metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Ethano­lato-κO)[N′-(3-meth­­oxy-2-oxido­benzyl­­idene-κO2)benzo­hydrazidato-κ2N′,O]oxidovanadium(V)

aCollege of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China, bCollege of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China
*Correspondence e-mail: xiaohuachen03@163.com

(Received 30 June 2012; accepted 15 July 2012; online 21 July 2012)

In the title complex, [V(C15H12N2O4)(C2H5O)O], the VV ion is coordinated by an oxide O atom, an ethano­late anion and two O atoms and one N atom from the tridentate benzo­hydrazidate dianion in a distorted square-pyramidal geometry; the V atom is displaced by 0.4748 (8) Å from the basal plane towards the axial oxide O atom. An intra­molecular O—H⋯N hydrogen bond occurs in the benzohydrazidate ligand. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal.

Related literature

For general background to the coordination chemistry and biochemisty of vanadium, see: Deng et al. (2007[Deng, Z.-P., Gao, S., Zhao, H. & Huo, L.-H. (2007). Chin. J. Inorg. Chem. 23, 173-176.]); Monfared et al. (2011[Monfared, H. H., Kheirabadi, S., Lalami, N. A. & Mayer, P. (2011). Polyhedron, 30, 1375-1384.]); Sutradhar et al. (2006[Sutradhar, M., Mukherjee, G., Drew, M. G. B. & Ghosh, S. (2006). Inorg. Chem. 45, 5150-5161.]). For related structures, see: Chen et al. (2004[Chen, L.-J., Yang, M.-X. & Lin, S. (2004). Acta Cryst. E60, m1881-m1882.]); Liu et al. (2006[Liu, J.-H., Wu, X.-Y., Zhang, Q.-Z., He, X., Yang, W.-B. & Lu, C.-Z. (2006). Chin. J. Inorg. Chem. 22, 1028-1032.]); Ghosh et al. (2007[Ghosh, T., Mondal, B., Ghosh, T., Sutradhar, M., Mukherjee, G. & Drew, M. G. B. (2007). Inorg. Chim. Acta, 360, 1753-1761.]); Seena et al. (2008[Seena, E. B., Mathew, N., Kuriakose, M. & Kurup, M. P. R. (2008). Polyhedron, 27, 1455-462.]). For the synthesis, see: Gao et al. (1998[Gao, S., Weng, Z.-Q. & Liu, S.-X. (1998). Polyhedron, 17, 3595-3606.]); Huang et al. (2010[Huang, S.-M., Jiang, F.-F., Chen, X.-H. & Wu, Q.-J. (2010). Acta Cryst. E66, m456.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C15H12N2O4)(C2H5O)O]

  • Mr = 396.27

  • Monoclinic, P 21 /c

  • a = 15.808 (5) Å

  • b = 6.606 (2) Å

  • c = 16.693 (8) Å

  • β = 94.107 (16)°

  • V = 1738.6 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 293 K

  • 0.37 × 0.25 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.]) Tmin = 0.834, Tmax = 0.924

  • 15371 measured reflections

  • 3968 independent reflections

  • 3243 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.08

  • 3968 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected bond lengths (Å)

V1—N1 2.1029 (15)
V1—O1 1.8325 (14)
V1—O3 1.9453 (14)
V1—O5 1.5762 (15)
V1—O6 1.7423 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯N2 0.82 1.86 2.581 (2) 147
C8—H8A⋯O4i 0.93 2.31 3.236 (2) 177
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: TEXRAY (Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.]); cell refinement: TEXRAY; data reduction: TEXSAN (Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the recent years, the coordination chemistry and biochemisty of vanadium has received considerable attention (Deng et al., 2007; Monfared et al., 2011; Sutradhar et al., 2006). Generally, a tridentate hydrazone ligand is coordinated to the vanadium through O and N atoms, similar to those of the biological system. So, it is important to intensively study the relation ship of the syntheses and structural properties of vanadium hydrazone complexes.

In the title complex, [VO(C15H12N2O4)(C2H5O)], the VV ion exists in a distorted square-pyramidal coordination geometry. Three donor atoms (O1, O3 and N1) of the hydrozone ligand and O6 atom from the ethanol group define the coordination basal plane, with a maximum mean plane deviation of 0.030 (1) Å. The V atom is displaced towards the axial oxo O atom by 0.4748 (8) Å from the basal plane. Bond distances (Table 1) and bond angles around V1 atom are compared with those in reported oxovanadium complexes (Chen et al., 2004; Seena et al., 2008; Liu et al.,2006; Ghosh et al., 2007). In the crystal structure there are the intramolecular O—H···N hydrogen bonding and intermolecular C—H···O hydrogen bonding (Table 2).

Related literature top

For general background to the coordination chemistry and biochemisty of vanadium, see: Deng et al. (2007); Monfared et al. (2011); Sutradhar et al. (2006). For related structures, see: Chen et al. (2004); Liu et al. (2006); Ghosh et al. 2007; Seena et al. (2008). For the synthesis, see: Gao et al. (1998); Huang et al. (2010).

Experimental top

VO(acac)2 (acac = acetylacetonate) was synthesized according to the reported method of Gao et al. (1998). The synthesis of the hydrazone ligand has already been reported in the literature (Huang et al., 2010).

The title compound was prepared by reacting H2L (0.1 mmol) with VO(acac)2 (0.1 mmol) in ethanol solvent with stirring. The solution was filtered and allowed to stand at room temperature for one week, and dark-red crystals of complex (I) were obtained.

Refinement top

All H atoms were placed in idealized positions and treated as riding with O—H = 0.82 Å, C—H = 0.93–0.97 Å; Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O).

Structure description top

In the recent years, the coordination chemistry and biochemisty of vanadium has received considerable attention (Deng et al., 2007; Monfared et al., 2011; Sutradhar et al., 2006). Generally, a tridentate hydrazone ligand is coordinated to the vanadium through O and N atoms, similar to those of the biological system. So, it is important to intensively study the relation ship of the syntheses and structural properties of vanadium hydrazone complexes.

In the title complex, [VO(C15H12N2O4)(C2H5O)], the VV ion exists in a distorted square-pyramidal coordination geometry. Three donor atoms (O1, O3 and N1) of the hydrozone ligand and O6 atom from the ethanol group define the coordination basal plane, with a maximum mean plane deviation of 0.030 (1) Å. The V atom is displaced towards the axial oxo O atom by 0.4748 (8) Å from the basal plane. Bond distances (Table 1) and bond angles around V1 atom are compared with those in reported oxovanadium complexes (Chen et al., 2004; Seena et al., 2008; Liu et al.,2006; Ghosh et al., 2007). In the crystal structure there are the intramolecular O—H···N hydrogen bonding and intermolecular C—H···O hydrogen bonding (Table 2).

For general background to the coordination chemistry and biochemisty of vanadium, see: Deng et al. (2007); Monfared et al. (2011); Sutradhar et al. (2006). For related structures, see: Chen et al. (2004); Liu et al. (2006); Ghosh et al. 2007; Seena et al. (2008). For the synthesis, see: Gao et al. (1998); Huang et al. (2010).

Computing details top

Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY (Molecular Structure Corporation, 1999); data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms. A dashed line indicates the intramoleculat hydrogen bonding.
(Ethanolato-κO)[N'-(3-methoxy-2- oxidobenzylidene-κO2)benzohydrazidato- κ2N',O]oxidovanadium(V) top
Crystal data top
[V(C15H12N2O4)(C2H5O)O]F(000) = 816
Mr = 396.27Dx = 1.514 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3243 reflections
a = 15.808 (5) Åθ = 3.3–27.5°
b = 6.606 (2) ŵ = 0.61 mm1
c = 16.693 (8) ÅT = 293 K
β = 94.107 (16)°Prism, dark-red
V = 1738.6 (12) Å30.37 × 0.25 × 0.13 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3968 independent reflections
Radiation source: fine-focus sealed tube3243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
h = 1920
Tmin = 0.834, Tmax = 0.924k = 87
15371 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.3657P]
where P = (Fo2 + 2Fc2)/3
3968 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[V(C15H12N2O4)(C2H5O)O]V = 1738.6 (12) Å3
Mr = 396.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.808 (5) ŵ = 0.61 mm1
b = 6.606 (2) ÅT = 293 K
c = 16.693 (8) Å0.37 × 0.25 × 0.13 mm
β = 94.107 (16)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3968 independent reflections
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
3243 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 0.924Rint = 0.041
15371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.08Δρmax = 0.34 e Å3
3968 reflectionsΔρmin = 0.22 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.327165 (17)0.03858 (5)0.379657 (17)0.03227 (11)
O10.30812 (8)0.2237 (2)0.45811 (8)0.0442 (3)
O20.35894 (10)0.5229 (2)0.55498 (9)0.0496 (4)
O30.28941 (8)0.2038 (2)0.32138 (8)0.0407 (3)
O40.04552 (9)0.2451 (3)0.20545 (12)0.0782 (6)
H4B0.06470.15830.23680.117*
O50.36775 (9)0.1609 (2)0.31098 (9)0.0516 (4)
O60.40591 (8)0.1056 (2)0.43088 (8)0.0435 (3)
N10.19698 (9)0.0812 (2)0.34927 (8)0.0328 (3)
N20.15908 (9)0.0609 (2)0.29735 (9)0.0372 (4)
C10.25579 (11)0.3816 (3)0.46463 (10)0.0357 (4)
C20.17609 (11)0.3877 (3)0.42268 (10)0.0358 (4)
C30.12022 (13)0.5497 (3)0.43503 (12)0.0472 (5)
H3A0.06680.55300.40770.057*
C40.14474 (15)0.7014 (4)0.48709 (13)0.0546 (6)
H4A0.10780.80790.49520.065*
C50.22441 (14)0.6982 (3)0.52816 (12)0.0488 (5)
H5A0.24020.80290.56330.059*
C60.28039 (13)0.5414 (3)0.51739 (11)0.0394 (4)
C70.38639 (16)0.6801 (4)0.60921 (14)0.0617 (6)
H7A0.44510.66020.62630.092*
H7B0.35310.67720.65510.092*
H7C0.37950.80870.58280.092*
C80.14914 (11)0.2298 (3)0.36837 (11)0.0366 (4)
H8A0.09380.23410.34530.044*
C90.21338 (11)0.2052 (3)0.28567 (10)0.0342 (4)
C100.18783 (11)0.3739 (3)0.23241 (10)0.0353 (4)
C110.10557 (12)0.3869 (4)0.19530 (13)0.0471 (5)
C120.08370 (15)0.5527 (4)0.14672 (14)0.0570 (6)
H12A0.02870.56400.12340.068*
C130.14231 (15)0.6997 (4)0.13284 (13)0.0541 (5)
H13A0.12690.80900.09980.065*
C140.22383 (15)0.6862 (3)0.16759 (13)0.0509 (5)
H14A0.26360.78510.15750.061*
C150.24613 (13)0.5261 (3)0.21720 (11)0.0409 (4)
H15A0.30100.51860.24110.049*
C160.47854 (16)0.2211 (5)0.41625 (15)0.0726 (8)
H16A0.46510.36320.42250.087*
H16B0.52330.18760.45690.087*
C170.51099 (16)0.1928 (5)0.33759 (16)0.0734 (8)
H17A0.56440.26130.33590.110*
H17B0.51860.05100.32790.110*
H17C0.47130.24760.29700.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.02768 (17)0.03613 (19)0.03235 (17)0.00497 (12)0.00236 (11)0.00102 (12)
O10.0396 (7)0.0454 (8)0.0458 (7)0.0120 (6)0.0079 (5)0.0127 (6)
O20.0487 (8)0.0503 (8)0.0481 (8)0.0044 (7)0.0073 (6)0.0160 (7)
O30.0343 (7)0.0413 (7)0.0453 (7)0.0066 (6)0.0066 (5)0.0083 (6)
O40.0364 (8)0.0960 (14)0.0991 (14)0.0110 (9)0.0166 (8)0.0531 (11)
O50.0450 (8)0.0587 (10)0.0510 (8)0.0002 (7)0.0032 (6)0.0117 (7)
O60.0391 (7)0.0507 (8)0.0391 (7)0.0148 (6)0.0069 (5)0.0039 (6)
N10.0296 (7)0.0363 (8)0.0319 (7)0.0023 (6)0.0013 (6)0.0012 (6)
N20.0315 (8)0.0398 (9)0.0393 (8)0.0004 (7)0.0037 (6)0.0058 (7)
C10.0397 (9)0.0352 (9)0.0327 (9)0.0047 (8)0.0053 (7)0.0010 (7)
C20.0365 (9)0.0382 (10)0.0329 (9)0.0065 (8)0.0047 (7)0.0011 (7)
C30.0441 (11)0.0514 (13)0.0454 (11)0.0150 (9)0.0011 (9)0.0037 (9)
C40.0640 (14)0.0497 (13)0.0499 (12)0.0238 (11)0.0034 (10)0.0062 (10)
C50.0661 (13)0.0419 (11)0.0384 (10)0.0080 (10)0.0030 (9)0.0084 (9)
C60.0464 (11)0.0398 (10)0.0319 (9)0.0032 (8)0.0024 (7)0.0022 (8)
C70.0697 (15)0.0599 (15)0.0529 (13)0.0004 (12)0.0131 (11)0.0198 (11)
C80.0298 (8)0.0419 (10)0.0376 (9)0.0043 (8)0.0002 (7)0.0021 (8)
C90.0347 (9)0.0370 (10)0.0306 (8)0.0002 (8)0.0003 (7)0.0020 (7)
C100.0381 (9)0.0386 (10)0.0294 (8)0.0028 (8)0.0037 (7)0.0005 (7)
C110.0383 (10)0.0558 (12)0.0471 (11)0.0018 (9)0.0030 (8)0.0124 (10)
C120.0467 (12)0.0691 (16)0.0548 (13)0.0144 (11)0.0012 (10)0.0193 (11)
C130.0692 (15)0.0495 (13)0.0442 (11)0.0149 (11)0.0076 (10)0.0117 (9)
C140.0667 (14)0.0398 (11)0.0464 (11)0.0052 (10)0.0061 (10)0.0048 (9)
C150.0467 (11)0.0382 (10)0.0376 (10)0.0027 (8)0.0008 (8)0.0014 (8)
C160.0608 (15)0.094 (2)0.0636 (15)0.0445 (15)0.0118 (12)0.0132 (14)
C170.0587 (15)0.087 (2)0.0769 (18)0.0242 (14)0.0189 (13)0.0034 (15)
Geometric parameters (Å, º) top
V1—N12.1029 (15)C5—C61.382 (3)
V1—O11.8325 (14)C5—H5A0.9300
V1—O31.9453 (14)C7—H7A0.9600
V1—O51.5762 (15)C7—H7B0.9600
V1—O61.7423 (13)C7—H7C0.9600
O1—C11.340 (2)C8—H8A0.9300
O2—C61.356 (2)C9—C101.464 (3)
O2—C71.424 (3)C10—C151.399 (3)
O3—C91.303 (2)C10—C111.402 (3)
O4—C111.353 (3)C11—C121.391 (3)
O4—H4B0.8200C12—C131.373 (3)
O6—C161.414 (2)C12—H12A0.9300
N1—C81.293 (2)C13—C141.378 (3)
N1—N21.385 (2)C13—H13A0.9300
N2—C91.307 (2)C14—C151.374 (3)
C1—C21.397 (3)C14—H14A0.9300
C1—C61.411 (3)C15—H15A0.9300
C2—C31.412 (3)C16—C171.456 (3)
C2—C81.427 (3)C16—H16A0.9700
C3—C41.364 (3)C16—H16B0.9700
C3—H3A0.9300C17—H17A0.9600
C4—C51.390 (3)C17—H17B0.9600
C4—H4A0.9300C17—H17C0.9600
O5—V1—O6108.88 (8)O2—C7—H7C109.5
O5—V1—O1105.89 (9)H7A—C7—H7C109.5
O6—V1—O199.34 (7)H7B—C7—H7C109.5
O5—V1—O3100.64 (8)N1—C8—C2123.93 (16)
O6—V1—O388.75 (6)N1—C8—H8A118.0
O1—V1—O3147.85 (6)C2—C8—H8A118.0
O5—V1—N1101.43 (7)O3—C9—N2121.40 (17)
O6—V1—N1147.57 (7)O3—C9—C10119.24 (16)
O1—V1—N182.81 (6)N2—C9—C10119.35 (16)
O3—V1—N174.32 (6)C15—C10—C11118.54 (18)
C1—O1—V1135.34 (12)C15—C10—C9120.02 (17)
C6—O2—C7117.11 (17)C11—C10—C9121.44 (17)
C9—O3—V1118.32 (12)O4—C11—C12118.07 (19)
C11—O4—H4B109.5O4—C11—C10122.61 (19)
C16—O6—V1140.40 (14)C12—C11—C10119.3 (2)
C8—N1—N2115.75 (15)C13—C12—C11120.8 (2)
C8—N1—V1128.45 (12)C13—C12—H12A119.6
N2—N1—V1115.61 (11)C11—C12—H12A119.6
C9—N2—N1109.18 (14)C12—C13—C14120.3 (2)
O1—C1—C2121.40 (17)C12—C13—H13A119.8
O1—C1—C6119.24 (17)C14—C13—H13A119.8
C2—C1—C6119.32 (17)C15—C14—C13119.7 (2)
C1—C2—C3119.96 (18)C15—C14—H14A120.1
C1—C2—C8121.00 (17)C13—C14—H14A120.1
C3—C2—C8119.03 (17)C14—C15—C10121.2 (2)
C4—C3—C2119.83 (19)C14—C15—H15A119.4
C4—C3—H3A120.1C10—C15—H15A119.4
C2—C3—H3A120.1O6—C16—C17115.4 (2)
C3—C4—C5120.60 (19)O6—C16—H16A108.4
C3—C4—H4A119.7C17—C16—H16A108.4
C5—C4—H4A119.7O6—C16—H16B108.4
C6—C5—C4120.9 (2)C17—C16—H16B108.4
C6—C5—H5A119.6H16A—C16—H16B107.5
C4—C5—H5A119.6C16—C17—H17A109.5
O2—C6—C5125.51 (18)C16—C17—H17B109.5
O2—C6—C1115.07 (17)H17A—C17—H17B109.5
C5—C6—C1119.41 (18)C16—C17—H17C109.5
O2—C7—H7A109.5H17A—C17—H17C109.5
O2—C7—H7B109.5H17B—C17—H17C109.5
H7A—C7—H7B109.5
O5—V1—O1—C168.39 (19)C7—O2—C6—C51.0 (3)
O6—V1—O1—C1178.79 (18)C7—O2—C6—C1179.65 (19)
O3—V1—O1—C176.1 (2)C4—C5—C6—O2179.3 (2)
N1—V1—O1—C131.50 (18)C4—C5—C6—C10.7 (3)
O5—V1—O3—C989.56 (14)O1—C1—C6—O22.8 (3)
O6—V1—O3—C9161.46 (13)C2—C1—C6—O2179.60 (17)
O1—V1—O3—C955.77 (18)O1—C1—C6—C5175.88 (18)
N1—V1—O3—C99.46 (12)C2—C1—C6—C51.7 (3)
O5—V1—O6—C1637.9 (3)N2—N1—C8—C2178.23 (17)
O1—V1—O6—C16148.3 (3)V1—N1—C8—C26.9 (3)
O3—V1—O6—C1663.0 (3)C1—C2—C8—N15.5 (3)
N1—V1—O6—C16120.4 (3)C3—C2—C8—N1175.82 (19)
O5—V1—N1—C885.71 (17)V1—O3—C9—N29.5 (2)
O6—V1—N1—C8115.25 (17)V1—O3—C9—C10171.59 (12)
O1—V1—N1—C819.13 (16)N1—N2—C9—O31.2 (2)
O3—V1—N1—C8176.30 (17)N1—N2—C9—C10179.87 (15)
O5—V1—N1—N289.16 (14)O3—C9—C10—C153.2 (3)
O6—V1—N1—N269.88 (17)N2—C9—C10—C15177.87 (17)
O1—V1—N1—N2166.00 (13)O3—C9—C10—C11177.21 (17)
O3—V1—N1—N28.83 (11)N2—C9—C10—C111.8 (3)
C8—N1—N2—C9177.68 (16)C15—C10—C11—O4178.9 (2)
V1—N1—N2—C96.78 (18)C9—C10—C11—O40.7 (3)
V1—O1—C1—C229.7 (3)C15—C10—C11—C121.9 (3)
V1—O1—C1—C6152.82 (15)C9—C10—C11—C12178.46 (19)
O1—C1—C2—C3175.72 (18)O4—C11—C12—C13178.7 (2)
C6—C1—C2—C31.8 (3)C10—C11—C12—C132.0 (4)
O1—C1—C2—C83.0 (3)C11—C12—C13—C140.6 (4)
C6—C1—C2—C8179.54 (17)C12—C13—C14—C150.9 (3)
C1—C2—C3—C40.9 (3)C13—C14—C15—C100.9 (3)
C8—C2—C3—C4179.6 (2)C11—C10—C15—C140.5 (3)
C2—C3—C4—C50.1 (3)C9—C10—C15—C14179.89 (18)
C3—C4—C5—C60.2 (4)V1—O6—C16—C1714.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···N20.821.862.581 (2)147
C8—H8A···O4i0.932.313.236 (2)177
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[V(C15H12N2O4)(C2H5O)O]
Mr396.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.808 (5), 6.606 (2), 16.693 (8)
β (°) 94.107 (16)
V3)1738.6 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.37 × 0.25 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(TEXRAY; Molecular Structure Corporation, 1999)
Tmin, Tmax0.834, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
15371, 3968, 3243
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.08
No. of reflections3968
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.22

Computer programs: TEXRAY (Molecular Structure Corporation, 1999), TEXSAN (Molecular Structure Corporation, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEX (McArdle, 1995).

Selected bond lengths (Å) top
V1—N12.1029 (15)V1—O51.5762 (15)
V1—O11.8325 (14)V1—O61.7423 (13)
V1—O31.9453 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···N20.821.862.581 (2)146.8
C8—H8A···O4i0.932.313.236 (2)176.7
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful for financial support from the Foundation of Fujian Educational Committee, China (grant No. JB10007).

References

First citationChen, L.-J., Yang, M.-X. & Lin, S. (2004). Acta Cryst. E60, m1881–m1882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDeng, Z.-P., Gao, S., Zhao, H. & Huo, L.-H. (2007). Chin. J. Inorg. Chem. 23, 173–176.  CAS Google Scholar
First citationGao, S., Weng, Z.-Q. & Liu, S.-X. (1998). Polyhedron, 17, 3595–3606.  Web of Science CSD CrossRef CAS Google Scholar
First citationGhosh, T., Mondal, B., Ghosh, T., Sutradhar, M., Mukherjee, G. & Drew, M. G. B. (2007). Inorg. Chim. Acta, 360, 1753–1761.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, S.-M., Jiang, F.-F., Chen, X.-H. & Wu, Q.-J. (2010). Acta Cryst. E66, m456.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, J.-H., Wu, X.-Y., Zhang, Q.-Z., He, X., Yang, W.-B. & Lu, C.-Z. (2006). Chin. J. Inorg. Chem. 22, 1028–1032.  CAS Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationMolecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationMonfared, H. H., Kheirabadi, S., Lalami, N. A. & Mayer, P. (2011). Polyhedron, 30, 1375–1384.  Web of Science CSD CrossRef Google Scholar
First citationSeena, E. B., Mathew, N., Kuriakose, M. & Kurup, M. P. R. (2008). Polyhedron, 27, 1455–462.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSutradhar, M., Mukherjee, G., Drew, M. G. B. & Ghosh, S. (2006). Inorg. Chem. 45, 5150–5161.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds