organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2-Hy­dr­oxy­benz­yl)amino]­pyrazinium perchlorate–2-[(pyrazin-2-yl­amino)­meth­yl]phenol (1/1)

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 June 2012; accepted 11 July 2012; online 18 July 2012)

In the crystal structure of the title co-crystal, C11H12N3O+·ClO4·C11H11N3O, the perchlorate ion is disordered about a twofold rotation axis with the Cl atom located on the twofold rotation axis; the 2-[(2-hy­droxy­benz­yl)amino]­pyrazinium cation and the neutral 2-[(pyrazin-2-yl­amino)­meth­yl]phenol mol­ecule are disordered about the rotation axis in a 1:1 ratio. These two are connected by a pyrazine–pyrazine N1—H⋯N4 hydrogen bond. The cation, whose two aromatic rings are twisted along the –CH2—NH– bond by 76.8 (1)°, is a hydrogen-bond donor to the perchlorate ion through the N atom of this link.

Related literature

For 2-{[(pyrazin-2-yl)amino]­meth­yl}phenol, see: Gao & Ng (2012[Gao, S. & Ng, S. W. (2012). Acta Cryst. E68, o2472.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N3O+·ClO4·C11H11N3O

  • Mr = 502.91

  • Monoclinic, C 2

  • a = 19.3402 (14) Å

  • b = 5.9467 (3) Å

  • c = 11.1761 (9) Å

  • β = 116.263 (10)°

  • V = 1152.68 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 295 K

  • 0.24 × 0.21 × 0.18 mm

Data collection
  • Agilent Technologies Excalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.950, Tmax = 0.962

  • 4085 measured reflections

  • 2272 independent reflections

  • 1859 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.116

  • S = 1.02

  • 2272 reflections

  • 188 parameters

  • 49 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 970 Friedel pairs

  • Flack parameter: 0.08 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.84 (1) 1.99 (2) 2.813 (3) 168 (5)
N2—H2⋯N2ii 0.88 (1) 1.93 (2) 2.793 (5) 166 (6)
N3—H3⋯O2 0.88 (1) 2.04 (2) 2.868 (7) 158 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) -x+1, y, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Salicylaldehyde condenses with romatic amines to yield Schiff bases, which serve as chelating ligands to a plethora of metal systems. These Schiff bases can be readily reduce to the corresponding secondary amines, which can also function as chelating ligands. Curiously, there are only few 2-(arylamino)methylphenols compared with the plethora of Schiff bases in the chemical literature. We have communicated the crystal structure of 2-{[(pyrazin-2-yl)amino]methyl}phenol (Gao & Ng, 2012). The compound reacts with half a molar equivalent of perchloric acid to form the co-crystal, C11H12N3O+.ClO4-.C11H11N3 (Scheme I). The C11H12N3O+ cation and the neutral C11H11N3O molecule are disordered about the same position in a 1:1 ratio. The crystal structure is interpreted in terms of the cation and neutral molecule being an N1-pyrazineH···N4-pyrazine hydrogen bond. The cation, whose two aromatic rings are twisted along the –CH2–NH– bond by 76.8 (1) °, is hydrogen-bond donor to the perchlorate ion through the N atom of this link.

Related literature top

For 2-{[(pyrazin-2-yl)amino]methyl}phenol, see: Gao & Ng (2012).

Experimental top

A solution of 2-aminopyrazine (1 mmol) and salicylaldehyde (1 mmol) in toluene (50 ml) was heated for 10 h. The solvent was removed under vacuum, and the residue was reduced in absolute methanol by sodium borohydride. Light yellow crystals were obtained by recrystallization from methanol to which several drops of perchloric acid were added.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.97 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The amino/pyrazinium and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88±0.01, O–H 0.84±0.01 Å; the temperature factors of the hydroxy amino H atoms were refined. The pyrazinium H atom should have only half-site occupancy; its temperature factor could not be refined and it was instead tied by a factor of 1.2 times.

The perchlorate ion is disordered about a twofold rotation axis; the chlorine atom itself is ordered. The four Cl–O distances were restrained to within 0.01 Å of each other as were the O···O distances. The temperature factors of the O atoms were tightly restrained to be nearly isotropic.

Structure description top

Salicylaldehyde condenses with romatic amines to yield Schiff bases, which serve as chelating ligands to a plethora of metal systems. These Schiff bases can be readily reduce to the corresponding secondary amines, which can also function as chelating ligands. Curiously, there are only few 2-(arylamino)methylphenols compared with the plethora of Schiff bases in the chemical literature. We have communicated the crystal structure of 2-{[(pyrazin-2-yl)amino]methyl}phenol (Gao & Ng, 2012). The compound reacts with half a molar equivalent of perchloric acid to form the co-crystal, C11H12N3O+.ClO4-.C11H11N3 (Scheme I). The C11H12N3O+ cation and the neutral C11H11N3O molecule are disordered about the same position in a 1:1 ratio. The crystal structure is interpreted in terms of the cation and neutral molecule being an N1-pyrazineH···N4-pyrazine hydrogen bond. The cation, whose two aromatic rings are twisted along the –CH2–NH– bond by 76.8 (1) °, is hydrogen-bond donor to the perchlorate ion through the N atom of this link.

For 2-{[(pyrazin-2-yl)amino]methyl}phenol, see: Gao & Ng (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C11H12N3O+.ClO4-.C11H11N3O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.
2-[(2-Hydroxybenzyl)amino]pyrazinium perchlorate–2-[(pyrazin-2-ylamino)methyl]phenol (1/1) top
Crystal data top
C11H12N3O+·ClO4·C11H11N3OF(000) = 524
Mr = 502.91Dx = 1.449 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 1220 reflections
a = 19.3402 (14) Åθ = 3.6–26.3°
b = 5.9467 (3) ŵ = 0.22 mm1
c = 11.1761 (9) ÅT = 295 K
β = 116.263 (10)°Prism, faint yellow
V = 1152.68 (16) Å30.24 × 0.21 × 0.18 mm
Z = 2
Data collection top
Agilent Technologies Excalibur Eos
diffractometer
2272 independent reflections
Radiation source: Enhance (Mo) X-ray Source1859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 16.1954 pixels mm-1θmax = 26.4°, θmin = 3.6°
ω scanh = 2418
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 76
Tmin = 0.950, Tmax = 0.962l = 1313
4085 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.4309P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2272 reflectionsΔρmax = 0.25 e Å3
188 parametersΔρmin = 0.29 e Å3
49 restraintsAbsolute structure: Flack (1983), 970 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (12)
Crystal data top
C11H12N3O+·ClO4·C11H11N3OV = 1152.68 (16) Å3
Mr = 502.91Z = 2
Monoclinic, C2Mo Kα radiation
a = 19.3402 (14) ŵ = 0.22 mm1
b = 5.9467 (3) ÅT = 295 K
c = 11.1761 (9) Å0.24 × 0.21 × 0.18 mm
β = 116.263 (10)°
Data collection top
Agilent Technologies Excalibur Eos
diffractometer
2272 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1859 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.962Rint = 0.017
4085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116Δρmax = 0.25 e Å3
S = 1.02Δρmin = 0.29 e Å3
2272 reflectionsAbsolute structure: Flack (1983), 970 Friedel pairs
188 parametersAbsolute structure parameter: 0.08 (12)
49 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.50000.4267 (2)0.50000.0579 (4)
O10.69568 (12)0.7165 (4)0.1561 (3)0.0532 (6)
H10.7398 (12)0.706 (9)0.160 (4)0.096 (16)*
O20.4621 (4)0.4483 (13)0.3574 (4)0.097 (2)0.50
O30.5616 (4)0.5734 (14)0.5459 (9)0.157 (4)0.50
O40.5237 (5)0.2039 (9)0.5269 (9)0.139 (4)0.50
O50.4483 (5)0.4823 (15)0.5488 (10)0.133 (4)0.50
N10.33389 (14)1.1417 (5)0.1364 (3)0.0477 (7)
N20.45243 (14)1.0855 (4)0.0644 (2)0.0356 (6)
H20.489 (3)1.095 (11)0.037 (6)0.043*0.50
N30.50166 (16)0.7989 (5)0.2224 (3)0.0521 (8)
H30.493 (2)0.719 (7)0.280 (3)0.077 (13)*
C10.44928 (15)0.9564 (5)0.1601 (3)0.0364 (7)
C20.38666 (17)0.9909 (6)0.1934 (3)0.0463 (8)
H2A0.38370.90080.25900.056*
C30.34042 (18)1.2745 (6)0.0433 (3)0.0494 (9)
H3A0.30461.38850.00350.059*
C40.39772 (16)1.2451 (6)0.0069 (3)0.0432 (8)
H40.39961.33640.05920.052*
C60.56937 (16)0.7511 (6)0.2008 (3)0.0437 (7)
H6A0.55340.74230.10550.052*
H6B0.58960.60490.23870.052*
C70.63300 (16)0.9214 (6)0.2598 (3)0.0373 (6)
C80.69713 (16)0.8951 (6)0.2350 (3)0.0402 (7)
C90.75839 (19)1.0441 (6)0.2873 (3)0.0487 (8)
H90.80111.02320.27100.058*
C100.7561 (2)1.2220 (7)0.3631 (3)0.0577 (9)
H100.79691.32330.39730.069*
C110.6936 (2)1.2508 (7)0.3886 (3)0.0602 (10)
H110.69231.37150.44040.072*
C120.6323 (2)1.1010 (6)0.3376 (3)0.0497 (9)
H120.59031.12190.35600.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0570 (7)0.0717 (9)0.0516 (7)0.0000.0300 (6)0.000
O10.0385 (12)0.0598 (15)0.0739 (16)0.0029 (12)0.0364 (12)0.0173 (13)
O20.129 (5)0.104 (5)0.049 (3)0.032 (5)0.030 (3)0.005 (4)
O30.070 (4)0.208 (9)0.164 (8)0.059 (5)0.024 (5)0.032 (7)
O40.186 (10)0.093 (5)0.134 (8)0.077 (6)0.068 (7)0.035 (5)
O50.149 (7)0.155 (7)0.158 (7)0.022 (6)0.126 (6)0.036 (6)
N10.0338 (13)0.0600 (18)0.0561 (16)0.0066 (13)0.0261 (13)0.0047 (15)
N20.0327 (13)0.0398 (14)0.0403 (13)0.0037 (11)0.0216 (11)0.0041 (11)
N30.0438 (15)0.0585 (19)0.071 (2)0.0188 (14)0.0405 (15)0.0297 (16)
C10.0305 (14)0.0414 (16)0.0445 (16)0.0024 (14)0.0231 (12)0.0018 (15)
C20.0391 (17)0.058 (2)0.056 (2)0.0027 (16)0.0337 (15)0.0047 (16)
C30.0413 (17)0.056 (2)0.0513 (19)0.0182 (17)0.0210 (15)0.0041 (17)
C40.0421 (16)0.0475 (18)0.0392 (16)0.0081 (16)0.0172 (14)0.0095 (15)
C60.0374 (15)0.0441 (18)0.0576 (19)0.0147 (15)0.0283 (14)0.0126 (16)
C70.0371 (14)0.0404 (16)0.0362 (14)0.0121 (15)0.0179 (12)0.0082 (15)
C80.0353 (16)0.0486 (19)0.0389 (15)0.0111 (15)0.0184 (13)0.0056 (15)
C90.0408 (18)0.057 (2)0.0479 (19)0.0026 (15)0.0195 (16)0.0043 (16)
C100.053 (2)0.061 (2)0.047 (2)0.0041 (19)0.0118 (17)0.0012 (19)
C110.072 (2)0.056 (2)0.0398 (18)0.014 (2)0.0133 (17)0.0103 (16)
C120.053 (2)0.058 (2)0.0429 (18)0.0198 (18)0.0262 (16)0.0046 (16)
Geometric parameters (Å, º) top
Cl1—O5i1.375 (6)C1—C21.431 (4)
Cl1—O51.375 (6)C2—H2A0.9300
Cl1—O31.380 (5)C3—C41.350 (5)
Cl1—O3i1.380 (5)C3—H3A0.9300
Cl1—O4i1.390 (5)C4—H40.9300
Cl1—O41.390 (5)C6—C71.503 (5)
Cl1—O2i1.435 (4)C6—H6A0.9700
Cl1—O21.435 (4)C6—H6B0.9700
O1—C81.373 (4)C7—C121.381 (4)
O1—H10.840 (11)C7—C81.394 (4)
N1—C21.295 (4)C8—C91.385 (4)
N1—C31.356 (4)C9—C101.369 (5)
N2—C11.339 (4)C9—H90.9300
N2—C41.353 (4)C10—C111.368 (5)
N2—H20.883 (11)C10—H100.9300
N3—C11.328 (4)C11—C121.388 (5)
N3—C61.461 (4)C11—H110.9300
N3—H30.877 (11)C12—H120.9300
O5—Cl1—O3111.1 (4)N2—C4—H4119.3
O5—Cl1—O4111.9 (5)N3—C6—C7114.6 (3)
O3—Cl1—O4111.9 (4)N3—C6—H6A108.6
O5—Cl1—O2108.4 (4)C7—C6—H6A108.6
O3—Cl1—O2106.8 (4)N3—C6—H6B108.6
O4—Cl1—O2106.4 (4)C7—C6—H6B108.6
C8—O1—H1107 (4)H6A—C6—H6B107.6
C2—N1—C3117.4 (3)C12—C7—C8118.0 (3)
C1—N2—C4118.6 (2)C12—C7—C6124.3 (3)
C1—N2—H2130 (4)C8—C7—C6117.7 (3)
C4—N2—H2111 (4)O1—C8—C9122.4 (3)
C1—N3—C6125.6 (3)O1—C8—C7116.6 (3)
C1—N3—H3115 (3)C9—C8—C7121.0 (3)
C6—N3—H3120 (3)C10—C9—C8120.0 (3)
N3—C1—N2121.9 (2)C10—C9—H9120.0
N3—C1—C2120.1 (3)C8—C9—H9120.0
N2—C1—C2117.9 (3)C11—C10—C9119.9 (4)
N1—C2—C1123.0 (3)C11—C10—H10120.0
N1—C2—H2A118.5C9—C10—H10120.0
C1—C2—H2A118.5C10—C11—C12120.5 (3)
C4—C3—N1121.6 (3)C10—C11—H11119.8
C4—C3—H3A119.2C12—C11—H11119.8
N1—C3—H3A119.2C7—C12—C11120.7 (3)
C3—C4—N2121.4 (3)C7—C12—H12119.7
C3—C4—H4119.3C11—C12—H12119.7
C6—N3—C1—N22.6 (5)N3—C6—C7—C8175.6 (3)
C6—N3—C1—C2178.1 (3)C12—C7—C8—O1179.2 (3)
C4—N2—C1—N3179.0 (3)C6—C7—C8—O11.2 (4)
C4—N2—C1—C21.7 (4)C12—C7—C8—C90.3 (4)
C3—N1—C2—C11.5 (5)C6—C7—C8—C9179.3 (3)
N3—C1—C2—N1179.9 (3)O1—C8—C9—C10178.6 (3)
N2—C1—C2—N10.7 (5)C7—C8—C9—C100.9 (5)
C2—N1—C3—C42.8 (5)C8—C9—C10—C110.8 (5)
N1—C3—C4—N21.8 (5)C9—C10—C11—C120.2 (5)
C1—N2—C4—C30.5 (5)C8—C7—C12—C110.3 (5)
C1—N3—C6—C774.2 (4)C6—C7—C12—C11179.9 (3)
N3—C6—C7—C124.9 (4)C10—C11—C12—C70.4 (5)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1ii0.84 (1)1.99 (2)2.813 (3)168 (5)
N2—H2···N2iii0.88 (1)1.93 (2)2.793 (5)166 (6)
N3—H3···O20.88 (1)2.04 (2)2.868 (7)158 (4)
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H12N3O+·ClO4·C11H11N3O
Mr502.91
Crystal system, space groupMonoclinic, C2
Temperature (K)295
a, b, c (Å)19.3402 (14), 5.9467 (3), 11.1761 (9)
β (°) 116.263 (10)
V3)1152.68 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.24 × 0.21 × 0.18
Data collection
DiffractometerAgilent Technologies Excalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.950, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
4085, 2272, 1859
Rint0.017
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.116, 1.02
No. of reflections2272
No. of parameters188
No. of restraints49
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.29
Absolute structureFlack (1983), 970 Friedel pairs
Absolute structure parameter0.08 (12)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.84 (1)1.99 (2)2.813 (3)168 (5)
N2—H2···N2ii0.88 (1)1.93 (2)2.793 (5)166 (6)
N3—H3···O20.88 (1)2.04 (2)2.868 (7)158 (4)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y, z.
 

Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (grant No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (grants No. 12511z023 and No. 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (grant No. 2010td03), Heilongjiang University (grant No. Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, S. & Ng, S. W. (2012). Acta Cryst. E68, o2472.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds