organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Trehalose dihydrate from Tremella fuciformis

aThe Key Laboratory of Medicinal and Edible Plants Resources Development of, Sichuan Education Commission, Chengdu University, Chengdu 610106, People's Republic of China
*Correspondence e-mail: fzchen7200@163.com

(Received 20 June 2012; accepted 12 July 2012; online 21 July 2012)

The title compound, C12H22O11·2H2O {systematic name: 6,6′-oxybis[2-(hy­droxy­meth­yl)-3,4,5,6-tetra­hydro-2H-pyran-3,4,5-triol] dihydrate}, is a disaccharide, which was isolated from Tremella fuciformis. The mol­ecule contains two six-membered rings, both of which adopt a chair conformation. Extensive O—H⋯O hydrogen bonds occur in the crystal structure.

Related literature

For the structure of the title compound established from the NMR and MS data, see: Qing & Liu (2012[Qing, X.-D. & Liu, J.-K. (2012). J. Yunnan Univ. 34, 224-226.]).

[Scheme 1]

Experimental

Crystal data
  • C12H22O11·2H2O

  • Mr = 378.33

  • Orthorhombic, P 21 21 21

  • a = 7.6012 (3) Å

  • b = 12.2380 (4) Å

  • c = 17.8839 (6) Å

  • V = 1663.64 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.40 × 0.40 × 0.35 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • 4079 measured reflections

  • 1698 independent reflections

  • 1492 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.074

  • S = 1.05

  • 1698 reflections

  • 274 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O13 0.83 (5) 1.91 (5) 2.727 (3) 168 (4)
O3—H3⋯O9i 0.76 (4) 2.05 (4) 2.754 (3) 153 (4)
O4—H4⋯O1ii 0.77 (4) 2.21 (4) 2.889 (3) 147 (3)
O5—H5⋯O10iii 0.87 (4) 1.88 (4) 2.726 (3) 163 (3)
O8—H8⋯O12iv 0.82 (4) 1.98 (4) 2.765 (3) 161 (4)
O9—H9⋯O4i 0.75 (4) 2.16 (4) 2.907 (3) 174 (4)
O10—H10⋯O12 0.75 (5) 2.14 (4) 2.887 (3) 170 (5)
O11—H11⋯O5v 0.78 (4) 1.94 (4) 2.709 (3) 173 (4)
O12—H12C⋯O2 0.89 (4) 1.87 (4) 2.766 (3) 175 (3)
O12—H12D⋯O8vi 0.72 (5) 1.99 (5) 2.709 (4) 171 (4)
O13—H13A⋯O3vii 0.78 (5) 2.04 (5) 2.801 (4) 169 (6)
O13—H13B⋯O11 0.88 (5) 1.89 (5) 2.765 (3) 179 (6)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) x+1, y, z; (vii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, trehalose, was previously isolated from Lepista multiformis, and its structure was established from the NMR and MS data (Qing & Liu, 2012). In our recent investigation, it was isolation from the Tremella fuciformis collected in the Tongjiang county, Sichuan Province of China in September, 2011 for the first time, and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig. 1. The boat conformations six-membered ringsA (C1/C2/C3/C4/C5/O) and B (C7/C8/C9/C10/C11/O) link with the mid-poit of the C—O—C bond.

The lattice water molecule link with the organic molecule via classic O—H···O hydrogen is present in the crystal structure (Table 1).

The intermolecular hydrogen bonds may be effective in the stabilization of the structure.

Related literature top

For the structure of the title compound established from the NMR and MS data, see: Qing & Liu (2012).

Experimental top

Air-dried and powdered of Tremella fuciformis (5 kg) was extract with ethanol. The crude extract obtained after evaporation of the solvent was subjected to conventional purification procedures and resulting in the isolation of trehalose. The crystals suitable for X-ray structure analysis was obtained by slow evaporation from the solution of hydrous ethanol at room temperature.

Refinement top

Hydroxyl H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were located geometrically with C—H = 0.97–0.98 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C). The absolute configuration has not been determined as no significant anomalous scatterings.

Structure description top

The title compound, trehalose, was previously isolated from Lepista multiformis, and its structure was established from the NMR and MS data (Qing & Liu, 2012). In our recent investigation, it was isolation from the Tremella fuciformis collected in the Tongjiang county, Sichuan Province of China in September, 2011 for the first time, and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig. 1. The boat conformations six-membered ringsA (C1/C2/C3/C4/C5/O) and B (C7/C8/C9/C10/C11/O) link with the mid-poit of the C—O—C bond.

The lattice water molecule link with the organic molecule via classic O—H···O hydrogen is present in the crystal structure (Table 1).

The intermolecular hydrogen bonds may be effective in the stabilization of the structure.

For the structure of the title compound established from the NMR and MS data, see: Qing & Liu (2012).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing of the title compound.
6,6'-Oxybis[2-(hydroxymethyl)-3,4,5,6-tetrahydro-2H-pyran-3,4,5-triol] dihydrate top
Crystal data top
C12H22O11·2H2ODx = 1.510 Mg m3
Mr = 378.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1713 reflections
a = 7.6012 (3) Åθ = 2.9–28.7°
b = 12.2380 (4) ŵ = 0.14 mm1
c = 17.8839 (6) ÅT = 293 K
V = 1663.64 (9) Å3Block, colorless
Z = 40.40 × 0.40 × 0.35 mm
F(000) = 808
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1492 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.0°, θmin = 2.9°
Detector resolution: 16.08 pixels mm-1h = 49
ω scansk = 714
4079 measured reflectionsl = 2119
1698 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0383P)2]
where P = (Fo2 + 2Fc2)/3
1698 reflections(Δ/σ)max = 0.002
274 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C12H22O11·2H2OV = 1663.64 (9) Å3
Mr = 378.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6012 (3) ŵ = 0.14 mm1
b = 12.2380 (4) ÅT = 293 K
c = 17.8839 (6) Å0.40 × 0.40 × 0.35 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1492 reflections with I > 2σ(I)
4079 measured reflectionsRint = 0.025
1698 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.16 e Å3
1698 reflectionsΔρmin = 0.19 e Å3
274 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4981 (3)0.04792 (14)0.21413 (9)0.0228 (4)
O20.9359 (3)0.12683 (19)0.14721 (11)0.0313 (5)
O30.8041 (3)0.32880 (18)0.21134 (12)0.0350 (6)
O40.4253 (3)0.34117 (18)0.21507 (13)0.0350 (5)
O50.3163 (3)0.14840 (19)0.34554 (10)0.0332 (5)
O60.6033 (3)0.07053 (14)0.09141 (9)0.0225 (4)
O70.6186 (3)0.10804 (14)0.04493 (10)0.0237 (5)
O80.3693 (3)0.13076 (18)0.01895 (12)0.0323 (5)
O90.6012 (3)0.0916 (2)0.14203 (12)0.0371 (6)
O100.9303 (3)0.01309 (19)0.09912 (13)0.0337 (5)
O110.9290 (3)0.23738 (18)0.07721 (11)0.0326 (5)
O121.0200 (4)0.1657 (2)0.00091 (14)0.0356 (6)
O131.0982 (4)0.0717 (2)0.15388 (17)0.0503 (7)
C10.6474 (4)0.0457 (2)0.16644 (14)0.0227 (6)
H10.70240.02670.16870.027*
C20.7790 (4)0.1315 (2)0.19079 (14)0.0242 (7)
H2A0.80930.11890.24330.029*
C30.6952 (4)0.2434 (2)0.18370 (14)0.0235 (6)
H3A0.66700.25750.13110.028*
C40.5269 (4)0.2458 (2)0.22963 (14)0.0232 (6)
H4A0.55810.24470.28280.028*
C50.4050 (4)0.1502 (2)0.21362 (14)0.0211 (6)
H5A0.35280.16060.16400.025*
C60.2581 (4)0.1401 (3)0.27022 (14)0.0273 (7)
H6A0.17200.19700.26080.033*
H6B0.20020.07020.26340.033*
C70.5152 (4)0.0136 (2)0.05112 (14)0.0230 (6)
H70.40500.03170.07670.028*
C80.4733 (4)0.0350 (2)0.02570 (15)0.0243 (6)
H8A0.40560.01920.05400.029*
C90.6428 (4)0.0571 (2)0.06789 (13)0.0231 (6)
H9A0.70530.11660.04270.028*
C100.7610 (4)0.0422 (2)0.06912 (13)0.0236 (7)
H10A0.70780.09740.10170.028*
C110.7849 (4)0.0914 (2)0.00861 (14)0.0223 (6)
H11A0.85620.04150.03900.027*
C120.8745 (4)0.2006 (2)0.00551 (15)0.0291 (7)
H12A0.79450.25380.01590.035*
H12B0.97640.19560.02700.035*
H20.986 (6)0.068 (4)0.156 (2)0.077 (15)*
H30.881 (6)0.333 (3)0.184 (2)0.050 (13)*
H40.479 (5)0.393 (3)0.2228 (18)0.041 (11)*
H50.396 (5)0.099 (3)0.3545 (19)0.053 (12)*
H80.431 (6)0.183 (3)0.007 (2)0.064 (14)*
H90.685 (5)0.113 (3)0.1589 (19)0.037 (11)*
H100.959 (7)0.037 (4)0.078 (2)0.075 (18)*
H110.852 (5)0.267 (3)0.0975 (17)0.039 (11)*
H12C0.987 (6)0.151 (3)0.046 (2)0.068 (13)*
H12D1.114 (6)0.156 (4)0.001 (2)0.057 (15)*
H13A1.137 (7)0.094 (4)0.191 (3)0.085 (18)*
H13B1.045 (7)0.125 (4)0.130 (3)0.090 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0257 (11)0.0192 (9)0.0235 (9)0.0023 (9)0.0062 (9)0.0001 (8)
O20.0236 (12)0.0371 (13)0.0333 (11)0.0024 (11)0.0050 (9)0.0025 (10)
O30.0360 (13)0.0339 (13)0.0353 (11)0.0152 (12)0.0101 (11)0.0112 (11)
O40.0318 (13)0.0201 (11)0.0531 (13)0.0038 (11)0.0005 (11)0.0016 (11)
O50.0345 (13)0.0438 (13)0.0214 (9)0.0166 (12)0.0034 (9)0.0013 (10)
O60.0283 (11)0.0208 (9)0.0185 (8)0.0012 (9)0.0009 (8)0.0017 (8)
O70.0253 (11)0.0182 (9)0.0277 (9)0.0007 (9)0.0066 (8)0.0012 (8)
O80.0194 (11)0.0305 (12)0.0471 (13)0.0028 (10)0.0023 (10)0.0001 (10)
O90.0301 (14)0.0540 (15)0.0272 (12)0.0088 (13)0.0008 (10)0.0146 (10)
O100.0305 (13)0.0363 (13)0.0344 (12)0.0063 (12)0.0136 (10)0.0067 (11)
O110.0327 (13)0.0334 (12)0.0315 (12)0.0010 (11)0.0023 (10)0.0125 (10)
O120.0253 (14)0.0403 (13)0.0411 (14)0.0014 (13)0.0041 (11)0.0050 (10)
O130.0624 (19)0.0409 (14)0.0477 (15)0.0051 (15)0.0195 (14)0.0037 (13)
C10.0278 (17)0.0202 (14)0.0201 (13)0.0063 (13)0.0058 (12)0.0011 (11)
C20.0218 (16)0.0303 (16)0.0205 (12)0.0001 (14)0.0005 (12)0.0012 (12)
C30.0276 (16)0.0224 (14)0.0204 (12)0.0058 (14)0.0000 (12)0.0018 (12)
C40.0255 (16)0.0222 (14)0.0217 (13)0.0015 (14)0.0009 (12)0.0020 (11)
C50.0222 (15)0.0218 (14)0.0192 (12)0.0016 (13)0.0010 (12)0.0040 (12)
C60.0247 (16)0.0309 (16)0.0264 (13)0.0013 (14)0.0003 (12)0.0041 (13)
C70.0190 (15)0.0216 (13)0.0283 (14)0.0043 (14)0.0063 (12)0.0018 (11)
C80.0197 (15)0.0245 (14)0.0286 (14)0.0018 (13)0.0010 (13)0.0037 (12)
C90.0243 (16)0.0255 (14)0.0195 (13)0.0001 (14)0.0014 (12)0.0004 (12)
C100.0242 (17)0.0258 (15)0.0207 (13)0.0007 (13)0.0014 (12)0.0009 (12)
C110.0217 (14)0.0229 (14)0.0223 (13)0.0013 (13)0.0037 (12)0.0020 (11)
C120.0327 (18)0.0267 (15)0.0281 (14)0.0028 (14)0.0039 (14)0.0025 (12)
Geometric parameters (Å, º) top
O1—C11.420 (3)O13—H13B0.88 (5)
O1—C51.438 (3)C1—C21.514 (4)
O2—C21.426 (3)C1—H10.9800
O2—H20.83 (4)C2—C31.515 (4)
O3—C31.422 (4)C2—H2A0.9800
O3—H30.76 (4)C3—C41.520 (4)
O4—C41.423 (3)C3—H3A0.9800
O4—H40.77 (4)C4—C51.520 (4)
O5—C61.421 (3)C4—H4A0.9800
O5—H50.87 (4)C5—C61.512 (4)
O6—C11.416 (3)C5—H5A0.9800
O6—C71.424 (3)C6—H6A0.9700
O7—C71.403 (3)C6—H6B0.9700
O7—C111.436 (3)C7—C81.530 (4)
O8—C81.419 (3)C7—H70.9800
O8—H80.83 (4)C8—C91.517 (4)
O9—C91.427 (3)C8—H8A0.9800
O9—H90.75 (4)C9—C101.511 (4)
O10—C101.439 (4)C9—H9A0.9800
O10—H100.76 (4)C10—C111.526 (4)
O11—C121.421 (3)C10—H10A0.9800
O11—H110.78 (3)C11—C121.501 (4)
O12—H12C0.90 (4)C11—H11A0.9800
O12—H12D0.72 (4)C12—H12A0.9700
O13—H13A0.78 (5)C12—H12B0.9700
C1—O1—C5113.98 (19)O5—C6—C5113.5 (2)
C2—O2—H2109 (3)O5—C6—H6A108.9
C3—O3—H3106 (3)C5—C6—H6A108.9
C4—O4—H4111 (3)O5—C6—H6B108.9
C6—O5—H5110 (2)C5—C6—H6B108.9
C1—O6—C7115.8 (2)H6A—C6—H6B107.7
C7—O7—C11114.3 (2)O7—C7—O6111.8 (2)
C8—O8—H8111 (3)O7—C7—C8111.4 (2)
C9—O9—H9107 (3)O6—C7—C8105.8 (2)
C10—O10—H10106 (4)O7—C7—H7109.2
C12—O11—H11111 (2)O6—C7—H7109.2
H12C—O12—H12D104 (4)C8—C7—H7109.2
H13A—O13—H13B109 (4)O8—C8—C9111.6 (2)
O6—C1—O1112.1 (2)O8—C8—C7111.1 (2)
O6—C1—C2106.3 (2)C9—C8—C7109.8 (2)
O1—C1—C2110.0 (2)O8—C8—H8A108.1
O6—C1—H1109.5C9—C8—H8A108.1
O1—C1—H1109.5C7—C8—H8A108.1
C2—C1—H1109.5O9—C9—C10110.9 (2)
O2—C2—C1111.6 (2)O9—C9—C8109.1 (2)
O2—C2—C3110.0 (2)C10—C9—C8111.6 (2)
C1—C2—C3108.9 (2)O9—C9—H9A108.4
O2—C2—H2A108.8C10—C9—H9A108.4
C1—C2—H2A108.8C8—C9—H9A108.4
C3—C2—H2A108.8O10—C10—C9109.8 (2)
O3—C3—C2113.0 (2)O10—C10—C11109.3 (2)
O3—C3—C4106.7 (2)C9—C10—C11112.0 (2)
C2—C3—C4109.0 (2)O10—C10—H10A108.5
O3—C3—H3A109.3C9—C10—H10A108.5
C2—C3—H3A109.3C11—C10—H10A108.5
C4—C3—H3A109.3O7—C11—C12106.8 (2)
O4—C4—C5105.4 (2)O7—C11—C10111.3 (2)
O4—C4—C3111.9 (2)C12—C11—C10111.8 (2)
C5—C4—C3113.3 (2)O7—C11—H11A108.9
O4—C4—H4A108.7C12—C11—H11A108.9
C5—C4—H4A108.7C10—C11—H11A108.9
C3—C4—H4A108.7O11—C12—C11112.4 (2)
O1—C5—C6106.7 (2)O11—C12—H12A109.1
O1—C5—C4111.6 (2)C11—C12—H12A109.1
C6—C5—C4112.8 (2)O11—C12—H12B109.1
O1—C5—H5A108.5C11—C12—H12B109.1
C6—C5—H5A108.5H12A—C12—H12B107.9
C4—C5—H5A108.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O130.83 (5)1.91 (5)2.727 (3)168 (4)
O3—H3···O9i0.76 (4)2.05 (4)2.754 (3)153 (4)
O4—H4···O1ii0.77 (4)2.21 (4)2.889 (3)147 (3)
O5—H5···O10iii0.87 (4)1.88 (4)2.726 (3)163 (3)
O8—H8···O12iv0.82 (4)1.98 (4)2.765 (3)161 (4)
O9—H9···O4i0.75 (4)2.16 (4)2.907 (3)174 (4)
O10—H10···O120.75 (5)2.14 (4)2.887 (3)170 (5)
O11—H11···O5v0.78 (4)1.94 (4)2.709 (3)173 (4)
O12—H12C···O20.89 (4)1.87 (4)2.766 (3)175 (3)
O12—H12D···O8vi0.72 (5)1.99 (5)2.709 (4)171 (4)
O13—H13A···O3vii0.78 (5)2.04 (5)2.801 (4)169 (6)
O13—H13B···O110.88 (5)1.89 (5)2.765 (3)179 (6)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1/2, z+1/2; (iii) x+3/2, y, z+1/2; (iv) x1/2, y+1/2, z; (v) x+1, y1/2, z+1/2; (vi) x+1, y, z; (vii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H22O11·2H2O
Mr378.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.6012 (3), 12.2380 (4), 17.8839 (6)
V3)1663.64 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.40 × 0.40 × 0.35
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4079, 1698, 1492
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.074, 1.05
No. of reflections1698
No. of parameters274
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O130.83 (5)1.91 (5)2.727 (3)168 (4)
O3—H3···O9i0.76 (4)2.05 (4)2.754 (3)153 (4)
O4—H4···O1ii0.77 (4)2.21 (4)2.889 (3)147 (3)
O5—H5···O10iii0.87 (4)1.88 (4)2.726 (3)163 (3)
O8—H8···O12iv0.82 (4)1.98 (4)2.765 (3)161 (4)
O9—H9···O4i0.75 (4)2.16 (4)2.907 (3)174 (4)
O10—H10···O120.75 (5)2.14 (4)2.887 (3)170 (5)
O11—H11···O5v0.78 (4)1.94 (4)2.709 (3)173 (4)
O12—H12C···O20.89 (4)1.87 (4)2.766 (3)175 (3)
O12—H12D···O8vi0.72 (5)1.99 (5)2.709 (4)171 (4)
O13—H13A···O3vii0.78 (5)2.04 (5)2.801 (4)169 (6)
O13—H13B···O110.88 (5)1.89 (5)2.765 (3)179 (6)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1/2, z+1/2; (iii) x+3/2, y, z+1/2; (iv) x1/2, y+1/2, z; (v) x+1, y1/2, z+1/2; (vi) x+1, y, z; (vii) x+2, y1/2, z+1/2.
 

Acknowledgements

This project was supported by the Scientic Research Fund of Chengdu University and the scientific special fund of Sichuan Traditional Chinese Medicine Administration, China.

References

First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationQing, X.-D. & Liu, J.-K. (2012). J. Yunnan Univ. 34, 224–226.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds