
C50.1164 (3)0.8184 (2)0.93095 (16)0.0202 (7)
C60.0103 (3)0.8222 (2)0.90399 (16)0.0203 (7)
H60.03450.83180.85880.024*
C70.2423 (3)0.8062 (2)0.91300 (17)0.0202 (7)
C80.2691 (3)0.8216 (2)0.88494 (16)0.0211 (7)
C90.0171 (3)0.8171 (3)1.16355 (17)0.0257 (8)
C100.0222 (4)0.7750 (3)1.2120 (2)0.0422 (11)
H100.01020.70831.21990.051*
C110.0793 (5)0.8311 (3)1.2489 (2)0.0564 (13)
H110.10760.80181.28080.068*
C120.0943 (5)0.9305 (3)1.2386 (2)0.0484 (11)
H120.13040.96861.26430.058*
C130.0560 (4)0.9727 (3)1.1908 (2)0.0439 (11)
H130.06731.03961.18350.053*
C140.0007 (4)0.9168 (3)1.15294 (19)0.0363 (10)
H140.02470.94631.12030.044*
C150.0537 (4)0.6256 (3)1.11215 (18)0.0323 (9)
C160.0846 (5)0.5991 (3)1.0956 (2)0.0477 (11)
H160.15150.64541.09560.057*
C170.1247 (6)0.5019 (4)1.0788 (3)0.0721 (16)
H170.21790.48291.06790.087*
C180.0238 (8)0.4353 (4)1.0787 (3)0.0777 (18)
H180.05030.37121.06620.093*
C190.1130 (7)0.4611 (4)1.0965 (3)0.0748 (16)
H190.17990.41441.09730.090*
C200.1536 (5)0.5558 (3)1.1132 (2)0.0511 (12)
H200.24770.57341.12530.061*
C210.3952 (4)1.0150 (3)0.92197 (19)0.0360 (10)
H210.37230.97700.95220.043*
C220.3981 (4)1.1145 (3)0.9296 (2)0.0395 (10)
H220.37841.14210.96450.047*
C230.4301 (4)1.1727 (3)0.8860 (2)0.0350 (10)
C240.4573 (4)1.1272 (3)0.8351 (2)0.0494 (12)
H240.47761.16410.80370.059*
C250.4542 (4)1.0257 (3)0.8312 (2)0.0450 (11)
H250.47480.99630.79710.054*
C260.4401 (4)1.2818 (3)0.8951 (2)0.0409 (10)
H260.47191.30610.93800.049*
C270.4072 (4)1.3439 (3)0.8468 (2)0.0384 (10)
H270.37461.31860.80420.046*
C280.4170 (4)1.4519 (3)0.8536 (2)0.0328 (9)
C290.5025 (4)1.5007 (3)0.9098 (2)0.0410 (10)
H290.55821.46560.94670.049*
C300.5046 (4)1.6028 (3)0.91086 (19)0.0368 (10)
H300.56431.63390.94870.044*
C310.3449 (4)1.6099 (3)0.8069 (2)0.0397 (10)
H310.28931.64660.77090.048*
C320.3386 (4)1.5088 (3)0.8013 (2)0.0437 (11)
H320.28101.47980.76220.052*
P10.11389 (9)0.75019 (7)1.12316 (4)0.0244 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0152 (2)0.0192 (2)0.0231 (3)0.00013 (18)0.00720 (18)0.0006 (2)
O10.0184 (12)0.0279 (13)0.0209 (13)0.0002 (10)0.0070 (10)0.0014 (11)
O20.0141 (12)0.0354 (14)0.0253 (13)0.0012 (10)0.0076 (10)0.0010 (11)
O30.0135 (11)0.0425 (15)0.0223 (13)0.0006 (11)0.0076 (10)0.0043 (12)
O40.0190 (13)0.112 (3)0.0192 (15)0.0003 (15)0.0046 (11)0.0110 (16)
O50.0215 (13)0.0544 (18)0.0269 (14)0.0031 (12)0.0018 (11)0.0106 (13)
O1W0.0211 (12)0.0436 (16)0.0222 (13)0.0066 (11)0.0047 (10)0.0044 (12)
N10.0241 (16)0.0178 (15)0.0431 (19)0.0017 (13)0.0116 (15)0.0006 (15)
N20.0257 (16)0.0193 (15)0.0289 (17)0.0034 (13)0.0099 (14)0.0002 (14)
C10.0152 (16)0.0185 (17)0.0263 (18)0.0002 (14)0.0089 (14)0.0014 (16)
C20.0137 (16)0.026 (2)0.0261 (19)0.0001 (14)0.0038 (14)0.0024 (16)
C30.0181 (17)0.028 (2)0.0219 (18)0.0004 (15)0.0050 (15)0.0003 (16)
C40.0175 (17)0.031 (2)0.0234 (19)0.0032 (15)0.0097 (15)0.0038 (17)
C50.0149 (16)0.0217 (18)0.0243 (18)0.0000 (14)0.0072 (14)0.0025 (16)
C60.0200 (17)0.0232 (18)0.0177 (17)0.0009 (15)0.0070 (14)0.0030 (15)
C70.0160 (17)0.0172 (17)0.026 (2)0.0020 (14)0.0060 (15)0.0016 (16)
C80.0192 (17)0.0251 (19)0.0194 (18)0.0020 (15)0.0074 (14)0.0018 (16)
C90.0241 (18)0.032 (2)0.0191 (18)0.0006 (17)0.0051 (15)0.0009 (17)
C100.065 (3)0.032 (2)0.036 (2)0.007 (2)0.026 (2)0.004 (2)
C110.084 (4)0.061 (3)0.043 (3)0.014 (3)0.045 (3)0.009 (2)
C120.059 (3)0.052 (3)0.038 (2)0.016 (2)0.021 (2)0.005 (2)
C130.049 (3)0.033 (2)0.045 (3)0.008 (2)0.013 (2)0.000 (2)
C140.044 (2)0.034 (2)0.032 (2)0.0027 (19)0.0146 (19)0.0090 (19)
C150.044 (2)0.030 (2)0.027 (2)0.0013 (19)0.0182 (19)0.0034 (18)
C160.053 (3)0.037 (3)0.051 (3)0.007 (2)0.017 (2)0.004 (2)
C170.084 (4)0.066 (4)0.064 (4)0.031 (3)0.023 (3)0.004 (3)
C180.131 (6)0.032 (3)0.070 (4)0.015 (4)0.037 (4)0.005 (3)
C190.113 (5)0.039 (3)0.080 (4)0.018 (3)0.044 (4)0.004 (3)
C200.067 (3)0.038 (3)0.058 (3)0.009 (2)0.035 (3)0.008 (2)
C210.041 (2)0.029 (2)0.030 (2)0.0027 (18)0.0025 (19)0.0016 (18)
C220.038 (2)0.029 (2)0.043 (3)0.0035 (19)0.005 (2)0.009 (2)
C230.029 (2)0.026 (2)0.052 (3)0.0003 (17)0.0153 (19)0.005 (2)
C240.060 (3)0.025 (2)0.079 (4)0.009 (2)0.044 (3)0.009 (2)
C250.055 (3)0.025 (2)0.070 (3)0.001 (2)0.040 (3)0.004 (2)
C260.041 (2)0.034 (2)0.048 (3)0.0032 (19)0.017 (2)0.005 (2)
C270.046 (2)0.034 (2)0.043 (3)0.0019 (19)0.025 (2)0.007 (2)
C280.032 (2)0.0233 (19)0.050 (3)0.0040 (17)0.022 (2)0.005 (2)
C290.049 (3)0.025 (2)0.045 (3)0.0120 (19)0.013 (2)0.017 (2)
C300.040 (2)0.031 (2)0.032 (2)0.0011 (19)0.0034 (19)0.0004 (19)
C310.040 (2)0.027 (2)0.042 (3)0.0008 (19)0.003 (2)0.001 (2)
C320.049 (3)0.027 (2)0.045 (3)0.004 (2)0.005 (2)0.005 (2)
P10.0209 (5)0.0307 (5)0.0206 (5)0.0027 (4)0.0062 (4)0.0039 (4)
Geometric parameters (Å, º) top
Ni1—N12.145 (3)C12—C131.363 (6)
Ni1—N2i2.134 (3)C12—H120.9300
Ni1—O12.140 (2)C13—C141.383 (5)
Ni1—O22.120 (2)C13—H130.9300
Ni1—O3ii2.039 (2)C14—H140.9300
Ni1—O1W2.046 (2)C15—C161.372 (5)
O1—C71.251 (4)C15—C201.390 (5)
O2—C71.259 (4)C15—P11.799 (4)
O3—C81.273 (4)C16—C171.401 (6)
O3—Ni1iii2.039 (2)C16—H160.9300
O4—C81.228 (4)C17—C181.375 (7)
O5—P11.491 (2)C17—H170.9300
O1W—H1WA0.8500C18—C191.352 (7)
O1W—H1WB0.8500C18—H180.9300
N1—C251.320 (5)C19—C201.371 (6)
N1—C211.347 (5)C19—H190.9300
N2—C301.324 (4)C20—H200.9300
N2—C311.333 (5)C21—C221.371 (5)
N2—Ni1iv2.134 (3)C21—H210.9300
C1—C61.387 (4)C22—C231.366 (5)
C1—C21.389 (5)C22—H220.9300
C1—C71.520 (4)C23—C241.381 (6)
C2—C31.392 (4)C23—C261.505 (5)
C2—H20.9300C24—C251.393 (5)
C3—C41.401 (4)C24—H240.9300
C3—P11.805 (3)C25—H250.9300
C4—C51.376 (5)C26—C271.296 (5)
C4—H40.9300C26—H260.9300
C5—C61.403 (4)C27—C281.487 (5)
C5—C81.516 (4)C27—H270.9300
C6—H60.9300C28—C321.370 (5)
C9—C101.380 (5)C28—C291.388 (5)
C9—C141.387 (5)C29—C301.399 (5)
C9—P11.790 (3)C29—H290.9300
C10—C111.380 (5)C30—H300.9300
C10—H100.9300C31—C321.389 (5)
C11—C121.380 (6)C31—H310.9300
C11—H110.9300C32—H320.9300
O3ii—Ni1—O1W95.22 (9)C14—C13—H13119.8
O3ii—Ni1—O299.11 (9)C13—C14—C9120.2 (4)
O1W—Ni1—O2165.63 (9)C13—C14—H14119.9
O3ii—Ni1—N2i90.65 (10)C9—C14—H14119.9
O1W—Ni1—N2i91.73 (10)C16—C15—C20119.9 (4)
O2—Ni1—N2i87.14 (10)C16—C15—P1123.7 (3)
O3ii—Ni1—O1160.95 (9)C20—C15—P1116.0 (3)
O1W—Ni1—O1103.75 (9)C15—C16—C17119.7 (5)
O2—Ni1—O161.96 (8)C15—C16—H16120.2
N2i—Ni1—O190.45 (10)C17—C16—H16120.2
O3ii—Ni1—N190.23 (10)C18—C17—C16118.9 (5)
O1W—Ni1—N189.24 (11)C18—C17—H17120.5
O2—Ni1—N191.67 (10)C16—C17—H17120.5
N2i—Ni1—N1178.62 (11)C19—C18—C17121.3 (5)
O1—Ni1—N188.38 (10)C19—C18—H18119.3
C7—O1—Ni187.68 (18)C17—C18—H18119.3
C7—O2—Ni188.37 (19)C18—C19—C20120.3 (5)
C8—O3—Ni1iii126.6 (2)C18—C19—H19119.9
Ni1—O1W—H1WA128.7C20—C19—H19119.9
Ni1—O1W—H1WB101.5C19—C20—C15119.9 (5)
H1WA—O1W—H1WB117.6C19—C20—H20120.1
C25—N1—C21116.1 (3)C15—C20—H20120.1
C25—N1—Ni1121.6 (3)N1—C21—C22123.9 (4)
C21—N1—Ni1122.2 (2)N1—C21—H21118.0
C30—N2—C31116.3 (3)C22—C21—H21118.0
C30—N2—Ni1iv121.9 (2)C23—C22—C21119.8 (4)
C31—N2—Ni1iv121.8 (2)C23—C22—H22120.1
C6—C1—C2119.7 (3)C21—C22—H22120.1
C6—C1—C7120.0 (3)C22—C23—C24117.3 (3)
C2—C1—C7120.0 (3)C22—C23—C26120.7 (4)
C1—C2—C3120.3 (3)C24—C23—C26122.0 (4)
C1—C2—H2119.8C23—C24—C25119.5 (4)
C3—C2—H2119.8C23—C24—H24120.2
C2—C3—C4119.1 (3)C25—C24—H24120.2
C2—C3—P1117.8 (2)N1—C25—C24123.3 (4)
C4—C3—P1122.2 (3)N1—C25—H25118.3
C5—C4—C3121.4 (3)C24—C25—H25118.3
C5—C4—H4119.3C27—C26—C23124.0 (4)
C3—C4—H4119.3C27—C26—H26118.0
C4—C5—C6118.6 (3)C23—C26—H26118.0
C4—C5—C8122.1 (3)C26—C27—C28125.8 (4)
C6—C5—C8119.1 (3)C26—C27—H27117.1
C1—C6—C5120.9 (3)C28—C27—H27117.1
C1—C6—H6119.6C32—C28—C29116.5 (3)
C5—C6—H6119.6C32—C28—C27119.1 (4)
O1—C7—O2121.8 (3)C29—C28—C27124.3 (4)
O1—C7—C1119.7 (3)C28—C29—C30119.7 (4)
O2—C7—C1118.5 (3)C28—C29—H29120.1
O4—C8—O3126.0 (3)C30—C29—H29120.1
O4—C8—C5118.3 (3)N2—C30—C29123.5 (4)
O3—C8—C5115.7 (3)N2—C30—H30118.3
C10—C9—C14118.8 (3)C29—C30—H30118.3
C10—C9—P1121.5 (3)N2—C31—C32123.9 (4)
C14—C9—P1119.0 (3)N2—C31—H31118.0
C11—C10—C9120.7 (4)C32—C31—H31118.0
C11—C10—H10119.7C28—C32—C31120.0 (4)
C9—C10—H10119.7C28—C32—H32120.0
C12—C11—C10120.0 (4)C31—C32—H32120.0
C12—C11—H11120.0O5—P1—C9112.80 (16)
C10—C11—H11120.0O5—P1—C15111.85 (16)
C13—C12—C11119.8 (4)C9—P1—C15109.22 (16)
C13—C12—H12120.1O5—P1—C3111.41 (15)
C11—C12—H12120.1C9—P1—C3108.90 (16)
C12—C13—C14120.5 (4)C15—P1—C3102.11 (16)
C12—C13—H13119.8
O3ii—Ni1—O1—C74.1 (4)C20—C15—C16—C171.1 (6)
O1W—Ni1—O1—C7178.89 (19)P1—C15—C16—C17170.9 (4)
O2—Ni1—O1—C72.69 (18)C15—C16—C17—C180.6 (7)
N2i—Ni1—O1—C789.2 (2)C16—C17—C18—C192.1 (8)
N1—Ni1—O1—C790.1 (2)C17—C18—C19—C201.9 (9)
O3ii—Ni1—O2—C7175.10 (19)C18—C19—C20—C150.2 (8)
O1W—Ni1—O2—C78.9 (5)C16—C15—C20—C191.3 (7)
N2i—Ni1—O2—C794.70 (19)P1—C15—C20—C19171.3 (4)
O1—Ni1—O2—C72.67 (18)C25—N1—C21—C220.6 (5)
N1—Ni1—O2—C784.60 (19)Ni1—N1—C21—C22177.1 (3)
O3ii—Ni1—N1—C2580.4 (3)N1—C21—C22—C230.6 (6)
O1W—Ni1—N1—C2514.8 (3)C21—C22—C23—C240.5 (6)
O2—Ni1—N1—C25179.5 (3)C21—C22—C23—C26177.3 (3)
O1—Ni1—N1—C25118.6 (3)C22—C23—C24—C251.4 (6)
O3ii—Ni1—N1—C2197.2 (3)C26—C23—C24—C25176.4 (4)
O1W—Ni1—N1—C21167.6 (3)C21—N1—C25—C240.3 (6)
O2—Ni1—N1—C211.9 (3)Ni1—N1—C25—C24178.1 (3)
O1—Ni1—N1—C2163.8 (3)C23—C24—C25—N11.3 (7)
C6—C1—C2—C30.7 (5)C22—C23—C26—C27147.7 (4)
C7—C1—C2—C3173.4 (3)C24—C23—C26—C2734.7 (6)
C1—C2—C3—C40.9 (5)C23—C26—C27—C28179.3 (3)
C1—C2—C3—P1168.1 (3)C26—C27—C28—C32158.9 (4)
C2—C3—C4—C50.5 (5)C26—C27—C28—C2921.8 (6)
P1—C3—C4—C5168.0 (3)C32—C28—C29—C300.2 (6)
C3—C4—C5—C60.2 (5)C27—C28—C29—C30179.6 (3)
C3—C4—C5—C8174.6 (3)C31—N2—C30—C291.7 (6)
C2—C1—C6—C50.0 (5)Ni1iv—N2—C30—C29177.3 (3)
C7—C1—C6—C5174.1 (3)C28—C29—C30—N21.4 (6)
C4—C5—C6—C10.4 (5)C30—N2—C31—C320.5 (6)
C8—C5—C6—C1175.0 (3)Ni1iv—N2—C31—C32178.5 (3)
Ni1—O1—C7—O24.7 (3)C29—C28—C32—C311.3 (6)
Ni1—O1—C7—C1174.1 (3)C27—C28—C32—C31179.3 (3)
Ni1—O2—C7—O14.7 (3)N2—C31—C32—C281.1 (7)
Ni1—O2—C7—C1174.1 (3)C10—C9—P1—O588.3 (3)
C6—C1—C7—O11.1 (5)C14—C9—P1—O582.1 (3)
C2—C1—C7—O1175.2 (3)C10—C9—P1—C1536.7 (4)
C6—C1—C7—O2179.9 (3)C14—C9—P1—C15152.9 (3)
C2—C1—C7—O26.0 (5)C10—C9—P1—C3147.5 (3)
Ni1iii—O3—C8—O40.1 (5)C14—C9—P1—C342.1 (3)
Ni1iii—O3—C8—C5179.3 (2)C16—C15—P1—O5164.2 (3)
C4—C5—C8—O4176.7 (3)C20—C15—P1—O523.6 (4)
C6—C5—C8—O42.4 (5)C16—C15—P1—C938.6 (4)
C4—C5—C8—O32.5 (5)C20—C15—P1—C9149.2 (3)
C6—C5—C8—O3176.9 (3)C16—C15—P1—C376.6 (4)
C14—C9—C10—C110.5 (6)C20—C15—P1—C395.6 (3)
P1—C9—C10—C11171.0 (3)C2—C3—P1—O518.4 (3)
C9—C10—C11—C121.6 (7)C4—C3—P1—O5172.9 (3)
C10—C11—C12—C131.7 (7)C2—C3—P1—C9143.5 (3)
C11—C12—C13—C140.8 (7)C4—C3—P1—C947.9 (3)
C12—C13—C14—C90.3 (6)C2—C3—P1—C15101.1 (3)
C10—C9—C14—C130.4 (6)C4—C3—P1—C1567.5 (3)
P1—C9—C14—C13170.3 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5v0.851.842.684 (3)173
O1W—H1WB···O4ii0.851.812.622 (3)158
Symmetry codes: (ii) x+1, y, z; (v) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C20H13O5P)(C12H10N2)(H2O)]
Mr623.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.1866 (3), 13.6980 (3), 21.7030 (6)
β (°) 111.174 (2)
V3)2823.90 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.21 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.851, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
11156, 4971, 3513
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.112, 0.99
No. of reflections4971
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.33

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2010).

Selected bond lengths (Å) top
Ni1—N12.145 (3)Ni1—O22.120 (2)
Ni1—N2i2.134 (3)Ni1—O3ii2.039 (2)
Ni1—O12.140 (2)Ni1—O1W2.046 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5iii0.851.842.684 (3)173
O1W—H1WB···O4ii0.851.812.622 (3)158
Symmetry codes: (ii) x+1, y, z; (iii) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the Inter­national Technology Cooperation Project of the Science and Technology Department of Henan Province of China (grant No. 124300510050).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2004). Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 658–665. New York: Marcel Dekker Inc.  Google Scholar
First citationMaspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keefee, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZang, S.-Q., Fan, Y.-J., Li, J.-B., Hou, H.-W. & Mak, T. C. W. (2011). Cryst. Growth Des. 11, 3395–3405.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds