organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[(Pyrazin-2-yl)amino]­meth­yl}phenol

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 June 2012; accepted 10 July 2012; online 18 July 2012)

The two aromatic rings of the title compound, C11H11N3O, are nearly perpendicular to one another, with a dihedral angle between their planes of 80.52 (18)°. In the crystal, the amino N atom is a hydrogen-bond donor to the pyrazine N1 atom of an inversion-related mol­ecule and the hy­droxy O atom is a hydrogen-bond donor to the pyrazine N4 atom of another mol­ecule. The two hydrogen bonds lead to the formation of a helical chain that runs along the b axis.

Related literature

For the related compound 2-(anilinometh­yl)phenol, see: Qu et al. (2007[Qu, Y., Tian, L.-J. & Dong, J. (2007). Acta Cryst. E63, o4832.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11N3O

  • Mr = 201.23

  • Monoclinic, P 21 /c

  • a = 9.7021 (14) Å

  • b = 13.0937 (17) Å

  • c = 7.8806 (13) Å

  • β = 95.746 (5)°

  • V = 996.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.26 × 0.22 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.977, Tmax = 0.985

  • 7686 measured reflections

  • 1751 independent reflections

  • 858 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.191

  • S = 1.06

  • 1751 reflections

  • 144 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.84 (1) 1.96 (1) 2.796 (4) 174 (4)
N3—H3⋯N1ii 0.89 (1) 2.12 (1) 3.007 (4) 175 (3)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Salicylaldehyde condenses with aromatic amines to yield Schiff bases, which serve as chelating ligands to a plethora of metal systems. These Schiff bases can be readily reduce to the corresponding secondary amines, which can also function as chelating ligands. Curiously, there are only few 2-(arylamino)methylphenols compared with the plethora of Schiff bases in the chemical literature. In 2-(anilinomethyl)phenol, the parent homolog, the hydroxy O atom is hydrogen-bonded to the amino N atom; another N–H···O hydrogen bond generates a dimer (Qu et al., 2007). The two aromatic rings of the reduced Schiff-base, C11H11N3O (Scheme I), are twisted along the –CH2–NH– single-bond by 80.5 (1) °. The presence of basic sites allows for additional hydrogen-bonding interactions. The amino N atom is hydrogen-bond donor to the pyraziny-N2 atom of an inversion-related molecule and the hydroxy O atom is hydrogen-bond donor to the pyrazinyl-N4 atom another molecule. The two hydrogen bonds lead to the formation of a helical chain that runs along the b-axis of the monoclinic unit cell (Fig. 1, Table 1).

Related literature top

For the related compound 2-(anilinomethyl)phenol, see: Qu et al. (2007).

Experimental top

A solution of 2-aminopyrazine (1 mmol) and salicylaldehyde (1 mmol) in toluene (50 ml) was heated for 10 h. The solvent was removed under vacuum, and the residue was reduced in absolute methanol by sodium borohydride. Colorless crystals were obtained by recrystallization from methanol in 75% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints N–H 0.88±0.01 Å, O–H 0.84±0.01 Å; their temperature factors were refined.

Although the crystal was measured up to a 2θ limit of 55 °, only the reflections below 50 ° were used for refinement owing to weak diffraction.

Structure description top

Salicylaldehyde condenses with aromatic amines to yield Schiff bases, which serve as chelating ligands to a plethora of metal systems. These Schiff bases can be readily reduce to the corresponding secondary amines, which can also function as chelating ligands. Curiously, there are only few 2-(arylamino)methylphenols compared with the plethora of Schiff bases in the chemical literature. In 2-(anilinomethyl)phenol, the parent homolog, the hydroxy O atom is hydrogen-bonded to the amino N atom; another N–H···O hydrogen bond generates a dimer (Qu et al., 2007). The two aromatic rings of the reduced Schiff-base, C11H11N3O (Scheme I), are twisted along the –CH2–NH– single-bond by 80.5 (1) °. The presence of basic sites allows for additional hydrogen-bonding interactions. The amino N atom is hydrogen-bond donor to the pyraziny-N2 atom of an inversion-related molecule and the hydroxy O atom is hydrogen-bond donor to the pyrazinyl-N4 atom another molecule. The two hydrogen bonds lead to the formation of a helical chain that runs along the b-axis of the monoclinic unit cell (Fig. 1, Table 1).

For the related compound 2-(anilinomethyl)phenol, see: Qu et al. (2007).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C11H11N3O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain motif.
2-{[(Pyrazin-2-yl)amino]methyl}phenol top
Crystal data top
C11H11N3OF(000) = 424
Mr = 201.23Dx = 1.342 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3450 reflections
a = 9.7021 (14) Åθ = 3.0–27.5°
b = 13.0937 (17) ŵ = 0.09 mm1
c = 7.8806 (13) ÅT = 295 K
β = 95.746 (5)°Prism, colorless
V = 996.1 (3) Å30.26 × 0.22 × 0.17 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1751 independent reflections
Radiation source: fine-focus sealed tube858 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ω scanθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.977, Tmax = 0.985k = 1515
7686 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0862P)2 + 0.1018P]
where P = (Fo2 + 2Fc2)/3
1751 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.18 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C11H11N3OV = 996.1 (3) Å3
Mr = 201.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7021 (14) ŵ = 0.09 mm1
b = 13.0937 (17) ÅT = 295 K
c = 7.8806 (13) Å0.26 × 0.22 × 0.17 mm
β = 95.746 (5)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1751 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
858 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.985Rint = 0.079
7686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0612 restraints
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.18 e Å3
1751 reflectionsΔρmin = 0.20 e Å3
144 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0468 (3)0.63270 (19)0.2017 (3)0.0656 (8)
N10.4697 (3)0.3661 (2)0.0705 (4)0.0578 (8)
N20.2758 (3)0.2358 (2)0.1926 (4)0.0691 (9)
N30.3227 (3)0.5014 (2)0.0842 (4)0.0654 (9)
C10.4925 (4)0.2662 (3)0.0949 (5)0.0684 (11)
H1A0.57720.23960.07070.082*
C20.3983 (4)0.2013 (3)0.1530 (5)0.0724 (12)
H20.41930.13220.16540.087*
C30.2500 (4)0.3333 (3)0.1698 (5)0.0650 (10)
H3A0.16510.35890.19530.078*
C40.3470 (3)0.4010 (3)0.1077 (4)0.0530 (9)
C50.1935 (4)0.5509 (3)0.1131 (5)0.0642 (10)
H5A0.11760.50810.06580.077*
H5B0.18750.61490.05080.077*
C60.1742 (3)0.5727 (2)0.2970 (5)0.0521 (9)
C70.2751 (4)0.5529 (3)0.4289 (5)0.0649 (11)
H70.35770.52260.40510.078*
C80.2562 (5)0.5771 (3)0.5957 (6)0.0791 (13)
H80.32410.56200.68390.095*
C90.1347 (5)0.6239 (3)0.6285 (5)0.0824 (13)
H90.12180.64270.73960.099*
C100.0329 (4)0.6431 (3)0.5000 (5)0.0697 (11)
H100.04940.67370.52420.084*
C110.0521 (4)0.6171 (2)0.3347 (5)0.0524 (9)
H10.116 (2)0.661 (2)0.239 (5)0.077 (13)*
H30.388 (3)0.538 (2)0.040 (4)0.070 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0572 (17)0.0852 (18)0.0555 (17)0.0224 (13)0.0117 (14)0.0003 (13)
N10.0494 (18)0.0610 (19)0.065 (2)0.0002 (13)0.0146 (15)0.0000 (15)
N20.071 (2)0.071 (2)0.065 (2)0.0179 (17)0.0064 (19)0.0054 (16)
N30.054 (2)0.066 (2)0.080 (2)0.0043 (16)0.0281 (18)0.0083 (17)
C10.060 (2)0.069 (3)0.078 (3)0.0030 (19)0.015 (2)0.002 (2)
C20.074 (3)0.066 (2)0.078 (3)0.004 (2)0.010 (2)0.004 (2)
C30.051 (2)0.082 (3)0.064 (3)0.0058 (19)0.017 (2)0.004 (2)
C40.046 (2)0.066 (2)0.048 (2)0.0072 (16)0.0078 (17)0.0019 (17)
C50.054 (2)0.077 (2)0.064 (3)0.0078 (18)0.016 (2)0.0054 (19)
C60.051 (2)0.0549 (19)0.051 (2)0.0027 (16)0.0072 (18)0.0043 (16)
C70.055 (2)0.071 (2)0.068 (3)0.0020 (18)0.001 (2)0.001 (2)
C80.087 (3)0.084 (3)0.063 (3)0.006 (2)0.015 (3)0.004 (2)
C90.112 (4)0.087 (3)0.049 (3)0.007 (3)0.008 (3)0.012 (2)
C100.084 (3)0.077 (3)0.050 (3)0.016 (2)0.017 (2)0.001 (2)
C110.058 (2)0.051 (2)0.049 (2)0.0017 (16)0.0087 (19)0.0025 (16)
Geometric parameters (Å, º) top
O1—C111.363 (4)C5—C61.507 (5)
O1—H10.844 (10)C5—H5A0.9700
N1—C41.336 (4)C5—H5B0.9700
N1—C11.337 (4)C6—C71.379 (5)
N2—C31.311 (4)C6—C111.379 (5)
N2—C21.337 (4)C7—C81.382 (5)
N3—C41.345 (4)C7—H70.9300
N3—C51.449 (4)C8—C91.375 (6)
N3—H30.888 (10)C8—H80.9300
C1—C21.361 (5)C9—C101.365 (5)
C1—H1A0.9300C9—H90.9300
C2—H20.9300C10—C111.377 (5)
C3—C41.415 (5)C10—H100.9300
C3—H3A0.9300
C11—O1—H1109 (3)N3—C5—H5B108.4
C4—N1—C1116.2 (3)C6—C5—H5B108.4
C3—N2—C2117.3 (3)H5A—C5—H5B107.5
C4—N3—C5123.9 (3)C7—C6—C11118.5 (3)
C4—N3—H3117 (2)C7—C6—C5122.8 (3)
C5—N3—H3119 (2)C11—C6—C5118.6 (3)
N1—C1—C2123.6 (3)C6—C7—C8121.4 (4)
N1—C1—H1A118.2C6—C7—H7119.3
C2—C1—H1A118.2C8—C7—H7119.3
N2—C2—C1120.7 (4)C9—C8—C7118.6 (4)
N2—C2—H2119.7C9—C8—H8120.7
C1—C2—H2119.7C7—C8—H8120.7
N2—C3—C4122.3 (3)C10—C9—C8120.9 (4)
N2—C3—H3A118.9C10—C9—H9119.6
C4—C3—H3A118.9C8—C9—H9119.6
N1—C4—N3116.9 (3)C9—C10—C11120.0 (4)
N1—C4—C3120.0 (3)C9—C10—H10120.0
N3—C4—C3123.2 (3)C11—C10—H10120.0
N3—C5—C6115.4 (3)O1—C11—C10122.6 (3)
N3—C5—H5A108.4O1—C11—C6116.8 (3)
C6—C5—H5A108.4C10—C11—C6120.5 (4)
C4—N1—C1—C20.4 (6)N3—C5—C6—C11178.2 (3)
C3—N2—C2—C11.3 (6)C11—C6—C7—C80.4 (5)
N1—C1—C2—N21.2 (7)C5—C6—C7—C8177.7 (3)
C2—N2—C3—C40.7 (6)C6—C7—C8—C91.4 (6)
C1—N1—C4—N3179.9 (3)C7—C8—C9—C102.2 (6)
C1—N1—C4—C30.2 (5)C8—C9—C10—C111.2 (6)
C5—N3—C4—N1177.9 (3)C9—C10—C11—O1178.8 (3)
C5—N3—C4—C32.5 (6)C9—C10—C11—C60.7 (6)
N2—C3—C4—N10.1 (6)C7—C6—C11—O1178.0 (3)
N2—C3—C4—N3179.7 (4)C5—C6—C11—O13.8 (4)
C4—N3—C5—C678.5 (5)C7—C6—C11—C101.4 (5)
N3—C5—C6—C73.7 (5)C5—C6—C11—C10176.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.84 (1)1.96 (1)2.796 (4)174 (4)
N3—H3···N1ii0.89 (1)2.12 (1)3.007 (4)175 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H11N3O
Mr201.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.7021 (14), 13.0937 (17), 7.8806 (13)
β (°) 95.746 (5)
V3)996.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.22 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.977, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
7686, 1751, 858
Rint0.079
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.191, 1.06
No. of reflections1751
No. of parameters144
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.84 (1)1.96 (1)2.796 (4)174 (4)
N3—H3···N1ii0.89 (1)2.12 (1)3.007 (4)175 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z.
 

Acknowledgements

The authors thank the Key Project of the Natural Science Foundation of Heilongjiang Province (grant No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (grant Nos. 12511z023, 2011CJHB006), the Innovation team of the Education Bureau of Heilongjiang Province (grant No. 2010 t d03), Heilongjiang University (grant No. Hdtd2010-04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationQu, Y., Tian, L.-J. & Dong, J. (2007). Acta Cryst. E63, o4832.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds