metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[bis­­(μ-3-amino-5-carb­­oxy­benzoato-κ2N:O1)di­aqua­zinc] dihydrate]

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 2 July 2012; accepted 12 July 2012; online 18 July 2012)

The ZnII atom in the title polymeric compound, {[Zn(C8H6NO4)2(H2O)2]·2H2O}n, lies on a center of inversion and is coordinated by two amine N atoms and two carboxyl­ate O atoms from two 3-amino-5-carb­oxy­benzoate anions along with two water mol­ecules in a distorted octa­hedral geometry. The bridging nature of the anion generates a layer motif parallel to (100). Hydrogen bonds of the N—H⋯O and O—H⋯O types exist in the structure. One H atom of the coordinated water mol­ecule and one H atom of the solvent water mol­ecule are each disordered over two positions in a 1:1 ratio.

Related literature

For catena-poly[(5-amino­isophthalato)aqua­zinc], see: Wu et al. (2002[Wu, C.-D., Lu, C.-Z., Yang, W.-B., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. 41, 3302-3307.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H6NO4)2(H2O)2]·2H2O

  • Mr = 497.71

  • Monoclinic, C 2/c

  • a = 14.2209 (10) Å

  • b = 11.2252 (8) Å

  • c = 12.7139 (9) Å

  • β = 113.286 (1)°

  • V = 1864.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 293 K

  • 0.30 × 0.26 × 0.18 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.680, Tmax = 0.788

  • 8005 measured reflections

  • 2130 independent reflections

  • 1843 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.098

  • S = 1.07

  • 2130 reflections

  • 144 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O2Wi 0.84 1.84 2.675 (3) 172
O1W—H2⋯O2ii 0.84 1.97 2.695 (3) 143
O2W—H4⋯O2 0.84 1.79 2.619 (3) 170
O2W—H5⋯O2Wiii 0.84 2.03 2.869 (5) 171
O2W—H5′⋯O1iv 0.84 2.31 3.106 (3) 158
O2W—H5′⋯O1Wiv 0.84 2.35 2.910 (3) 125
N1—H6⋯O4v 0.88 2.14 3.013 (3) 172
N1—H7⋯O4vi 0.88 2.21 3.059 (2) 161
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [-x, y, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x, -y+1, -z+1; (vi) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

5-Aminoisophthalic acid furnishes a zinc derivative in which the ligand is dibasic; the dianion functions in a u3-bridging mode in monoaqua compound, which adopts a chain structure (Wu et al., 2002). The title compound (Scheme I) was the unexpected when nicotinamide was added to the reaction.

The ZnII atom in of polymeric [Zn(H2O)2(C8H6NO4)2.2H2O]n lies in a octahedron that is composed of two amino N atoms and two carboxyl O atoms (from two 5-aminoisophthalate anions) along with two water molecules (Fig. 1). The bridging nature of the anion generates a layer motif parallel to [1 0 0] (Fig. 2). Hydrogen bonds of the N–H···O and O–H···O type exist within the layer (Table 1).

Related literature top

For catena-poly[(5-aminoisophthalato)aquazinc], see: Wu et al. (2002).

Experimental top

5-Aminoisophthalic acid (0.030 g, 0.165 mmol) and sodium hydroxide (0.013 g, 0.330 mmol) were dissolved in a water/methanol (1:1 v/v; 10 ml) mixture. Zinc acetate hexahydrate (0.049 g, 0.165 mmol) dissolved in a water/methanol (1:1 v/v; 3 ml) mixture and nicotinamide (0.050 g, 0.33 mmol) dissolved in water (3 ml) were added. The solution was filtered. Light brown crystals were isolated after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino, water and acid H atoms were similarly positioned [N–H 0.88, O–H 0.84 Å; U(H) 1.2–1.5U(N,O)].

One H-atom of the coordinated water molecule and one H-atom of the lattice water molecule are each disordered over two positions in a 1:1 ratio. In the disorder model, the unprimed H-atoms are not within 2 Å of the primed ones.

Structure description top

5-Aminoisophthalic acid furnishes a zinc derivative in which the ligand is dibasic; the dianion functions in a u3-bridging mode in monoaqua compound, which adopts a chain structure (Wu et al., 2002). The title compound (Scheme I) was the unexpected when nicotinamide was added to the reaction.

The ZnII atom in of polymeric [Zn(H2O)2(C8H6NO4)2.2H2O]n lies in a octahedron that is composed of two amino N atoms and two carboxyl O atoms (from two 5-aminoisophthalate anions) along with two water molecules (Fig. 1). The bridging nature of the anion generates a layer motif parallel to [1 0 0] (Fig. 2). Hydrogen bonds of the N–H···O and O–H···O type exist within the layer (Table 1).

For catena-poly[(5-aminoisophthalato)aquazinc], see: Wu et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX (Dolomanov et al., 2003) and X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of polymeric Zn(H2O)2(C8H6NO4)2.2H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the hydrogen atoms of the coordinated and lattice water molecules is not shown.
[Figure 2] Fig. 2. Layer motif represented as an OLEX-type (Dolomanov et al., 2003) of network.
Poly[[bis(µ-3-amino-5-carboxybenzoato- κ2N:O1)diaquazinc] dihydrate] top
Crystal data top
[Zn(C8H6NO4)2(H2O)2]·2H2OF(000) = 1024
Mr = 497.71Dx = 1.773 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4815 reflections
a = 14.2209 (10) Åθ = 2.4–28.2°
b = 11.2252 (8) ŵ = 1.39 mm1
c = 12.7139 (9) ÅT = 293 K
β = 113.286 (1)°Prism, light brown
V = 1864.2 (2) Å30.30 × 0.26 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2130 independent reflections
Radiation source: fine-focus sealed tube1843 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1815
Tmin = 0.680, Tmax = 0.788k = 1414
8005 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0506P)2 + 3.2779P]
where P = (Fo2 + 2Fc2)/3
2130 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Zn(C8H6NO4)2(H2O)2]·2H2OV = 1864.2 (2) Å3
Mr = 497.71Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.2209 (10) ŵ = 1.39 mm1
b = 11.2252 (8) ÅT = 293 K
c = 12.7139 (9) Å0.30 × 0.26 × 0.18 mm
β = 113.286 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2130 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1843 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 0.788Rint = 0.018
8005 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.07Δρmax = 0.37 e Å3
2130 reflectionsΔρmin = 0.37 e Å3
144 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.25000.25000.00000.02950 (14)
O10.20751 (15)0.32463 (16)0.12770 (14)0.0412 (4)
O20.1529 (2)0.1571 (2)0.1754 (2)0.0655 (7)
O30.09628 (17)0.14472 (16)0.53610 (16)0.0436 (4)
H10.08850.11540.59290.065*
O40.07472 (15)0.31377 (16)0.61500 (15)0.0408 (4)
O1W0.35790 (16)0.38916 (19)0.03707 (18)0.0531 (5)
H20.37430.39940.01890.080*
H30.41020.37140.09530.080*0.50
H3'0.33220.45220.04960.080*0.50
O2W0.0898 (2)0.04635 (18)0.22475 (18)0.0594 (6)
H40.10520.02290.21180.089*
H50.03340.04390.23200.089*0.50
H5'0.13970.07550.27970.089*0.50
N10.12864 (15)0.64309 (17)0.36983 (16)0.0312 (4)
H60.07050.66330.37420.037*
H70.12500.66750.30250.037*
C10.1718 (2)0.2655 (2)0.1878 (2)0.0349 (5)
C20.15207 (17)0.3304 (2)0.28176 (18)0.0291 (4)
C30.15228 (17)0.4538 (2)0.28397 (18)0.0294 (5)
H3A0.16670.49630.22930.035*
C40.13087 (16)0.5152 (2)0.36787 (17)0.0274 (4)
C50.11166 (17)0.4506 (2)0.45058 (18)0.0295 (5)
H5A0.09820.49040.50730.035*
C60.11247 (17)0.3261 (2)0.44894 (17)0.0277 (4)
C70.13167 (19)0.2662 (2)0.3638 (2)0.0302 (5)
H7A0.13090.18340.36180.036*
C80.09264 (19)0.2626 (2)0.54063 (19)0.0309 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0412 (2)0.0297 (2)0.0248 (2)0.00028 (15)0.02079 (16)0.00161 (13)
O10.0631 (12)0.0436 (10)0.0312 (9)0.0127 (9)0.0339 (8)0.0038 (7)
O20.121 (2)0.0466 (12)0.0583 (13)0.0156 (13)0.0664 (14)0.0190 (10)
O30.0725 (13)0.0354 (9)0.0375 (9)0.0045 (9)0.0374 (9)0.0025 (7)
O40.0639 (12)0.0404 (10)0.0321 (9)0.0022 (9)0.0340 (8)0.0024 (7)
O1W0.0501 (11)0.0531 (12)0.0538 (12)0.0046 (9)0.0181 (9)0.0207 (10)
O2W0.1023 (18)0.0426 (11)0.0469 (11)0.0111 (11)0.0441 (12)0.0074 (9)
N10.0419 (11)0.0334 (10)0.0242 (9)0.0046 (8)0.0194 (8)0.0030 (7)
C10.0436 (13)0.0414 (14)0.0258 (11)0.0043 (10)0.0203 (10)0.0048 (9)
C20.0323 (11)0.0388 (12)0.0199 (9)0.0037 (9)0.0142 (8)0.0027 (8)
C30.0324 (11)0.0394 (12)0.0203 (9)0.0035 (9)0.0148 (8)0.0011 (8)
C40.0290 (10)0.0343 (11)0.0208 (9)0.0016 (9)0.0118 (8)0.0011 (8)
C50.0340 (11)0.0367 (12)0.0227 (10)0.0037 (9)0.0165 (9)0.0024 (8)
C60.0295 (11)0.0366 (11)0.0200 (9)0.0015 (9)0.0129 (8)0.0000 (8)
C70.0376 (12)0.0323 (11)0.0256 (10)0.0033 (9)0.0178 (9)0.0022 (8)
C80.0356 (11)0.0380 (12)0.0233 (10)0.0028 (9)0.0160 (9)0.0013 (8)
Geometric parameters (Å, º) top
Zn1—O1W2.108 (2)O2W—H5'0.8407
Zn1—O1Wi2.108 (2)N1—C41.436 (3)
Zn1—O12.1163 (16)N1—Zn1iv2.214 (2)
Zn1—O1i2.1163 (16)N1—H60.8800
Zn1—N1ii2.214 (2)N1—H70.8800
Zn1—N1iii2.214 (2)C1—C21.517 (3)
O1—C11.261 (3)C2—C71.390 (3)
O2—C11.243 (3)C2—C31.386 (3)
O3—C81.326 (3)C3—C41.401 (3)
O3—H10.8400C3—H3A0.9300
O4—C81.217 (3)C4—C51.390 (3)
O1W—H20.8400C5—C61.398 (3)
O1W—H30.8400C5—H5A0.9300
O1W—H3'0.8400C6—C71.390 (3)
O2W—H40.8408C6—C81.486 (3)
O2W—H50.8425C7—H7A0.9300
O1W—Zn1—O1Wi180.00 (9)Zn1iv—N1—H6106.7
O1W—Zn1—O186.47 (8)C4—N1—H7106.7
O1Wi—Zn1—O193.53 (8)Zn1iv—N1—H7106.7
O1W—Zn1—O1i93.53 (8)H6—N1—H7106.6
O1Wi—Zn1—O1i86.47 (8)O2—C1—O1123.9 (2)
O1—Zn1—O1i180.00 (8)O2—C1—C2118.2 (2)
O1W—Zn1—N1ii92.80 (8)O1—C1—C2117.9 (2)
O1Wi—Zn1—N1ii87.20 (8)C7—C2—C3120.2 (2)
O1—Zn1—N1ii89.10 (7)C7—C2—C1120.1 (2)
O1i—Zn1—N1ii90.90 (7)C3—C2—C1119.8 (2)
O1W—Zn1—N1iii87.20 (8)C2—C3—C4120.5 (2)
O1Wi—Zn1—N1iii92.80 (8)C2—C3—H3A119.7
O1—Zn1—N1iii90.90 (7)C4—C3—H3A119.7
O1i—Zn1—N1iii89.10 (7)C5—C4—C3119.1 (2)
N1ii—Zn1—N1iii180.00 (18)C5—C4—N1119.72 (19)
C1—O1—Zn1124.19 (16)C3—C4—N1121.18 (19)
C8—O3—H1109.5C4—C5—C6120.31 (19)
Zn1—O1W—H2109.5C4—C5—H5A119.8
Zn1—O1W—H3109.5C6—C5—H5A119.8
H2—O1W—H3109.5C7—C6—C5120.1 (2)
Zn1—O1W—H3'109.5C7—C6—C8122.4 (2)
H2—O1W—H3'109.5C5—C6—C8117.58 (19)
H3—O1W—H3'109.5C2—C7—C6119.8 (2)
H4—O2W—H5108.9C2—C7—H7A120.1
H4—O2W—H5'108.8C6—C7—H7A120.1
H5—O2W—H5'116.7O4—C8—O3121.9 (2)
C4—N1—Zn1iv122.60 (14)O4—C8—C6123.1 (2)
C4—N1—H6106.7O3—C8—C6114.96 (19)
O1W—Zn1—O1—C1150.9 (2)Zn1iv—N1—C4—C572.4 (2)
O1Wi—Zn1—O1—C129.1 (2)Zn1iv—N1—C4—C3107.5 (2)
N1ii—Zn1—O1—C1116.2 (2)C3—C4—C5—C60.8 (3)
N1iii—Zn1—O1—C163.8 (2)N1—C4—C5—C6179.3 (2)
Zn1—O1—C1—O23.4 (4)C4—C5—C6—C70.6 (3)
Zn1—O1—C1—C2175.68 (15)C4—C5—C6—C8179.3 (2)
O2—C1—C2—C711.5 (4)C3—C2—C7—C60.7 (3)
O1—C1—C2—C7167.7 (2)C1—C2—C7—C6179.2 (2)
O2—C1—C2—C3167.1 (3)C5—C6—C7—C21.3 (3)
O1—C1—C2—C313.8 (3)C8—C6—C7—C2178.5 (2)
C7—C2—C3—C40.7 (3)C7—C6—C8—O4179.2 (2)
C1—C2—C3—C4177.9 (2)C5—C6—C8—O41.0 (3)
C2—C3—C4—C51.4 (3)C7—C6—C8—O31.0 (3)
C2—C3—C4—N1178.7 (2)C5—C6—C8—O3178.8 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O2Wv0.841.842.675 (3)172
O1W—H2···O2i0.841.972.695 (3)143
O2W—H4···O20.841.792.619 (3)170
O2W—H5···O2Wvi0.842.032.869 (5)171
O2W—H5···O1iii0.842.313.106 (3)158
O2W—H5···O1Wiii0.842.352.910 (3)125
N1—H6···O4vii0.882.143.013 (3)172
N1—H7···O4ii0.882.213.059 (2)161
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z1/2; (iii) x+1/2, y1/2, z+1/2; (v) x, y, z+1/2; (vi) x, y, z+1/2; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C8H6NO4)2(H2O)2]·2H2O
Mr497.71
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.2209 (10), 11.2252 (8), 12.7139 (9)
β (°) 113.286 (1)
V3)1864.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.30 × 0.26 × 0.18
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.680, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
8005, 2130, 1843
Rint0.018
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.098, 1.07
No. of reflections2130
No. of parameters144
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.37

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX (Dolomanov et al., 2003) and X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O2Wi0.841.842.675 (3)172.3
O1W—H2···O2ii0.841.972.695 (3)143.1
O2W—H4···O20.841.792.619 (3)169.9
O2W—H5···O2Wiii0.842.032.869 (5)170.9
O2W—H5'···O1iv0.842.313.106 (3)157.9
O2W—H5'···O1Wiv0.842.352.910 (3)124.5
N1—H6···O4v0.882.143.013 (3)171.9
N1—H7···O4vi0.882.213.059 (2)161.3
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x, y, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x, y+1, z+1; (vi) x, y+1, z1/2.
 

Acknowledgements

This study is a project funded by the Priority Academic Development Program of Jiangsu Higher Education Institution. We thank Yangzhou University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C.-D., Lu, C.-Z., Yang, W.-B., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. 41, 3302–3307.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds