metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(acetato-κO)bis­­(2-pyridine­aldoxime-κ2N,N′)cadmium

aDepartment of Chemistry, Islamic Azad University, Omidieh Branch, Omidieh, Iran
*Correspondence e-mail: sadif.shirvan1@gmail.com

(Received 25 June 2012; accepted 12 July 2012; online 18 July 2012)

In the title mol­ecule, [Cd(CH3COO)2(C6H6N2O)2], the CdII cation is N,N′-chelated by two 2-pyridine­aldoxime ligands and coordinated by two acetate anions in a distorted octa­hedral geometry. The hy­droxy groups of the 2-pyridine­aldoxime ligands link to the acetate anions via intra­molecular O—H⋯O hydrogen bonds. Weak inter­molecular C—H⋯O hydrogen bonds occur in the crystal.

Related literature

For related structures, see: Abu-Youssef et al. (2010[Abu-Youssef, M. A. M., Soliman, S. M., Langer, V., Gohar, Y. M., Hasanen, A. A., Makhyoun, M. A., Zaky, A. H. & Ohrstrom, L. R. (2010). Inorg. Chem. 49, 9788-9797.]); Costa et al. (2009[Costa, R., Barone, N., Gorczycka, C., Powers, E. F., Cupelo, W., Lopez, J., Herrick, R. S. & Ziegler, C. J. (2009). J. Organomet. Chem. 694, 2163-2170.]); Ha (2010[Ha, K. (2010). Z. Kristallogr. New Cryst. Struct. 225, 651-652.]); Konidaris et al. (2010[Konidaris, K. F., Katsoulakou, E., Kaplanis, M., Bekiari, V., Terzis, A., Raptopoulou, C. P., Zoupa, E. M. & Perlepes, S. P. (2010). Dalton Trans. 39, 4492-4494.]); Korpi et al. (2005[Korpi, H., Polamo, M., Leskela, M. & Repo, T. (2005). Inorg. Chem. Commun. 8, 1181-1184.]); Milios et al. (2004[Milios, C. J., Kefalloniti, E., Raptopoulou, C. P., Terzis, A., Escuer, A., Vicente, R. & Perlepes, S. P. (2004). Polyhedron, 23, 83-95.]); Mukherjee et al.(2009[Mukherjee, S., Patel, B. A. & Bhaduri, S. (2009). Organometallics, 28, 3074-3078.]); Torabi et al. (2005[Torabi, A. A., Kian, R., Souldozi, A. & Welter, R. (2005). Z. Kristallogr. New Cryst. Struct. 220, 613-614.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C2H3O2)2(C6H6N2O)2]

  • Mr = 474.75

  • Triclinic, [P \overline 1]

  • a = 8.7875 (6) Å

  • b = 9.0946 (6) Å

  • c = 13.8873 (11) Å

  • α = 100.837 (6)°

  • β = 97.994 (6)°

  • γ = 114.700 (5)°

  • V = 960.42 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 298 K

  • 0.48 × 0.38 × 0.30 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.621, Tmax = 0.751

  • 8165 measured reflections

  • 3758 independent reflections

  • 3236 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 0.99

  • 3758 reflections

  • 252 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1 2.438 (3)
Cd1—N2 2.362 (3)
Cd1—N3 2.411 (3)
Cd1—N4 2.344 (3)
Cd1—O3 2.245 (3)
Cd1—O5 2.210 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O6 0.83 (2) 1.72 (1) 2.545 (4) 169 (4)
O2—H2B⋯O4 0.83 (5) 1.69 (5) 2.512 (5) 175 (6)
C6—H6A⋯O3i 0.93 2.52 3.381 (5) 153
C9—H9⋯O5ii 0.93 2.55 3.387 (6) 151
C12—H12A⋯O6iii 0.93 2.56 3.264 (6) 132
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x, y-1, z; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-Pyridinealdoxime (pya), is a good bidentate ligand, and numerous complexes with pya have been prepared, such as that of manganese (Ha, 2010; Milios et al., 2004), rhenium (Costa et al., 2009), nickel (Mukherjee, et al., 2009), silver (Abu-Youssef et al., 2010), mercury (Torabi et al., 2005), zinc (Konidaris et al., 2010) and copper (Korpi et al., 2005). Here, we report the synthesis and structure of the title compound.

In the molecule of the title compound, (Fig. 1), the CdII atom is six-coordinated in a distorted octahedral configurations by four N atoms from two 2-pyridinealdoxime ligands and two O atom from two acetate anions. The Cd—O and Cd—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds form a three-dimensional network (Table 2 & Fig. 2).

Related literature top

For related structures, see: Abu-Youssef et al. (2010); Costa et al. (2009); Ha (2010); Konidaris et al. (2010); Korpi et al. (2005); Milios et al. (2004); Mukherjee et al.(2009); Torabi et al. (2005).

Experimental top

A solution of 2-pyridinealdoxime (0.50 g, 4.0 mmol) in methanol (15 ml) was added to a solution of Cd(OAc)2.2H2O (0.54 g, 2.0 mmol) in methanol (15 ml) and the resulting colorless solution was stirred for 15 min at room temperature. This solution was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated (yield 0.69 g, 72.7%).

Refinement top

Hydroxyl H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Uiso(C) for the others.

Structure description top

2-Pyridinealdoxime (pya), is a good bidentate ligand, and numerous complexes with pya have been prepared, such as that of manganese (Ha, 2010; Milios et al., 2004), rhenium (Costa et al., 2009), nickel (Mukherjee, et al., 2009), silver (Abu-Youssef et al., 2010), mercury (Torabi et al., 2005), zinc (Konidaris et al., 2010) and copper (Korpi et al., 2005). Here, we report the synthesis and structure of the title compound.

In the molecule of the title compound, (Fig. 1), the CdII atom is six-coordinated in a distorted octahedral configurations by four N atoms from two 2-pyridinealdoxime ligands and two O atom from two acetate anions. The Cd—O and Cd—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds form a three-dimensional network (Table 2 & Fig. 2).

For related structures, see: Abu-Youssef et al. (2010); Costa et al. (2009); Ha (2010); Konidaris et al. (2010); Korpi et al. (2005); Milios et al. (2004); Mukherjee et al.(2009); Torabi et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for title compound.
Bis(acetato-κO)bis(2-pyridinealdoxime- κ2N,N')cadmium(II) top
Crystal data top
[Cd(C2H3O2)2(C6H6N2O)2]Z = 2
Mr = 474.75F(000) = 476
Triclinic, P1Dx = 1.642 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7875 (6) ÅCell parameters from 8165 reflections
b = 9.0946 (6) Åθ = 1.5–26.0°
c = 13.8873 (11) ŵ = 1.18 mm1
α = 100.837 (6)°T = 298 K
β = 97.994 (6)°Prism, colorless
γ = 114.700 (5)°0.48 × 0.38 × 0.30 mm
V = 960.42 (12) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3758 independent reflections
Radiation source: fine-focus sealed tube3236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.621, Tmax = 0.751k = 1111
8165 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0491P)2]
where P = (Fo2 + 2Fc2)/3
3758 reflections(Δ/σ)max = 0.010
252 parametersΔρmax = 0.64 e Å3
2 restraintsΔρmin = 0.95 e Å3
Crystal data top
[Cd(C2H3O2)2(C6H6N2O)2]γ = 114.700 (5)°
Mr = 474.75V = 960.42 (12) Å3
Triclinic, P1Z = 2
a = 8.7875 (6) ÅMo Kα radiation
b = 9.0946 (6) ŵ = 1.18 mm1
c = 13.8873 (11) ÅT = 298 K
α = 100.837 (6)°0.48 × 0.38 × 0.30 mm
β = 97.994 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3758 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3236 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.751Rint = 0.056
8165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.64 e Å3
3758 reflectionsΔρmin = 0.95 e Å3
252 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8192 (5)0.7991 (5)0.9158 (3)0.0581 (9)
H10.87590.80330.86390.070*
C20.8947 (6)0.7893 (6)1.0068 (3)0.0722 (12)
H20.99920.78431.01520.087*
C30.8151 (6)0.7869 (7)1.0838 (4)0.0845 (14)
H30.86530.78221.14600.101*
C40.6590 (6)0.7916 (7)1.0692 (3)0.0781 (13)
H40.60290.79151.12130.094*
C50.5877 (5)0.7965 (5)0.9757 (3)0.0570 (9)
C60.4177 (5)0.7942 (5)0.9549 (3)0.0601 (9)
H6A0.36280.80311.00670.072*
C70.3108 (5)0.3972 (5)0.6895 (3)0.0564 (9)
H70.22980.41420.72030.068*
C80.2865 (6)0.2340 (5)0.6552 (3)0.0672 (11)
H80.19250.14390.66370.081*
C90.4040 (6)0.2086 (5)0.6088 (4)0.0731 (12)
H90.39170.10060.58530.088*
C100.5391 (6)0.3433 (5)0.5972 (3)0.0686 (11)
H100.61880.32770.56430.082*
C110.5577 (4)0.5027 (5)0.6342 (3)0.0508 (8)
C120.7043 (5)0.6520 (5)0.6258 (3)0.0649 (11)
H12A0.78590.63910.59390.078*
C130.8125 (7)1.3947 (5)0.8418 (4)0.0858 (14)
H13A0.84081.41500.91390.103*
H13B0.71621.41600.82180.103*
H13C0.91021.46820.82140.103*
C140.7660 (5)1.2150 (5)0.7920 (3)0.0560 (9)
C150.0811 (5)0.7410 (6)0.4978 (3)0.0698 (11)
H15A0.10290.67270.44530.084*
H15B0.11670.85130.48820.084*
H15C0.04000.69040.49550.084*
C160.1808 (5)0.7544 (5)0.5986 (3)0.0540 (9)
N10.6675 (4)0.8026 (4)0.8998 (2)0.0509 (7)
N20.3474 (4)0.7801 (4)0.8656 (2)0.0520 (7)
N30.4438 (3)0.5309 (3)0.6806 (2)0.0459 (6)
N40.7206 (4)0.7966 (4)0.6613 (2)0.0519 (7)
O10.1873 (4)0.7749 (5)0.8529 (2)0.0717 (8)
H1B0.159 (5)0.763 (5)0.7912 (10)0.058 (12)*
O20.8603 (4)0.9252 (4)0.6470 (3)0.0863 (10)
H2B0.864 (7)1.016 (4)0.675 (4)0.11 (2)*
O30.6409 (4)1.1036 (3)0.8110 (2)0.0700 (8)
O40.8568 (4)1.1901 (4)0.7372 (3)0.0850 (9)
O50.3410 (3)0.8162 (4)0.6126 (2)0.0682 (7)
O60.0997 (4)0.7014 (5)0.6609 (2)0.0892 (10)
Cd10.51653 (3)0.82333 (3)0.745759 (18)0.04330 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.062 (2)0.063 (2)0.051 (2)0.0298 (19)0.0140 (17)0.0144 (18)
C20.072 (3)0.082 (3)0.066 (3)0.042 (2)0.006 (2)0.019 (2)
C30.088 (3)0.109 (4)0.055 (3)0.044 (3)0.002 (2)0.032 (3)
C40.087 (3)0.106 (4)0.045 (2)0.045 (3)0.015 (2)0.026 (2)
C50.064 (2)0.061 (2)0.0416 (19)0.0260 (18)0.0115 (16)0.0115 (17)
C60.066 (2)0.073 (3)0.046 (2)0.032 (2)0.0223 (17)0.0176 (18)
C70.0511 (19)0.058 (2)0.054 (2)0.0191 (17)0.0148 (16)0.0152 (18)
C80.069 (2)0.054 (2)0.064 (3)0.0150 (19)0.012 (2)0.019 (2)
C90.088 (3)0.048 (2)0.077 (3)0.030 (2)0.012 (2)0.013 (2)
C100.076 (3)0.062 (2)0.074 (3)0.040 (2)0.023 (2)0.009 (2)
C110.0512 (18)0.055 (2)0.0488 (19)0.0270 (16)0.0140 (15)0.0122 (16)
C120.060 (2)0.071 (3)0.074 (3)0.034 (2)0.036 (2)0.018 (2)
C130.098 (3)0.047 (2)0.095 (4)0.020 (2)0.022 (3)0.010 (2)
C140.065 (2)0.053 (2)0.045 (2)0.0239 (18)0.0067 (17)0.0140 (17)
C150.062 (2)0.092 (3)0.059 (2)0.038 (2)0.0087 (19)0.024 (2)
C160.051 (2)0.055 (2)0.057 (2)0.0275 (17)0.0068 (16)0.0141 (17)
N10.0543 (16)0.0539 (17)0.0436 (16)0.0251 (14)0.0106 (13)0.0112 (13)
N20.0485 (15)0.0629 (19)0.0475 (17)0.0252 (14)0.0201 (13)0.0163 (14)
N30.0439 (14)0.0479 (16)0.0434 (15)0.0199 (12)0.0110 (11)0.0097 (12)
N40.0469 (15)0.0542 (17)0.0562 (17)0.0202 (13)0.0243 (13)0.0174 (14)
O10.0535 (15)0.110 (2)0.0619 (19)0.0426 (16)0.0251 (13)0.0259 (18)
O20.0739 (19)0.064 (2)0.123 (3)0.0204 (16)0.064 (2)0.026 (2)
O30.0821 (19)0.0466 (15)0.0721 (18)0.0207 (14)0.0283 (15)0.0095 (14)
O40.094 (2)0.0665 (19)0.092 (2)0.0296 (17)0.0422 (19)0.0197 (18)
O50.0527 (15)0.088 (2)0.0659 (18)0.0314 (14)0.0095 (12)0.0301 (16)
O60.0664 (18)0.136 (3)0.0616 (18)0.0385 (19)0.0151 (15)0.038 (2)
Cd10.04362 (14)0.04697 (15)0.04136 (15)0.02141 (11)0.01461 (9)0.01174 (10)
Geometric parameters (Å, º) top
C1—N11.335 (5)C12—N41.254 (5)
C1—C21.379 (6)C12—H12A0.9300
C1—H10.9300C13—C141.502 (6)
C2—C31.357 (7)C13—H13A0.9600
C2—H20.9300C13—H13B0.9600
C3—C41.378 (7)C13—H13C0.9600
C3—H30.9300C14—O41.235 (5)
C4—C51.377 (6)C14—O31.246 (5)
C4—H40.9300C15—C161.499 (5)
C5—N11.342 (5)C15—H15A0.9600
C5—C61.472 (5)C15—H15B0.9600
C6—N21.263 (5)C15—H15C0.9600
C6—H6A0.9300C16—O61.237 (5)
C7—N31.330 (5)C16—O51.248 (4)
C7—C81.384 (6)N2—O11.373 (4)
C7—H70.9300N4—O21.367 (4)
C8—C91.366 (6)O1—H1B0.830 (10)
C8—H80.9300O2—H2B0.83 (5)
C9—C101.359 (6)Cd1—N12.438 (3)
C9—H90.9300Cd1—N22.362 (3)
C10—C111.376 (5)Cd1—N32.411 (3)
C10—H100.9300Cd1—N42.344 (3)
C11—N31.346 (4)Cd1—O32.245 (3)
C11—C121.468 (6)Cd1—O52.210 (3)
N1—C1—C2122.3 (4)O4—C14—C13117.2 (4)
N1—C1—H1118.8O3—C14—C13117.3 (4)
C2—C1—H1118.8C16—C15—H15A109.5
C3—C2—C1119.3 (4)C16—C15—H15B109.5
C3—C2—H2120.3H15A—C15—H15B109.5
C1—C2—H2120.3C16—C15—H15C109.5
C2—C3—C4119.4 (4)H15A—C15—H15C109.5
C2—C3—H3120.3H15B—C15—H15C109.5
C4—C3—H3120.3O6—C16—O5124.8 (4)
C5—C4—C3118.6 (4)O6—C16—C15118.3 (3)
C5—C4—H4120.7O5—C16—C15116.9 (4)
C3—C4—H4120.7C1—N1—C5118.0 (3)
N1—C5—C4122.4 (4)C1—N1—Cd1127.0 (2)
N1—C5—C6116.9 (3)C5—N1—Cd1115.0 (2)
C4—C5—C6120.7 (4)C6—N2—O1115.0 (3)
N2—C6—C5119.1 (3)C6—N2—Cd1118.9 (2)
N2—C6—H6A120.4O1—N2—Cd1124.7 (2)
C5—C6—H6A120.4C7—N3—C11117.1 (3)
N3—C7—C8123.4 (4)C7—N3—Cd1127.8 (2)
N3—C7—H7118.3C11—N3—Cd1115.0 (2)
C8—C7—H7118.3C12—N4—O2115.3 (3)
C9—C8—C7118.3 (4)C12—N4—Cd1118.4 (2)
C9—C8—H8120.8O2—N4—Cd1126.3 (2)
C7—C8—H8120.8N2—O1—H1B103 (3)
C10—C9—C8119.2 (4)N4—O2—H2B109 (4)
C10—C9—H9120.4C14—O3—Cd1129.1 (3)
C8—C9—H9120.4C16—O5—Cd1124.6 (3)
C9—C10—C11119.7 (4)O5—Cd1—O395.55 (12)
C9—C10—H10120.1O5—Cd1—N496.42 (11)
C11—C10—H10120.1O3—Cd1—N4100.57 (11)
N3—C11—C10122.1 (4)O5—Cd1—N2103.25 (10)
N3—C11—C12116.3 (3)O3—Cd1—N291.65 (11)
C10—C11—C12121.5 (3)N4—Cd1—N2155.72 (12)
N4—C12—C11120.8 (3)O5—Cd1—N392.09 (11)
N4—C12—H12A119.6O3—Cd1—N3168.11 (10)
C11—C12—H12A119.6N4—Cd1—N369.45 (10)
C14—C13—H13A109.5N2—Cd1—N395.46 (10)
C14—C13—H13B109.5O5—Cd1—N1170.71 (10)
H13A—C13—H13B109.5O3—Cd1—N189.02 (11)
C14—C13—H13C109.5N4—Cd1—N190.68 (10)
H13A—C13—H13C109.5N2—Cd1—N168.45 (10)
H13B—C13—H13C109.5N3—Cd1—N184.77 (10)
O4—C14—O3125.5 (4)
N1—C1—C2—C31.5 (7)C14—O3—Cd1—N343.8 (7)
C1—C2—C3—C41.0 (8)C14—O3—Cd1—N1102.2 (4)
C2—C3—C4—C50.8 (8)C12—N4—Cd1—O592.2 (3)
C3—C4—C5—N12.3 (7)O2—N4—Cd1—O588.5 (3)
C3—C4—C5—C6177.3 (4)C12—N4—Cd1—O3170.9 (3)
N1—C5—C6—N27.4 (6)O2—N4—Cd1—O38.4 (3)
C4—C5—C6—N2172.3 (4)C12—N4—Cd1—N251.9 (4)
N3—C7—C8—C90.9 (6)O2—N4—Cd1—N2127.4 (4)
C7—C8—C9—C100.4 (7)C12—N4—Cd1—N32.4 (3)
C8—C9—C10—C111.4 (7)O2—N4—Cd1—N3178.3 (4)
C9—C10—C11—N31.2 (7)C12—N4—Cd1—N181.8 (3)
C9—C10—C11—C12178.3 (4)O2—N4—Cd1—N197.5 (3)
N3—C11—C12—N40.6 (6)C6—N2—Cd1—O5172.9 (3)
C10—C11—C12—N4178.9 (4)O1—N2—Cd1—O57.2 (3)
C2—C1—N1—C50.1 (6)C6—N2—Cd1—O376.8 (3)
C2—C1—N1—Cd1179.1 (3)O1—N2—Cd1—O388.9 (3)
C4—C5—N1—C11.9 (6)C6—N2—Cd1—N443.8 (5)
C6—C5—N1—C1177.8 (3)O1—N2—Cd1—N4150.5 (3)
C4—C5—N1—Cd1177.3 (4)C6—N2—Cd1—N393.6 (3)
C6—C5—N1—Cd13.0 (4)O1—N2—Cd1—N3100.7 (3)
C5—C6—N2—O1178.4 (3)C6—N2—Cd1—N111.5 (3)
C5—C6—N2—Cd114.5 (5)O1—N2—Cd1—N1177.2 (3)
C8—C7—N3—C111.1 (5)C7—N3—Cd1—O584.9 (3)
C8—C7—N3—Cd1175.4 (3)C11—N3—Cd1—O598.6 (2)
C10—C11—N3—C70.0 (5)C7—N3—Cd1—O3145.1 (5)
C12—C11—N3—C7179.5 (3)C11—N3—Cd1—O331.4 (6)
C10—C11—N3—Cd1176.9 (3)C7—N3—Cd1—N4179.1 (3)
C12—C11—N3—Cd12.6 (4)C11—N3—Cd1—N42.6 (2)
C11—C12—N4—O2178.7 (4)C7—N3—Cd1—N218.7 (3)
C11—C12—N4—Cd12.0 (5)C11—N3—Cd1—N2157.8 (2)
O4—C14—O3—Cd16.0 (6)C7—N3—Cd1—N186.4 (3)
C13—C14—O3—Cd1175.2 (3)C11—N3—Cd1—N190.1 (2)
O6—C16—O5—Cd16.3 (6)C1—N1—Cd1—O5146.5 (6)
C15—C16—O5—Cd1172.3 (3)C5—N1—Cd1—O534.4 (7)
C16—O5—Cd1—O3111.5 (3)C1—N1—Cd1—O393.9 (3)
C16—O5—Cd1—N4147.2 (3)C5—N1—Cd1—O385.2 (3)
C16—O5—Cd1—N218.5 (3)C1—N1—Cd1—N46.7 (3)
C16—O5—Cd1—N377.6 (3)C5—N1—Cd1—N4174.3 (3)
C16—O5—Cd1—N17.6 (8)C1—N1—Cd1—N2173.9 (3)
C14—O3—Cd1—O585.9 (4)C5—N1—Cd1—N27.0 (3)
C14—O3—Cd1—N411.7 (4)C1—N1—Cd1—N376.0 (3)
C14—O3—Cd1—N2170.6 (3)C5—N1—Cd1—N3105.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O60.83 (2)1.72 (1)2.545 (4)169 (4)
O2—H2B···O40.83 (5)1.69 (5)2.512 (5)175 (6)
C6—H6A···O3i0.932.523.381 (5)153
C9—H9···O5ii0.932.553.387 (6)151
C12—H12A···O6iii0.932.563.264 (6)132
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C2H3O2)2(C6H6N2O)2]
Mr474.75
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.7875 (6), 9.0946 (6), 13.8873 (11)
α, β, γ (°)100.837 (6), 97.994 (6), 114.700 (5)
V3)960.42 (12)
Z2
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.48 × 0.38 × 0.30
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.621, 0.751
No. of measured, independent and
observed [I > 2σ(I)] reflections
8165, 3758, 3236
Rint0.056
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 0.99
No. of reflections3758
No. of parameters252
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.95

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N12.438 (3)Cd1—N42.344 (3)
Cd1—N22.362 (3)Cd1—O32.245 (3)
Cd1—N32.411 (3)Cd1—O52.210 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O60.831 (16)1.724 (14)2.545 (4)169 (4)
O2—H2B···O40.83 (5)1.69 (5)2.512 (5)175 (6)
C6—H6A···O3i0.932.523.381 (5)153
C9—H9···O5ii0.932.553.387 (6)151
C12—H12A···O6iii0.932.563.264 (6)132
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y1, z; (iii) x+1, y, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

References

First citationAbu-Youssef, M. A. M., Soliman, S. M., Langer, V., Gohar, Y. M., Hasanen, A. A., Makhyoun, M. A., Zaky, A. H. & Ohrstrom, L. R. (2010). Inorg. Chem. 49, 9788–9797.  Web of Science CAS PubMed Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosta, R., Barone, N., Gorczycka, C., Powers, E. F., Cupelo, W., Lopez, J., Herrick, R. S. & Ziegler, C. J. (2009). J. Organomet. Chem. 694, 2163–2170.  Web of Science CSD CrossRef CAS Google Scholar
First citationHa, K. (2010). Z. Kristallogr. New Cryst. Struct. 225, 651–652.  CAS Google Scholar
First citationKonidaris, K. F., Katsoulakou, E., Kaplanis, M., Bekiari, V., Terzis, A., Raptopoulou, C. P., Zoupa, E. M. & Perlepes, S. P. (2010). Dalton Trans. 39, 4492–4494.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKorpi, H., Polamo, M., Leskela, M. & Repo, T. (2005). Inorg. Chem. Commun. 8, 1181–1184.  Web of Science CSD CrossRef CAS Google Scholar
First citationMilios, C. J., Kefalloniti, E., Raptopoulou, C. P., Terzis, A., Escuer, A., Vicente, R. & Perlepes, S. P. (2004). Polyhedron, 23, 83–95.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, S., Patel, B. A. & Bhaduri, S. (2009). Organometallics, 28, 3074–3078.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorabi, A. A., Kian, R., Souldozi, A. & Welter, R. (2005). Z. Kristallogr. New Cryst. Struct. 220, 613–614.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds