organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[(Pyridin-2-yl)amino]­meth­yl}phenol

aKey Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 June 2012; accepted 10 July 2012; online 18 July 2012)

The planes of the aromatic rings of the title compound, C12H12N2O, are twisted by 50.33 (15)°. The phenol O atom is a hydrogen-bond donor to the pyridine N atom, resulting in the formation of an eight-membered ring in the mol­ecule. The amino N atom is a hydrogen-bond donor to the phenol O atom of an adjacent mol­ecule; this hydrogen bond leads to the formation of a helical chain that runs along the a axis.

Related literature

For the related compound 2-{[(pyrazin-2-yl)amino]­meth­yl}­phenol, see: Gao & Ng (2012[Gao, S. & Ng, S. W. (2012). Acta Cryst. E68, o2472.]). For 2-[(pyridin-3-yl­amino)­meth­yl]phenol, see: Xu et al. (2011[Xu, J., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, o3259.]). For the metal adducts of 2-[(pyridin-2-yl­amino)­meth­yl]phenol, see: Yalçın et al. (2007[Yalçın, B., Fatullayeva, P. A., Büyükgüngör, O., Koşar, B., Taşcıoğlu, S., Israfilov, A. I., Ibayev, Z. D., Medjidov, A. A. & Aydın, A. (2007). Polyhedron, 26, 3301-3309.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O

  • Mr = 200.24

  • Orthorhombic, P 21 21 21

  • a = 6.3331 (4) Å

  • b = 10.6761 (9) Å

  • c = 15.3714 (10) Å

  • V = 1039.30 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.25 × 0.19 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.979, Tmax = 0.988

  • 10221 measured reflections

  • 1391 independent reflections

  • 887 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.131

  • S = 1.04

  • 1391 reflections

  • 144 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 (1) 1.83 (2) 2.658 (3) 166 (5)
N2—H2⋯O1i 0.88 (1) 2.06 (1) 2.928 (3) 172 (3)
Symmetry code: (i) x+1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Salicylaldehyde condenses with aromatic amines to yield Schiff bases, which serve as chelating ligands to a plethora of metal systems. These Schiff bases can be readily reduce to the corresponding secondary amines, which can also function as chelating ligands. Curiously, there are only few 2-(arylamino)methylphenols compared with the plethora of Schiff bases in the chemical literature. Among the aminopyridine derivatives, only the crystal structure of 2-((pyridin-3-ylamino)methyl)phenol has been reported (Xu et al., 2011). The 2-((pyridin-2-ylamino)methyl)phenol analog (Scheme I) has been described as its metal adducts only (Yalçın et al., 2007).

The two aromatic rings of the reduced Schiff-base, C12H12N2O, are twisted along the –CH2–NH– single-bond by 50.3 (1) °. The hydroxy O atom is hydrogen-bond donor to the pyridyl N atom and an eight-membered ring is formed (Fig. 1). The slightly flattened secondary amino N atom is hydrogen-bond donor to the O atom of an adjacent molecule; this hydrogen bond leads to the formation of a helical chain that runs along the a-axis of the orthorhombic unit cell (Fig. 2, Table 1).

Related literature top

For the related compound 2-{[(pyrazin-2-yl)amino]methyl}phenol, see: Gao & Ng (2012). For 2-[(pyridin-3-ylamino)methyl]phenol, see: Xu et al. (2011). For the metal adducts of 2-[(pyridin-2-ylamino)methyl]phenol, see: Yalçın et al. (2007).

Experimental top

A solution of 2-aminopyridine (1 mmol) and salicylaldehyde (1 mmol) in toluene (50 ml) was heated for 10 h. The solvent was removed under vacuum, and the residue was reduced in absolute methanol by sodium borohydride. Light yellow crystals were obtained by recrystallization from methanol in 80% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints N–H 0.88±0.01 Å and O–H 0.84±0.01 Å; their temperature factors were refined.

In the absence of heavy scatters, 980 Friedel pairs were merged.

Structure description top

Salicylaldehyde condenses with aromatic amines to yield Schiff bases, which serve as chelating ligands to a plethora of metal systems. These Schiff bases can be readily reduce to the corresponding secondary amines, which can also function as chelating ligands. Curiously, there are only few 2-(arylamino)methylphenols compared with the plethora of Schiff bases in the chemical literature. Among the aminopyridine derivatives, only the crystal structure of 2-((pyridin-3-ylamino)methyl)phenol has been reported (Xu et al., 2011). The 2-((pyridin-2-ylamino)methyl)phenol analog (Scheme I) has been described as its metal adducts only (Yalçın et al., 2007).

The two aromatic rings of the reduced Schiff-base, C12H12N2O, are twisted along the –CH2–NH– single-bond by 50.3 (1) °. The hydroxy O atom is hydrogen-bond donor to the pyridyl N atom and an eight-membered ring is formed (Fig. 1). The slightly flattened secondary amino N atom is hydrogen-bond donor to the O atom of an adjacent molecule; this hydrogen bond leads to the formation of a helical chain that runs along the a-axis of the orthorhombic unit cell (Fig. 2, Table 1).

For the related compound 2-{[(pyrazin-2-yl)amino]methyl}phenol, see: Gao & Ng (2012). For 2-[(pyridin-3-ylamino)methyl]phenol, see: Xu et al. (2011). For the metal adducts of 2-[(pyridin-2-ylamino)methyl]phenol, see: Yalçın et al. (2007).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C12H12N2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain motif.
2-{[(Pyridin-2-yl)amino]methyl}phenol top
Crystal data top
C12H12N2OF(000) = 424
Mr = 200.24Dx = 1.280 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6231 reflections
a = 6.3331 (4) Åθ = 3.3–27.4°
b = 10.6761 (9) ŵ = 0.08 mm1
c = 15.3714 (10) ÅT = 295 K
V = 1039.30 (13) Å3Prism, faint yellow
Z = 40.25 × 0.19 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1391 independent reflections
Radiation source: fine-focus sealed tube887 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scanθmax = 27.4°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.979, Tmax = 0.988k = 1313
10221 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0773P)2]
where P = (Fo2 + 2Fc2)/3
1391 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.13 e Å3
2 restraintsΔρmin = 0.18 e Å3
Crystal data top
C12H12N2OV = 1039.30 (13) Å3
Mr = 200.24Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.3331 (4) ŵ = 0.08 mm1
b = 10.6761 (9) ÅT = 295 K
c = 15.3714 (10) Å0.25 × 0.19 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1391 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
887 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.988Rint = 0.047
10221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.13 e Å3
1391 reflectionsΔρmin = 0.18 e Å3
144 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6052 (3)0.1233 (2)0.18887 (14)0.0752 (7)
N10.8839 (3)0.0670 (2)0.06566 (14)0.0570 (6)
N21.1470 (4)0.1185 (3)0.16368 (15)0.0672 (8)
C10.8251 (6)0.0489 (3)0.01804 (18)0.0672 (8)
H1A0.68820.02120.02860.081*
C20.9537 (6)0.0687 (3)0.0877 (2)0.0762 (9)
H2A0.90690.05340.14410.091*
C31.1575 (6)0.1126 (3)0.0720 (2)0.0706 (9)
H31.24830.12940.11810.085*
C41.2220 (5)0.1305 (3)0.01124 (19)0.0636 (8)
H41.35730.16000.02270.076*
C51.0823 (4)0.1041 (3)0.08020 (17)0.0542 (7)
C61.0371 (5)0.0617 (3)0.23756 (18)0.0652 (8)
H6A1.14140.02690.27690.078*
H6B0.95130.00710.21630.078*
C70.8978 (4)0.1498 (3)0.28793 (17)0.0564 (7)
C80.9675 (5)0.2047 (3)0.36466 (18)0.0672 (9)
H81.10320.18720.38430.081*
C90.8415 (6)0.2848 (3)0.4129 (2)0.0761 (9)
H90.89110.31930.46450.091*
C100.6432 (6)0.3126 (3)0.3835 (2)0.0763 (10)
H100.55830.36730.41500.092*
C110.5680 (5)0.2601 (3)0.30782 (18)0.0692 (8)
H110.43340.28010.28810.083*
C120.6935 (4)0.1769 (3)0.26072 (17)0.0567 (7)
H10.694 (5)0.093 (4)0.153 (2)0.119 (17)*
H21.2851 (18)0.126 (4)0.167 (2)0.092 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0449 (10)0.1083 (19)0.0723 (13)0.0019 (12)0.0022 (11)0.0175 (13)
N10.0441 (11)0.0614 (15)0.0655 (13)0.0003 (11)0.0053 (11)0.0049 (11)
N20.0426 (12)0.099 (2)0.0599 (14)0.0044 (13)0.0005 (11)0.0014 (13)
C10.0658 (18)0.068 (2)0.0680 (18)0.0014 (15)0.0109 (16)0.0112 (15)
C20.094 (2)0.073 (2)0.0620 (16)0.001 (2)0.0054 (19)0.0145 (16)
C30.084 (2)0.064 (2)0.0638 (18)0.0032 (17)0.0141 (16)0.0084 (14)
C40.0585 (16)0.0609 (19)0.0715 (19)0.0017 (15)0.0113 (15)0.0067 (14)
C50.0471 (14)0.0553 (17)0.0601 (14)0.0020 (13)0.0012 (13)0.0030 (13)
C60.0544 (15)0.078 (2)0.0634 (16)0.0060 (15)0.0075 (14)0.0105 (15)
C70.0471 (14)0.0667 (19)0.0555 (14)0.0064 (13)0.0017 (13)0.0094 (13)
C80.0610 (17)0.082 (2)0.0581 (15)0.0153 (17)0.0026 (15)0.0086 (15)
C90.090 (2)0.077 (2)0.0616 (16)0.022 (2)0.0027 (18)0.0032 (17)
C100.087 (2)0.071 (2)0.0709 (18)0.0049 (19)0.0184 (18)0.0051 (16)
C110.0581 (16)0.078 (2)0.0713 (17)0.0046 (17)0.0107 (15)0.0055 (17)
C120.0497 (14)0.0644 (19)0.0561 (15)0.0075 (13)0.0031 (13)0.0002 (13)
Geometric parameters (Å, º) top
O1—C121.364 (3)C4—H40.9300
O1—H10.851 (10)C6—C71.504 (4)
N1—C51.336 (4)C6—H6A0.9700
N1—C11.353 (3)C6—H6B0.9700
N2—C51.356 (3)C7—C81.389 (4)
N2—C61.464 (4)C7—C121.390 (4)
N2—H20.879 (10)C8—C91.384 (5)
C1—C21.362 (5)C8—H80.9300
C1—H1A0.9300C9—C101.367 (5)
C2—C31.395 (5)C9—H90.9300
C2—H2A0.9300C10—C111.377 (4)
C3—C41.357 (4)C10—H100.9300
C3—H30.9300C11—C121.394 (4)
C4—C51.409 (4)C11—H110.9300
C12—O1—H1114 (3)C7—C6—H6A108.6
C5—N1—C1117.4 (3)N2—C6—H6B108.6
C5—N2—C6122.9 (3)C7—C6—H6B108.6
C5—N2—H2111 (2)H6A—C6—H6B107.5
C6—N2—H2118 (2)C8—C7—C12117.6 (3)
N1—C1—C2124.1 (3)C8—C7—C6121.0 (3)
N1—C1—H1A118.0C12—C7—C6121.4 (3)
C2—C1—H1A118.0C9—C8—C7122.1 (3)
C1—C2—C3118.0 (3)C9—C8—H8118.9
C1—C2—H2A121.0C7—C8—H8118.9
C3—C2—H2A121.0C10—C9—C8119.1 (3)
C4—C3—C2119.3 (3)C10—C9—H9120.4
C4—C3—H3120.4C8—C9—H9120.4
C2—C3—H3120.4C9—C10—C11120.5 (3)
C3—C4—C5119.5 (3)C9—C10—H10119.7
C3—C4—H4120.2C11—C10—H10119.7
C5—C4—H4120.2C10—C11—C12120.1 (3)
N1—C5—N2118.4 (2)C10—C11—H11120.0
N1—C5—C4121.6 (3)C12—C11—H11120.0
N2—C5—C4120.0 (2)O1—C12—C7122.5 (3)
N2—C6—C7114.8 (3)O1—C12—C11117.0 (3)
N2—C6—H6A108.6C7—C12—C11120.5 (3)
C5—N1—C1—C21.4 (5)N2—C6—C7—C1282.9 (4)
N1—C1—C2—C31.3 (5)C12—C7—C8—C90.6 (4)
C1—C2—C3—C41.8 (5)C6—C7—C8—C9179.1 (3)
C2—C3—C4—C50.2 (5)C7—C8—C9—C101.1 (5)
C1—N1—C5—N2177.7 (3)C8—C9—C10—C111.1 (5)
C1—N1—C5—C43.6 (4)C9—C10—C11—C120.6 (5)
C6—N2—C5—N118.7 (5)C8—C7—C12—O1176.6 (3)
C6—N2—C5—C4162.5 (3)C6—C7—C12—O11.9 (4)
C3—C4—C5—N13.0 (5)C8—C7—C12—C112.3 (4)
C3—C4—C5—N2178.2 (3)C6—C7—C12—C11179.2 (3)
C5—N2—C6—C7101.6 (3)C10—C11—C12—O1176.6 (3)
N2—C6—C7—C898.6 (3)C10—C11—C12—C72.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (1)1.83 (2)2.658 (3)166 (5)
N2—H2···O1i0.88 (1)2.06 (1)2.928 (3)172 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H12N2O
Mr200.24
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)6.3331 (4), 10.6761 (9), 15.3714 (10)
V3)1039.30 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.19 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.979, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10221, 1391, 887
Rint0.047
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.131, 1.04
No. of reflections1391
No. of parameters144
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.18

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (1)1.83 (2)2.658 (3)166 (5)
N2—H2···O1i0.88 (1)2.06 (1)2.928 (3)172 (3)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (grant No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (grants No. 12511z023 and No. 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (grant No. 2010td03), Heilongjiang University (grant No. Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationGao, S. & Ng, S. W. (2012). Acta Cryst. E68, o2472.  CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, o3259.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYalçın, B., Fatullayeva, P. A., Büyükgüngör, O., Koşar, B., Taşcıoğlu, S., Israfilov, A. I., Ibayev, Z. D., Medjidov, A. A. & Aydın, A. (2007). Polyhedron, 26, 3301–3309.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds