metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tetra­aqua­copper(II)]-μ-pyrazine-2-carboxamide-κ3N4:N1,O-[bis­­(sulfato-κO)copper(II)]-μ-pyrazine-2-carboxamide-κ3N1,O:N4]

aDepartment of Chemistry, Omidieh Branch, Islamic Azad University, Omidieh, Iran
*Correspondence e-mail: sadif.shirvan1@gmail.com

(Received 27 June 2012; accepted 12 July 2012; online 18 July 2012)

In the crystal of the title polymeric compound, [Cu2(SO4)2(C5H5N3O)2(H2O)4]n, two independent CuII atoms are located on individual inversion centers. One CuII atom is coordinated by four water mol­ecules and two pyrazine-2-carboxamide ligands in a distorted O4N2 octa­hedral geometry; the other is N,O-chelated by two pyrazine-2-carboxamide ligands and further coordinated by two sulfate anions in a distorted O4N2 octa­hedral geometry. The pyrazine-2-carboxamide ligands bridge the CuII atoms to form a polymeric chain running along [110]. The crystal structure features N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Abu-Youssef et al. (2006[Abu-Youssef, M. A. M., Escuer, A. & Langer, V. (2006). Eur. J. Inorg. Chem. pp. 3177-3184.]); Azhdari Tehrani et al. (2010[Azhdari Tehrani, A., Mir Mohammad Sadegh, B. & Khavasi, H. R. (2010). Acta Cryst. E66, m261.]); Goher & Mautner (2000[Goher, M. A. S. & Mautner, F. A. (2000). Polyhedron, 19, 601-606.]); Kristiansson (2002[Kristiansson, O. (2002). Acta Cryst. E58, m130-m132.]); Mir Mohammad Sadegh et al. (2010[Mir Mohammad Sadegh, B., Azhdari Tehrani, A. & Khavasi, H. R. (2010). Acta Cryst. E66, m158.]); Munakata et al. (1997[Munakata, M., Wu, L. P., Sowa, T. K., Maekawa, M., Moriwaki, K. & Kitagawa, S. (1997). Inorg. Chem. 36, 5416-5418.]); Pacigova et al. (2008[Pacigova, S., Gyepes, R., Tatiersky, J. & Sivak, M. (2008). Dalton Trans. pp. 121-130.]); Shirvan & Haydari Dezfuli (2012a[Shirvan, S. A. & Haydari Dezfuli, S. (2012a). Acta Cryst. E68, m527.],b[Shirvan, S. A. & Haydari Dezfuli, S. (2012b). Acta Cryst. E68, m627-m628.],c[Shirvan, S. A. & Haydari Dezfuli, S. (2012c). Acta Cryst. E68, m546.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(SO4)2(C5H5N3O)2(H2O)4]

  • Mr = 318.77

  • Monoclinic, P 21 /c

  • a = 11.2699 (12) Å

  • b = 7.3799 (7) Å

  • c = 11.8669 (15) Å

  • β = 95.267 (9)°

  • V = 982.81 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.47 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.589, Tmax = 0.926

  • 7420 measured reflections

  • 1928 independent reflections

  • 1544 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.103

  • S = 1.07

  • 1928 reflections

  • 173 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.961 (3)
Cu1—O6 2.447 (3)
Cu1—N1 1.979 (3)
Cu2—O2 2.363 (2)
Cu2—O3 1.968 (3)
Cu2—N2 2.034 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O4i 0.83 (3) 2.01 (4) 2.845 (4) 177 (5)
O2—H2C⋯O7ii 0.83 (4) 2.03 (3) 2.815 (4) 159 (3)
O3—H3D⋯O7iii 0.82 (3) 1.87 (3) 2.687 (3) 175 (5)
O3—H3E⋯O4ii 0.82 (3) 1.87 (3) 2.679 (4) 169 (3)
N3—H3B⋯O6iv 0.86 2.01 2.820 (4) 157
N3—H3C⋯O5v 0.86 2.03 2.862 (5) 162
C1—H1⋯O7vi 0.93 2.24 3.108 (5) 154
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y-1, z; (v) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazine-2-carboxamide (pzc) is a good ligand, and a few complexes with pzc have been prepared, such as that of mercury (Azhdari Tehrani et al., 2010; Mir Mohammad Sadegh et al., 2010), vanadium (Pacigova et al., 2008), manganese (Abu-Youssef et al., 2006), copper (Kristiansson, 2002; Munakata et al., 1997; Goher & Mautner, 2000), zinc (Shirvan & Haydari Dezfuli, 2012a,b,c). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains two half of CuII atom, two half of pyrazine-2-carboxamide ligands, two water molecules and one sulfate anion. The octahedral CuII ions form a polymeric chain, being bridged by two pyrazine-2-carboxamide ligands. There are two crystallographically independent CuII centers with center adopts a {CuO4N2} coordination geometry, both of which reside on centers of symmetry. The first Cu(1) center defined by two oxygen and two nitrogen from two pyrazine-2-carboxamide ligands and by two oxygen from two sulfate anions. The second Cu(2) center is also found in a octahedral coordination environment by two pyrazine nitrogen donors from two pyrazine-2-carboxamide ligands and by four aquo oxygen donors. The Cu—O and Cu—N bond lengths and angles are collected in Table 1.

In the crystal structure, Intermolecular N—H···O, O—H···O and C—H···O hydrogen bonds may stabilize the structure (Table 2 & Fig. 2).

Related literature top

For related structures, see: Abu-Youssef et al. (2006); Azhdari Tehrani et al. (2010); Goher & Mautner (2000); Kristiansson (2002); Mir Mohammad Sadegh et al. (2010); Munakata et al. (1997); Pacigova et al. (2008); Shirvan & Haydari Dezfuli (2012a,b,c).

Experimental top

A solution of pyrazine-2-carboxamide (0.25 g, 2.0 mmol) in methanol (10 ml) was added to a solution of CuSO4.5H2O (0.25 g, 1.0 mmol) in water (5 ml) and the resulting blue solution was stirred for 15 min at room temperature. This solution was left to evaporate slowly at room temperature. After one week, blue block crystals of the title compound were isolated (yield 0.23 g, 72.2%).

Refinement top

Water H atoms were located on a difference Fourier map and refined isotroipcally. Other H atoms were positioned geometrically with C—H = 0.93 and N—H = 0.86 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Structure description top

Pyrazine-2-carboxamide (pzc) is a good ligand, and a few complexes with pzc have been prepared, such as that of mercury (Azhdari Tehrani et al., 2010; Mir Mohammad Sadegh et al., 2010), vanadium (Pacigova et al., 2008), manganese (Abu-Youssef et al., 2006), copper (Kristiansson, 2002; Munakata et al., 1997; Goher & Mautner, 2000), zinc (Shirvan & Haydari Dezfuli, 2012a,b,c). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains two half of CuII atom, two half of pyrazine-2-carboxamide ligands, two water molecules and one sulfate anion. The octahedral CuII ions form a polymeric chain, being bridged by two pyrazine-2-carboxamide ligands. There are two crystallographically independent CuII centers with center adopts a {CuO4N2} coordination geometry, both of which reside on centers of symmetry. The first Cu(1) center defined by two oxygen and two nitrogen from two pyrazine-2-carboxamide ligands and by two oxygen from two sulfate anions. The second Cu(2) center is also found in a octahedral coordination environment by two pyrazine nitrogen donors from two pyrazine-2-carboxamide ligands and by four aquo oxygen donors. The Cu—O and Cu—N bond lengths and angles are collected in Table 1.

In the crystal structure, Intermolecular N—H···O, O—H···O and C—H···O hydrogen bonds may stabilize the structure (Table 2 & Fig. 2).

For related structures, see: Abu-Youssef et al. (2006); Azhdari Tehrani et al. (2010); Goher & Mautner (2000); Kristiansson (2002); Mir Mohammad Sadegh et al. (2010); Munakata et al. (1997); Pacigova et al. (2008); Shirvan & Haydari Dezfuli (2012a,b,c).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a) -x,1 - y,1 - z; (b) 1 - x,-y,1 - z].
[Figure 2] Fig. 2. Unit-cell packing diagram for title molecule. Hydrogen bonds are shown as dashed lines.
catena-Poly[[tetraaquacopper(II)]-µ-pyrazine-2-carboxamide- κ3N4:N1,O-[bis(sulfato-κO)copper(II)]- µ-pyrazine-2-carboxamide-κ3N1,O:N4] top
Crystal data top
[Cu2(SO4)2(C5H5N3O)2(H2O)4]F(000) = 644
Mr = 318.77Dx = 2.154 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7420 reflections
a = 11.2699 (12) Åθ = 1.8–26.0°
b = 7.3799 (7) ŵ = 2.47 mm1
c = 11.8669 (15) ÅT = 298 K
β = 95.267 (9)°Plate, blue
V = 982.81 (19) Å30.25 × 0.20 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1928 independent reflections
Radiation source: fine-focus sealed tube1544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.589, Tmax = 0.926k = 89
7420 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.057P)2]
where P = (Fo2 + 2Fc2)/3
1928 reflections(Δ/σ)max = 0.006
173 parametersΔρmax = 0.83 e Å3
6 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Cu2(SO4)2(C5H5N3O)2(H2O)4]V = 982.81 (19) Å3
Mr = 318.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2699 (12) ŵ = 2.47 mm1
b = 7.3799 (7) ÅT = 298 K
c = 11.8669 (15) Å0.25 × 0.20 × 0.04 mm
β = 95.267 (9)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1928 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1544 reflections with I > 2σ(I)
Tmin = 0.589, Tmax = 0.926Rint = 0.090
7420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0356 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.83 e Å3
1928 reflectionsΔρmin = 0.69 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2270 (3)0.3902 (5)0.4101 (3)0.0263 (7)
H10.21890.48790.36050.032*
C20.3319 (3)0.2877 (5)0.4182 (3)0.0272 (8)
H20.39360.32090.37560.033*
C30.2541 (3)0.1005 (5)0.5473 (3)0.0262 (8)
H30.26090.00010.59480.031*
C40.1517 (3)0.2024 (5)0.5411 (3)0.0230 (7)
C50.0473 (3)0.1773 (5)0.6079 (3)0.0261 (7)
N10.1397 (2)0.3496 (4)0.4721 (2)0.0230 (6)
N20.3451 (2)0.1431 (4)0.4860 (2)0.0229 (6)
N30.0314 (3)0.0226 (4)0.6589 (3)0.0333 (8)
H3C0.02960.00770.69650.040*
H3B0.08200.06390.65470.040*
O10.0233 (2)0.3090 (4)0.6107 (2)0.0281 (6)
O20.5178 (3)0.0396 (4)0.3047 (2)0.0364 (7)
H2B0.465 (3)0.007 (6)0.255 (3)0.040 (13)*
H2C0.562 (3)0.107 (5)0.272 (3)0.045 (14)*
O30.5887 (2)0.2275 (4)0.5292 (2)0.0280 (6)
H3D0.627 (4)0.248 (7)0.5901 (17)0.069 (18)*
H3E0.620 (3)0.286 (5)0.481 (2)0.033 (12)*
O40.3372 (2)0.5564 (4)0.6316 (2)0.0313 (6)
O50.2000 (3)0.4720 (4)0.7649 (2)0.0364 (7)
O60.1397 (2)0.6869 (4)0.6196 (2)0.0330 (6)
O70.2862 (2)0.7724 (4)0.7689 (2)0.0340 (6)
Cu10.00000.50000.50000.0258 (2)
Cu20.50000.00000.50000.02044 (18)
S10.23960 (7)0.61972 (11)0.69724 (6)0.0199 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0328 (19)0.0213 (18)0.0248 (16)0.0008 (15)0.0027 (14)0.0046 (14)
C20.0224 (17)0.028 (2)0.0322 (18)0.0006 (15)0.0065 (14)0.0026 (15)
C30.0231 (17)0.026 (2)0.0297 (16)0.0046 (15)0.0026 (13)0.0052 (15)
C40.0208 (17)0.0205 (18)0.0272 (16)0.0014 (13)0.0011 (13)0.0019 (14)
C50.0228 (17)0.0268 (19)0.0282 (16)0.0018 (14)0.0000 (14)0.0001 (15)
N10.0220 (14)0.0189 (15)0.0275 (14)0.0025 (11)0.0019 (12)0.0008 (11)
N20.0162 (13)0.0230 (16)0.0294 (14)0.0010 (11)0.0021 (11)0.0023 (12)
N30.0307 (17)0.0274 (18)0.0445 (18)0.0118 (13)0.0175 (15)0.0125 (15)
O10.0254 (12)0.0270 (14)0.0325 (12)0.0096 (10)0.0050 (10)0.0026 (11)
O20.0283 (14)0.0500 (19)0.0305 (13)0.0121 (13)0.0003 (12)0.0030 (13)
O30.0292 (14)0.0275 (15)0.0263 (12)0.0081 (11)0.0023 (11)0.0035 (11)
O40.0297 (13)0.0359 (15)0.0290 (12)0.0042 (11)0.0068 (11)0.0007 (11)
O50.0350 (15)0.0319 (16)0.0429 (15)0.0014 (12)0.0080 (12)0.0126 (12)
O60.0321 (14)0.0281 (15)0.0358 (13)0.0082 (11)0.0135 (11)0.0032 (11)
O70.0360 (14)0.0310 (16)0.0336 (13)0.0032 (12)0.0044 (11)0.0098 (12)
Cu10.0225 (3)0.0205 (4)0.0344 (3)0.0111 (2)0.0028 (2)0.0033 (2)
Cu20.0126 (3)0.0198 (3)0.0290 (3)0.0020 (2)0.0018 (2)0.0008 (2)
S10.0176 (4)0.0204 (4)0.0212 (4)0.0009 (3)0.0011 (3)0.0001 (3)
Geometric parameters (Å, º) top
Cu1—O11.961 (3)O2—H2B0.83 (3)
Cu1—O62.447 (3)O2—H2C0.83 (4)
Cu1—N11.979 (3)O3—H3D0.82 (3)
Cu1—O1i1.961 (3)O3—H3E0.82 (3)
Cu1—O6i2.447 (3)N1—C11.316 (4)
Cu1—N1i1.979 (3)N1—C41.360 (5)
Cu2—O22.363 (2)N2—C21.337 (5)
Cu2—O31.968 (3)N2—C31.348 (4)
Cu2—N22.034 (2)N3—C51.312 (5)
Cu2—O2ii2.363 (2)N3—H3C0.8600
Cu2—O3ii1.968 (3)N3—H3B0.8600
Cu2—N2ii2.034 (2)C1—C21.399 (5)
S1—O41.481 (2)C3—C41.374 (5)
S1—O51.449 (3)C4—C51.489 (5)
S1—O61.474 (3)C1—H10.9300
S1—O71.479 (3)C2—H20.9300
O1—C51.258 (4)C3—H30.9300
S1···C43.683 (4)O7···H2Cvi2.03 (3)
S1···O2iii3.479 (3)O7···H3Dvii1.87 (3)
S1···H3Biv2.9500O7···H1x2.2400
S1···H3Cv2.9000O7···H2Biii2.90 (4)
S1···H3iv3.0800N1···S13.439 (3)
S1···H2Cvi3.01 (4)N1···O12.593 (3)
S1···H3Evi2.84 (3)N1···O43.177 (4)
S1···H3Dvii2.97 (3)N1···O63.043 (4)
S1···H2Biii2.74 (4)N1···N22.764 (4)
O1···O53.207 (4)N1···C52.368 (4)
O1···N12.593 (3)N1···O1i2.966 (4)
O1···C42.343 (4)N1···O6i3.247 (3)
O1···N3v3.165 (4)N2···O23.126 (4)
O1···C1i3.187 (4)N2···O32.816 (3)
O1···O6i2.921 (3)N2···N12.764 (4)
O1···N1i2.966 (4)N2···O2ii3.110 (4)
O2···O4viii2.845 (4)N2···O3ii2.845 (4)
O2···N2ii3.110 (4)N2···O5viii3.081 (4)
O2···O33.044 (4)N3···O6xi2.820 (4)
O2···N23.126 (4)N3···C4xii3.428 (5)
O2···C23.174 (5)N3···O1xiii3.165 (4)
O2···S1viii3.479 (3)N3···O5xiii2.862 (5)
O2···O3ii3.106 (4)N3···H32.7700
O2···O7vi2.815 (4)C1···O43.059 (4)
O2···C3ii3.152 (5)C1···O5viii3.180 (5)
O3···N2ii2.845 (4)C1···O7xiv3.108 (5)
O3···O7ix2.687 (3)C2···O43.213 (4)
O3···C23.100 (4)C2···O5viii2.949 (5)
O3···O4vi2.679 (4)C3···O5viii3.393 (4)
O3···O23.044 (4)C4···O53.323 (4)
O3···N22.816 (3)C4···S13.683 (4)
O3···O2ii3.106 (4)C4···N3xii3.428 (5)
O3···C3ii3.181 (4)C5···O53.252 (5)
O4···N13.177 (4)C3···H3B2.7000
O4···C23.213 (4)H1···O1i2.7100
O4···O2iii2.845 (4)H1···O7xiv2.2400
O4···O3vi2.679 (4)H2···O22.6800
O4···C13.059 (4)H2···O32.8100
O5···C2iii2.949 (5)H2B···S1viii2.74 (4)
O5···C1iii3.180 (5)H2B···O4viii2.01 (4)
O5···C53.252 (5)H2B···O7viii2.90 (4)
O5···N2iii3.081 (4)H2C···S1vi3.01 (4)
O5···C43.323 (4)H2C···O7vi2.03 (3)
O5···O13.207 (4)H2C···H3ii2.5500
O5···C3iii3.393 (4)H2C···H3Dviii2.58 (5)
O5···N3v2.862 (5)H3···S1xi3.0800
O6···N1i3.247 (3)H3···O6xi2.7100
O6···N3iv2.820 (4)H3···O7xi2.6600
O6···N13.043 (4)H3···N32.7700
O6···O1i2.921 (3)H3···H3B2.2500
O6···C5i3.419 (4)H3···O2ii2.6800
O7···O3vii2.687 (3)H3···O3ii2.8800
O7···C1x3.108 (5)H3···H2Cii2.5500
O7···O2vi2.815 (4)H3B···S1xi2.9500
O1···H3Cv2.7400H3B···O6xi2.0100
O1···H1i2.7100H3B···O7xi2.8300
O2···H3ii2.6800H3B···C32.7000
O2···H22.6800H3B···H32.2500
O3···H22.8100H3C···S1xiii2.9000
O3···H3ii2.8800H3C···O1xiii2.7400
O4···H2Biii2.01 (4)H3C···O5xiii2.0300
O4···H3Evi1.87 (3)H3D···S1ix2.97 (3)
O5···H3Cv2.0300H3D···O7ix1.87 (3)
O6···H3Biv2.0100H3D···H2Ciii2.58 (5)
O6···H3iv2.7100H3E···S1vi2.84 (3)
O7···H3iv2.6600H3E···O4vi1.87 (3)
O7···H3Biv2.8300
O1—Cu1—O697.77 (10)O5—S1—O7111.47 (15)
O1—Cu1—N182.32 (10)O6—S1—O7108.29 (16)
O1—Cu1—O1i180.00Cu1—O1—C5114.4 (2)
O1—Cu1—O6i82.23 (10)Cu1—O6—S1125.95 (17)
O1—Cu1—N1i97.68 (10)Cu2—O2—H2B123 (3)
O6—Cu1—N186.20 (10)Cu2—O2—H2C130 (3)
O1i—Cu1—O682.23 (10)H2B—O2—H2C105 (4)
O6—Cu1—O6i180.00Cu2—O3—H3D122 (3)
O6—Cu1—N1i93.80 (10)Cu2—O3—H3E125 (2)
O1i—Cu1—N197.68 (10)H3D—O3—H3E107 (4)
O6i—Cu1—N193.80 (10)Cu1—N1—C4112.6 (2)
N1—Cu1—N1i180.00C1—N1—C4118.7 (3)
O1i—Cu1—O6i97.77 (10)Cu1—N1—C1127.8 (2)
O1i—Cu1—N1i82.32 (10)C2—N2—C3117.6 (3)
O6i—Cu1—N1i86.20 (10)Cu2—N2—C2120.7 (2)
O2—Cu2—O388.84 (10)Cu2—N2—C3121.7 (2)
O2—Cu2—N290.30 (10)C5—N3—H3C120.00
O2—Cu2—O2ii180.00C5—N3—H3B120.00
O2—Cu2—O3ii91.16 (10)H3B—N3—H3C120.00
O2—Cu2—N2ii89.70 (10)N1—C1—C2120.6 (3)
O3—Cu2—N289.41 (11)N2—C2—C1121.3 (3)
O2ii—Cu2—O391.16 (10)N2—C3—C4121.4 (3)
O3—Cu2—O3ii180.00N1—C4—C5112.3 (3)
O3—Cu2—N2ii90.59 (11)C3—C4—C5127.2 (3)
O2ii—Cu2—N289.70 (10)N1—C4—C3120.4 (3)
O3ii—Cu2—N290.59 (11)N3—C5—C4120.1 (3)
N2—Cu2—N2ii180.00O1—C5—N3123.1 (3)
O2ii—Cu2—O3ii88.84 (10)O1—C5—C4116.8 (3)
O2ii—Cu2—N2ii90.30 (10)N1—C1—H1120.00
O3ii—Cu2—N2ii89.41 (11)C2—C1—H1120.00
O4—S1—O5109.61 (17)N2—C2—H2119.00
O4—S1—O6109.82 (14)C1—C2—H2119.00
O4—S1—O7107.53 (14)N2—C3—H3119.00
O5—S1—O6110.07 (17)C4—C3—H3119.00
O6—Cu1—O1—C591.3 (2)O3ii—Cu2—N2—C353.3 (3)
N1—Cu1—O1—C56.2 (2)O5—S1—O6—Cu147.0 (2)
O6i—Cu1—O1—C588.7 (2)O7—S1—O6—Cu1169.06 (14)
N1i—Cu1—O1—C5173.8 (2)O4—S1—O6—Cu173.8 (2)
O1—Cu1—O6—S141.74 (18)Cu1—O1—C5—C412.7 (4)
N1—Cu1—O6—S139.97 (17)Cu1—O1—C5—N3166.3 (3)
O1i—Cu1—O6—S1138.26 (18)C4—N1—C1—C22.3 (5)
N1i—Cu1—O6—S1140.03 (17)Cu1—N1—C1—C2166.0 (3)
O1—Cu1—N1—C41.9 (2)Cu1—N1—C4—C58.4 (4)
O6—Cu1—N1—C496.4 (2)C1—N1—C4—C5178.4 (3)
O1i—Cu1—N1—C4178.1 (2)Cu1—N1—C4—C3168.8 (3)
O1—Cu1—N1—C1170.8 (3)C1—N1—C4—C31.2 (5)
O6—Cu1—N1—C172.5 (3)C3—N2—C2—C10.7 (5)
O1i—Cu1—N1—C19.2 (3)C2—N2—C3—C40.4 (5)
O6i—Cu1—N1—C1107.6 (3)Cu2—N2—C3—C4177.2 (3)
O6i—Cu1—N1—C483.6 (2)Cu2—N2—C2—C1178.3 (3)
O3—Cu2—N2—C3126.7 (3)N1—C1—C2—N22.1 (5)
O2ii—Cu2—N2—C335.5 (3)N2—C3—C4—N10.2 (5)
O2—Cu2—N2—C3144.5 (3)N2—C3—C4—C5176.6 (3)
O2—Cu2—N2—C238.0 (3)N1—C4—C5—O114.2 (5)
O3—Cu2—N2—C250.8 (3)C3—C4—C5—N318.3 (6)
O2ii—Cu2—N2—C2142.0 (3)N1—C4—C5—N3164.8 (3)
O3ii—Cu2—N2—C2129.2 (3)C3—C4—C5—O1162.7 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z; (v) x, y+1/2, z+3/2; (vi) x+1, y+1, z+1; (vii) x+1, y+1/2, z+3/2; (viii) x, y+1/2, z1/2; (ix) x+1, y1/2, z+3/2; (x) x, y+3/2, z+1/2; (xi) x, y1, z; (xii) x, y, z+1; (xiii) x, y1/2, z+3/2; (xiv) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O4viii0.83 (3)2.01 (4)2.845 (4)177 (5)
O2—H2C···O7vi0.83 (4)2.03 (3)2.815 (4)159 (3)
O3—H3D···O7ix0.82 (3)1.87 (3)2.687 (3)175 (5)
O3—H3E···O4vi0.82 (3)1.87 (3)2.679 (4)169 (3)
N3—H3B···O6xi0.862.012.820 (4)157
N3—H3C···O5xiii0.862.032.862 (5)162
C1—H1···O7xiv0.932.243.108 (5)154
Symmetry codes: (vi) x+1, y+1, z+1; (viii) x, y+1/2, z1/2; (ix) x+1, y1/2, z+3/2; (xi) x, y1, z; (xiii) x, y1/2, z+3/2; (xiv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2(SO4)2(C5H5N3O)2(H2O)4]
Mr318.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.2699 (12), 7.3799 (7), 11.8669 (15)
β (°) 95.267 (9)
V3)982.81 (19)
Z4
Radiation typeMo Kα
µ (mm1)2.47
Crystal size (mm)0.25 × 0.20 × 0.04
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.589, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
7420, 1928, 1544
Rint0.090
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.103, 1.07
No. of reflections1928
No. of parameters173
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.83, 0.69

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008)), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.961 (3)Cu2—O22.363 (2)
Cu1—O62.447 (3)Cu2—O31.968 (3)
Cu1—N11.979 (3)Cu2—N22.034 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O4i0.83 (3)2.01 (4)2.845 (4)177 (5)
O2—H2C···O7ii0.83 (4)2.03 (3)2.815 (4)159 (3)
O3—H3D···O7iii0.82 (3)1.87 (3)2.687 (3)175 (5)
O3—H3E···O4ii0.82 (3)1.87 (3)2.679 (4)169 (3)
N3—H3B···O6iv0.86002.01002.820 (4)157.00
N3—H3C···O5v0.86002.03002.862 (5)162.00
C1—H1···O7vi0.93002.24003.108 (5)154.00
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+3/2; (iv) x, y1, z; (v) x, y1/2, z+3/2; (vi) x, y+3/2, z1/2.
 

Acknowledgements

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

References

First citationAbu-Youssef, M. A. M., Escuer, A. & Langer, V. (2006). Eur. J. Inorg. Chem. pp. 3177–3184.  Google Scholar
First citationAzhdari Tehrani, A., Mir Mohammad Sadegh, B. & Khavasi, H. R. (2010). Acta Cryst. E66, m261.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGoher, M. A. S. & Mautner, F. A. (2000). Polyhedron, 19, 601–606.  Web of Science CSD CrossRef CAS Google Scholar
First citationKristiansson, O. (2002). Acta Cryst. E58, m130–m132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMir Mohammad Sadegh, B., Azhdari Tehrani, A. & Khavasi, H. R. (2010). Acta Cryst. E66, m158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMunakata, M., Wu, L. P., Sowa, T. K., Maekawa, M., Moriwaki, K. & Kitagawa, S. (1997). Inorg. Chem. 36, 5416–5418.  CSD CrossRef CAS Web of Science Google Scholar
First citationPacigova, S., Gyepes, R., Tatiersky, J. & Sivak, M. (2008). Dalton Trans. pp. 121–130.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirvan, S. A. & Haydari Dezfuli, S. (2012a). Acta Cryst. E68, m527.  CSD CrossRef IUCr Journals Google Scholar
First citationShirvan, S. A. & Haydari Dezfuli, S. (2012b). Acta Cryst. E68, m627–m628.  CSD CrossRef IUCr Journals Google Scholar
First citationShirvan, S. A. & Haydari Dezfuli, S. (2012c). Acta Cryst. E68, m546.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds