organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­chloro-N-(3-methyl­phen­yl)benzenesulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, cQuestioned Documents Unit, Punjab Forensic Science Agency, Home Department, Lahore, Pakistan, and dCenter of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia
*Correspondence e-mail: koolmuneeb@yahoo.com

(Received 4 July 2012; accepted 13 July 2012; online 18 July 2012)

In the title compound, C13H11Cl2NO2S, the dihedral angle between the aromatic rings is 76.62 (10)° and the C—S—N—C linkage between the rings adopts a gauche conformation [torsion angle = −51.4 (2)°]. A weak intra­molecular C—H⋯O inter­action closes an S(6) ring. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops.

Related literature

For related structures, see: Khan et al. (2011[Khan, M. H., Khan, I. U., Arshad, M. N., Mughal, S. Y. & Akkurt, M. (2011). Acta Cryst. E67, o885-o886.]); Mughal et al. (2012[Mughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Arshad, M. N. (2012). Acta Cryst. E68, o2433.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11Cl2NO2S

  • Mr = 316.19

  • Monoclinic, P 21 /n

  • a = 9.0361 (10) Å

  • b = 11.6937 (11) Å

  • c = 13.6904 (15) Å

  • β = 100.588 (3)°

  • V = 1422.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 296 K

  • 0.41 × 0.32 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 4252 measured reflections

  • 2566 independent reflections

  • 2019 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.159

  • S = 1.06

  • 2566 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.09 2.946 (3) 178
C12—H12⋯O2 0.93 2.50 3.141 (3) 126
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), (Fig. 1) was prepared and characterized in continuation of our interest in the structural chemistry of sulfonamides (Khan et al., 2011; Mughal et al., 2012).

The dihedral angle between the C1—C6 and C7—C12 benzene rings is 76.62 (10)°. The C1—S1—N1—C7 linkage between the rings adopts a gauche conformation [torsion angle = -51.4 (2)°] and the minimum and maximum bond angles at the S atom are 105.52 (12) and 118.51 (12)°, respectively. The largest of these corresponds to the O=S=O bond angle, which is usually the largest in sulfonamindes (Mughal et al., 2012). An intramolecular C—H···O interaction leads to an S(6) ring.

In the crystal, inversion dimers linked by pairs of N—H···O hydrogen bonds (Table 1) generate R22(8) loops (Fig. 2).

Related literature top

For related structures, see: Khan et al. (2011); Mughal et al. (2012).

Experimental top

0.2 g of m-toludine was dissolved in 15 ml dichloromethane and 0.45 g of 2,5-dichlorobenzene sulfonyl chloride was added to the mixture, which was stirred at room temperature overnight. The pH was maintained at 8–9 with triethyamine. On completion of the reaction (after TLC) the pH was adjusted to 1–2 using 1M HCl solution. The DCM fraction was separated and the solvent evaporated at room temperature. Colourless prisms of (I) were obtained in 97% yield.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.96 Å; N—H = 0.86 Å) and refined as riding. The constraint Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C) was applied.

Structure description top

The title compound, (I), (Fig. 1) was prepared and characterized in continuation of our interest in the structural chemistry of sulfonamides (Khan et al., 2011; Mughal et al., 2012).

The dihedral angle between the C1—C6 and C7—C12 benzene rings is 76.62 (10)°. The C1—S1—N1—C7 linkage between the rings adopts a gauche conformation [torsion angle = -51.4 (2)°] and the minimum and maximum bond angles at the S atom are 105.52 (12) and 118.51 (12)°, respectively. The largest of these corresponds to the O=S=O bond angle, which is usually the largest in sulfonamindes (Mughal et al., 2012). An intramolecular C—H···O interaction leads to an S(6) ring.

In the crystal, inversion dimers linked by pairs of N—H···O hydrogen bonds (Table 1) generate R22(8) loops (Fig. 2).

For related structures, see: Khan et al. (2011); Mughal et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. An inversion dimer in the crystal structure of (I). Hydrogen bonds are shown as double-dashed lines and all C-bound H atoms are omitted for clarity. Symmetry code: (i) 1–x, –y, 1–z.
2,5-Dichloro-N-(3-methylphenyl)benzenesulfonamide top
Crystal data top
C13H11Cl2NO2SF(000) = 648
Mr = 316.19Dx = 1.477 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.0361 (10) ÅCell parameters from 4545 reflections
b = 11.6937 (11) Åθ = 2.5–27.5°
c = 13.6904 (15) ŵ = 0.60 mm1
β = 100.588 (3)°T = 296 K
V = 1422.0 (3) Å3Prism, colourless
Z = 40.41 × 0.32 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
2019 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 25.5°, θmin = 2.3°
ω scansh = 510
4252 measured reflectionsk = 137
2566 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1006P)2 + 0.1252P]
where P = (Fo2 + 2Fc2)/3
2566 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C13H11Cl2NO2SV = 1422.0 (3) Å3
Mr = 316.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0361 (10) ŵ = 0.60 mm1
b = 11.6937 (11) ÅT = 296 K
c = 13.6904 (15) Å0.41 × 0.32 × 0.26 mm
β = 100.588 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2019 reflections with I > 2σ(I)
4252 measured reflectionsRint = 0.033
2566 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.06Δρmax = 0.55 e Å3
2566 reflectionsΔρmin = 0.46 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6508 (3)0.2746 (2)0.5229 (2)0.0434 (6)
C20.7492 (3)0.3602 (2)0.5641 (2)0.0518 (7)
H20.81710.34730.62290.062*
C30.7453 (4)0.4650 (3)0.5166 (3)0.0600 (9)
C40.6466 (4)0.4856 (3)0.4299 (3)0.0662 (9)
H40.64600.55620.39850.079*
C50.5481 (4)0.4010 (3)0.3895 (3)0.0614 (8)
H50.48050.41450.33080.074*
C60.5494 (3)0.2971 (2)0.4355 (2)0.0455 (7)
C70.4253 (3)0.1890 (2)0.66797 (19)0.0412 (6)
C80.2706 (3)0.1896 (3)0.6440 (2)0.0558 (8)
H80.22110.14330.59300.067*
C90.1896 (4)0.2589 (4)0.6959 (3)0.0667 (9)
H90.08510.25900.68000.080*
C100.2613 (4)0.3283 (3)0.7712 (3)0.0585 (8)
H100.20530.37530.80540.070*
C110.4159 (3)0.3281 (3)0.7957 (2)0.0500 (7)
C120.4979 (3)0.2580 (3)0.7441 (2)0.0450 (7)
H120.60250.25730.76060.054*
C130.4965 (4)0.4020 (4)0.8794 (3)0.0768 (11)
H13A0.60010.37890.89610.115*
H13B0.44960.39340.93640.115*
H13C0.49120.48060.85880.115*
S10.66516 (7)0.13999 (6)0.58357 (5)0.0423 (3)
N10.5049 (3)0.1135 (2)0.61442 (17)0.0453 (6)
H10.45080.06530.57650.054*
O10.6848 (2)0.05302 (16)0.51318 (15)0.0499 (5)
O20.7776 (2)0.15261 (18)0.67029 (16)0.0548 (6)
Cl10.42138 (9)0.19405 (7)0.38259 (6)0.0597 (3)
Cl20.86761 (14)0.57071 (9)0.57067 (10)0.0941 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0399 (15)0.0476 (15)0.0414 (15)0.0030 (12)0.0040 (12)0.0048 (12)
C20.0420 (16)0.0568 (18)0.0538 (19)0.0010 (13)0.0014 (13)0.0093 (14)
C30.0599 (19)0.0472 (18)0.076 (2)0.0077 (14)0.0209 (18)0.0136 (16)
C40.087 (2)0.0502 (19)0.065 (2)0.0030 (17)0.024 (2)0.0066 (16)
C50.070 (2)0.061 (2)0.0507 (19)0.0029 (16)0.0039 (16)0.0112 (15)
C60.0462 (16)0.0493 (16)0.0382 (15)0.0026 (12)0.0006 (12)0.0016 (12)
C70.0460 (15)0.0441 (15)0.0312 (14)0.0006 (11)0.0012 (11)0.0037 (11)
C80.0439 (17)0.071 (2)0.0488 (18)0.0107 (14)0.0007 (14)0.0142 (15)
C90.0389 (17)0.093 (3)0.066 (2)0.0041 (16)0.0035 (15)0.0102 (19)
C100.0505 (18)0.069 (2)0.058 (2)0.0003 (15)0.0148 (16)0.0098 (16)
C110.0496 (17)0.0591 (18)0.0402 (16)0.0040 (13)0.0053 (13)0.0038 (13)
C120.0409 (15)0.0536 (17)0.0368 (14)0.0033 (12)0.0024 (12)0.0035 (12)
C130.070 (2)0.085 (3)0.072 (2)0.0048 (19)0.0063 (19)0.038 (2)
S10.0405 (4)0.0450 (4)0.0364 (4)0.0049 (3)0.0060 (3)0.0037 (3)
N10.0494 (14)0.0462 (13)0.0369 (13)0.0051 (10)0.0008 (10)0.0077 (10)
O10.0494 (11)0.0508 (12)0.0460 (11)0.0072 (9)0.0000 (9)0.0093 (9)
O20.0464 (12)0.0668 (14)0.0420 (12)0.0069 (9)0.0158 (9)0.0045 (9)
Cl10.0523 (5)0.0712 (6)0.0468 (5)0.0060 (4)0.0143 (3)0.0039 (3)
Cl20.1001 (8)0.0623 (6)0.1198 (10)0.0296 (5)0.0204 (7)0.0255 (6)
Geometric parameters (Å, º) top
C1—C21.388 (4)C8—H80.9300
C1—C61.392 (4)C9—C101.376 (5)
C1—S11.773 (3)C9—H90.9300
C2—C31.385 (4)C10—C111.375 (5)
C2—H20.9300C10—H100.9300
C3—C41.369 (5)C11—C121.384 (4)
C3—Cl21.732 (3)C11—C131.510 (4)
C4—C51.377 (5)C12—H120.9300
C4—H40.9300C13—H13A0.9600
C5—C61.367 (4)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—Cl11.734 (3)S1—O21.421 (2)
C7—C81.376 (4)S1—O11.434 (2)
C7—C121.384 (4)S1—N11.611 (3)
C7—N11.425 (4)N1—H10.8562
C8—C91.374 (5)
C2—C1—C6119.0 (3)C10—C9—H9119.6
C2—C1—S1117.6 (2)C11—C10—C9120.0 (3)
C6—C1—S1123.4 (2)C11—C10—H10120.0
C3—C2—C1119.2 (3)C9—C10—H10120.0
C3—C2—H2120.4C10—C11—C12119.4 (3)
C1—C2—H2120.4C10—C11—C13120.8 (3)
C4—C3—C2121.3 (3)C12—C11—C13119.8 (3)
C4—C3—Cl2120.5 (3)C11—C12—C7120.3 (3)
C2—C3—Cl2118.1 (3)C11—C12—H12119.8
C3—C4—C5119.4 (3)C7—C12—H12119.8
C3—C4—H4120.3C11—C13—H13A109.5
C5—C4—H4120.3C11—C13—H13B109.5
C6—C5—C4120.3 (3)H13A—C13—H13B109.5
C6—C5—H5119.9C11—C13—H13C109.5
C4—C5—H5119.9H13A—C13—H13C109.5
C5—C6—C1120.8 (3)H13B—C13—H13C109.5
C5—C6—Cl1118.5 (2)O2—S1—O1118.51 (12)
C1—C6—Cl1120.7 (2)O2—S1—N1109.86 (13)
C8—C7—C12119.8 (3)O1—S1—N1105.52 (12)
C8—C7—N1117.9 (3)O2—S1—C1106.17 (13)
C12—C7—N1122.3 (3)O1—S1—C1108.81 (13)
C9—C8—C7119.5 (3)N1—S1—C1107.55 (13)
C9—C8—H8120.2C7—N1—S1125.4 (2)
C7—C8—H8120.2C7—N1—H1115.7
C8—C9—C10120.9 (3)S1—N1—H1114.1
C8—C9—H9119.6
C6—C1—C2—C30.7 (4)C9—C10—C11—C120.1 (5)
S1—C1—C2—C3177.4 (2)C9—C10—C11—C13178.8 (4)
C1—C2—C3—C40.1 (5)C10—C11—C12—C70.3 (5)
C1—C2—C3—Cl2179.1 (2)C13—C11—C12—C7179.3 (3)
C2—C3—C4—C50.6 (5)C8—C7—C12—C110.4 (4)
Cl2—C3—C4—C5178.6 (3)N1—C7—C12—C11178.4 (3)
C3—C4—C5—C60.2 (5)C2—C1—S1—O23.2 (3)
C4—C5—C6—C10.6 (5)C6—C1—S1—O2178.7 (2)
C4—C5—C6—Cl1179.1 (3)C2—C1—S1—O1125.3 (2)
C2—C1—C6—C51.1 (4)C6—C1—S1—O152.7 (3)
S1—C1—C6—C5176.9 (2)C2—C1—S1—N1120.8 (2)
C2—C1—C6—Cl1178.6 (2)C6—C1—S1—N161.1 (3)
S1—C1—C6—Cl13.4 (4)C8—C7—N1—S1144.7 (2)
C12—C7—C8—C90.1 (5)C12—C7—N1—S137.2 (4)
N1—C7—C8—C9178.2 (3)O2—S1—N1—C763.7 (2)
C7—C8—C9—C100.4 (6)O1—S1—N1—C7167.5 (2)
C8—C9—C10—C110.5 (6)C1—S1—N1—C751.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.092.946 (3)178
C12—H12···O20.932.503.141 (3)126
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H11Cl2NO2S
Mr316.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.0361 (10), 11.6937 (11), 13.6904 (15)
β (°) 100.588 (3)
V3)1422.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.41 × 0.32 × 0.26
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4252, 2566, 2019
Rint0.033
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.159, 1.06
No. of reflections2566
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.46

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.092.946 (3)178
C12—H12···O20.932.503.141 (3)126
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors are thankful to the Higher Education Commission of Pakistan for providing a grant under the project to strengthen the Materials Chemistry Laboratory at GC University, Lahore.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKhan, M. H., Khan, I. U., Arshad, M. N., Mughal, S. Y. & Akkurt, M. (2011). Acta Cryst. E67, o885–o886.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Arshad, M. N. (2012). Acta Cryst. E68, o2433.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds