organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4,6-Tri-O-acetyl-1,2-[(S)-ethyl­­idene]-β-D-manno­pyran­ose

aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za

(Received 5 July 2012; accepted 16 July 2012; online 21 July 2012)

In the title compound, C14H20O9, the six-membered pyran and the five-membered dioxalane rings adopt chair and twisted conformations, respectively. In the crystal, the mol­ecules are linked by C—H⋯O inter­actions.

Related literature

For orthogonal protection in carbohydrate chemistry, see: Wuts & Greene (2007[Wuts, P. G. W. & Greene, T. W. (2007). Protective Groups in Organic Synthesis, 4th ed. New Jersey: Wiley.]); Betaneli et al. (1982[Betaneli, V. I., Ovchinnikov, M. V., Bakinovskii, L. V. & Kochetkov, N. K. (1982). Carbohydr. Res. 107, 285-291.]). For background to the synthetic methodology, see: Doores et al. (2010[Doores, K. J., Fulton, Z., Hong, V., Patel, M. K., Scanlan, C. N., Wormald, M. R., Finn, M. G., Burton, D. R., Wilson, I. A. & Davis, B. G. (2010). Proc. Natl Acad. Sci. USA, 102, 13372-13377.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20O9

  • Mr = 332.3

  • Orthorhombic, P 21 21 21

  • a = 7.0494 (3) Å

  • b = 14.6994 (7) Å

  • c = 15.3608 (7) Å

  • V = 1591.72 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.01 mm−1

  • T = 100 K

  • 0.16 × 0.16 × 0.12 mm

Data collection
  • Bruker APEX DUO 4K-CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.856, Tmax = 0.889

  • 23454 measured reflections

  • 2701 independent reflections

  • 2684 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.085

  • S = 1.20

  • 2701 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1110 Friedel Pairs

  • Flack parameter: 0.06 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯O3i 0.98 2.55 3.511 (2) 167
C8—H8⋯O7i 1.00 2.49 3.317 (2) 140
C12—H12A⋯O4ii 0.98 2.56 3.469 (2) 154
C12—H12B⋯O1iii 0.98 2.51 3.460 (2) 163
C14—H14B⋯O9iv 0.98 2.53 3.361 (2) 142
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+2, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Ethylidene acetals are important functional groups for orthogonal protection in carbohydrate chemistry (Wuts & Greene, 2007; Betaneli et al., 1982). The title compound is a key intermediate for the preparation of polysaccharides which exhibit strong activity against the HIV-1 virus (Doores et al., 2010). Herein, we report the crystal structure of 3,4,6-tri-O-acetyl-1,2-O-[S-ethylidene] -β-D-mannopyranoside to confirm its absolute configuration.

The title compound C14H20O9 (see Fig. 1, and Scheme 1) crystallizes in the P212121 (Z = 4) space group. Puckering analysis confirms the twisted conformation of the five membered dioxalane ring, with puckering parameter values of q2 = 0.347 (3) Å, and φ2 = 61.9 (4)°; and that of the six membered pyran chair conformation ring as q2 = 0.163 (3) Å, q3 = -0.526 (3) Å, Q = 0.550 (3) Å and φ2 = 253.3 (9)° (see Cremer & Pople, 1975). The dioxalane ring is twisted on C6–C7.

The molecules are linked by C-H···O interactions (see Table 1).

Related literature top

For orthogonal protection in carbohydrate chemistry, see: Wuts & Greene (2007); Betaneli et al. (1982). For background to the synthetic methodology, see: Doores et al. (2010). For ring puckering analysis, see: Cremer & Pople (1975).

Experimental top

A solution of 2,3,4,6-tetra-O-acetyl -α-D-mannopyranosyl bromide (150 mg, 0.36 mmol) in acetonitrile (3 ml) was treated with sodium boron hydride (250 mg, 6.61 mmol) and the reaction mixture was stirred at room temperature for 12 h. The mixture was then diluted with chloroform and washed with water three times. The organic layer was dried over anhydrous Na2SO4, filtered and evaporated in vacuo to give an oil. The oily residue was crashed with methanol to afford 70% of the target compound as white crystals.

Analytical data: mp: 108-110 °C (Lit. 113-115 °C; Betaneli et al., 1982); 1H NMR (CDCl3, 400 MHz): δ 5.40-5.10 (m, 4H), 4.31-4.03 (m, 3H), 3.72-3.64 (m, 1H), 2.09 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 1.51 (d, J = 4.8 Hz, 3H); 13C NMR (CDCl3, 400 MHz): δ 170.7, 170.3, 169.5, 104.8, 96.5, 71.6, 70.6, 66.0, 62.5, 21.6, 20.7, 20.7.

Refinement top

All hydrogen atoms were positioned in geometrically idealized positions with C–H = 1.00 Å (methine), 0.99 Å (methylene), and 0.98 Å (methyl). All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, except for the methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as a fixed rotor. The D enantiomer refined to a final Flack parameter of 0.06 (15). The highest residual electron density of 0.50 e.Å-3 is 0.93 Å from H14B.

Structure description top

Ethylidene acetals are important functional groups for orthogonal protection in carbohydrate chemistry (Wuts & Greene, 2007; Betaneli et al., 1982). The title compound is a key intermediate for the preparation of polysaccharides which exhibit strong activity against the HIV-1 virus (Doores et al., 2010). Herein, we report the crystal structure of 3,4,6-tri-O-acetyl-1,2-O-[S-ethylidene] -β-D-mannopyranoside to confirm its absolute configuration.

The title compound C14H20O9 (see Fig. 1, and Scheme 1) crystallizes in the P212121 (Z = 4) space group. Puckering analysis confirms the twisted conformation of the five membered dioxalane ring, with puckering parameter values of q2 = 0.347 (3) Å, and φ2 = 61.9 (4)°; and that of the six membered pyran chair conformation ring as q2 = 0.163 (3) Å, q3 = -0.526 (3) Å, Q = 0.550 (3) Å and φ2 = 253.3 (9)° (see Cremer & Pople, 1975). The dioxalane ring is twisted on C6–C7.

The molecules are linked by C-H···O interactions (see Table 1).

For orthogonal protection in carbohydrate chemistry, see: Wuts & Greene (2007); Betaneli et al. (1982). For background to the synthetic methodology, see: Doores et al. (2010). For ring puckering analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (1). Displacement ellipsoids are drawn at the 50% probability level.
3,4,6-Tri-O-acetyl-1,2-[(S)-ethylidene]-β-D- mannopyranose top
Crystal data top
C14H20O9F(000) = 704
Mr = 332.3Dx = 1.387 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 9727 reflections
a = 7.0494 (3) Åθ = 6.5–65.8°
b = 14.6994 (7) ŵ = 1.01 mm1
c = 15.3608 (7) ÅT = 100 K
V = 1591.72 (12) Å3Cube, colourless
Z = 40.16 × 0.16 × 0.12 mm
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
2701 independent reflections
Radiation source: Incoatec IµS microfocus X-ray source2684 reflections with I > 2σ(I)
Incoatec Quazar Multilayer Mirror monochromatorRint = 0.028
Detector resolution: 8.4 pixels mm-1θmax = 66.2°, θmin = 4.2°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1614
Tmin = 0.856, Tmax = 0.889l = 1817
23454 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.3436P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.001
2701 reflectionsΔρmax = 0.26 e Å3
212 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: Flack (1983), 1110 Friedel Pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (15)
Crystal data top
C14H20O9V = 1591.72 (12) Å3
Mr = 332.3Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.0494 (3) ŵ = 1.01 mm1
b = 14.6994 (7) ÅT = 100 K
c = 15.3608 (7) Å0.16 × 0.16 × 0.12 mm
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
2701 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2684 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.889Rint = 0.028
23454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.26 e Å3
S = 1.20Δρmin = 0.31 e Å3
2701 reflectionsAbsolute structure: Flack (1983), 1110 Friedel Pairs
212 parametersAbsolute structure parameter: 0.06 (15)
0 restraints
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 5 s/frame. A total of 4548 frames were collected with a frame width of 1° covering up to θ = 66.21° with 97.7% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1916 (3)0.55884 (11)0.36854 (11)0.0238 (4)
H1A0.09050.51310.36870.036*
H1B0.20860.58280.42760.036*
H1C0.31020.53090.34870.036*
C20.1392 (2)0.63445 (10)0.30873 (10)0.0191 (3)
C30.2253 (2)0.78379 (10)0.26420 (10)0.0182 (3)
H30.0850.79380.26230.022*
C40.3175 (2)0.86302 (10)0.30997 (10)0.0181 (3)
H40.45510.85040.32020.022*
C50.2937 (2)0.94827 (11)0.25454 (10)0.0199 (3)
H50.1560.95710.24130.024*
C60.3204 (2)0.86280 (11)0.12195 (10)0.0200 (3)
H60.19880.88110.09330.024*
C70.2989 (2)0.77323 (10)0.17178 (10)0.0195 (3)
H70.21670.73020.13840.023*
C80.5782 (3)0.76982 (12)0.09524 (12)0.0275 (4)
H80.58430.71810.0530.033*
C90.7739 (3)0.80202 (14)0.11606 (13)0.0346 (4)
H9A0.76760.84910.16110.052*
H9B0.83250.82730.06350.052*
H9C0.850.75080.13720.052*
C100.3704 (2)1.03347 (11)0.29613 (11)0.0214 (4)
H10A0.35911.08520.25520.026*
H10B0.29671.0480.34920.026*
C110.6193 (2)1.03193 (10)0.40213 (11)0.0203 (4)
C120.8252 (3)1.01153 (13)0.41372 (11)0.0258 (4)
H12A0.86961.0380.46860.039*
H12B0.89711.03780.36520.039*
H12C0.84410.94550.41490.039*
C130.3177 (2)0.85697 (10)0.46588 (11)0.0208 (3)
C140.1957 (3)0.87231 (12)0.54383 (11)0.0274 (4)
H14A0.2670.8570.59660.041*
H14B0.08270.83370.540.041*
H14C0.15730.93630.54610.041*
O10.00432 (18)0.63631 (8)0.26050 (8)0.0251 (3)
O20.26442 (16)0.70374 (7)0.31509 (7)0.0192 (2)
O30.39448 (16)0.93390 (8)0.17474 (8)0.0213 (3)
O40.46022 (18)0.84164 (8)0.06055 (8)0.0251 (3)
O50.48923 (17)0.74080 (7)0.17374 (8)0.0234 (3)
O60.56740 (16)1.01897 (7)0.31844 (7)0.0202 (3)
O70.51158 (18)1.05559 (8)0.45868 (8)0.0249 (3)
O80.22067 (16)0.87679 (7)0.39160 (7)0.0201 (3)
O90.47936 (18)0.83119 (8)0.46649 (8)0.0265 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0263 (9)0.0187 (8)0.0263 (8)0.0010 (7)0.0026 (7)0.0042 (7)
C20.0200 (8)0.0172 (8)0.0200 (8)0.0019 (6)0.0034 (7)0.0019 (6)
C30.0178 (7)0.0158 (7)0.0210 (7)0.0010 (6)0.0022 (6)0.0033 (6)
C40.0179 (7)0.0177 (8)0.0186 (7)0.0006 (6)0.0005 (6)0.0012 (6)
C50.0192 (7)0.0181 (8)0.0224 (8)0.0014 (6)0.0036 (6)0.0007 (6)
C60.0210 (8)0.0197 (8)0.0192 (8)0.0022 (6)0.0015 (6)0.0008 (6)
C70.0197 (8)0.0170 (7)0.0216 (7)0.0000 (6)0.0008 (7)0.0005 (6)
C80.0314 (9)0.0222 (8)0.0290 (9)0.0041 (7)0.0065 (8)0.0050 (7)
C90.0309 (10)0.0329 (10)0.0399 (10)0.0006 (8)0.0032 (8)0.0091 (8)
C100.0198 (8)0.0186 (8)0.0259 (8)0.0014 (6)0.0065 (7)0.0008 (7)
C110.0275 (9)0.0128 (7)0.0207 (8)0.0017 (7)0.0031 (7)0.0031 (7)
C120.0243 (9)0.0293 (9)0.0238 (8)0.0009 (7)0.0044 (7)0.0016 (7)
C130.0247 (9)0.0147 (8)0.0229 (8)0.0006 (6)0.0043 (7)0.0007 (6)
C140.0315 (9)0.0283 (9)0.0222 (8)0.0003 (8)0.0005 (7)0.0040 (7)
O10.0234 (6)0.0225 (6)0.0294 (6)0.0049 (5)0.0047 (5)0.0021 (5)
O20.0208 (6)0.0158 (5)0.0210 (5)0.0030 (4)0.0030 (4)0.0039 (4)
O30.0246 (6)0.0186 (5)0.0208 (5)0.0046 (5)0.0017 (5)0.0019 (5)
O40.0271 (6)0.0229 (6)0.0254 (6)0.0029 (5)0.0053 (5)0.0057 (5)
O50.0241 (6)0.0202 (5)0.0259 (6)0.0051 (5)0.0051 (5)0.0060 (5)
O60.0199 (6)0.0203 (5)0.0204 (5)0.0003 (4)0.0039 (5)0.0014 (5)
O70.0286 (6)0.0242 (6)0.0219 (6)0.0031 (5)0.0011 (5)0.0005 (5)
O80.0200 (6)0.0218 (5)0.0186 (5)0.0022 (5)0.0007 (5)0.0005 (4)
O90.0257 (7)0.0287 (6)0.0250 (6)0.0050 (5)0.0056 (5)0.0003 (5)
Geometric parameters (Å, º) top
C1—C21.489 (2)C8—O51.425 (2)
C1—H1A0.98C8—O41.446 (2)
C1—H1B0.98C8—C91.493 (3)
C1—H1C0.98C8—H81
C2—O11.206 (2)C9—H9A0.98
C2—O21.3514 (19)C9—H9B0.98
C3—O21.4394 (18)C9—H9C0.98
C3—C41.508 (2)C10—O61.4461 (19)
C3—C71.520 (2)C10—H10A0.99
C3—H31C10—H10B0.99
C4—O81.4420 (19)C11—O71.205 (2)
C4—C51.524 (2)C11—O61.350 (2)
C4—H41C11—C121.493 (2)
C5—O31.433 (2)C12—H12A0.98
C5—C101.506 (2)C12—H12B0.98
C5—H51C12—H12C0.98
C6—O41.399 (2)C13—O91.201 (2)
C6—O31.422 (2)C13—O81.3620 (19)
C6—C71.530 (2)C13—C141.492 (2)
C6—H61C14—H14A0.98
C7—O51.424 (2)C14—H14B0.98
C7—H71C14—H14C0.98
C2—C1—H1A109.5O4—C8—C9112.28 (15)
C2—C1—H1B109.5O5—C8—H8109.9
H1A—C1—H1B109.5O4—C8—H8109.9
C2—C1—H1C109.5C9—C8—H8109.9
H1A—C1—H1C109.5C8—C9—H9A109.5
H1B—C1—H1C109.5C8—C9—H9B109.5
O1—C2—O2122.85 (14)H9A—C9—H9B109.5
O1—C2—C1126.29 (15)C8—C9—H9C109.5
O2—C2—C1110.86 (13)H9A—C9—H9C109.5
O2—C3—C4107.19 (12)H9B—C9—H9C109.5
O2—C3—C7110.99 (12)O6—C10—C5108.84 (13)
C4—C3—C7111.54 (13)O6—C10—H10A109.9
O2—C3—H3109C5—C10—H10A109.9
C4—C3—H3109O6—C10—H10B109.9
C7—C3—H3109C5—C10—H10B109.9
O8—C4—C3108.04 (12)H10A—C10—H10B108.3
O8—C4—C5108.55 (12)O7—C11—O6123.81 (15)
C3—C4—C5109.08 (12)O7—C11—C12125.78 (16)
O8—C4—H4110.4O6—C11—C12110.40 (14)
C3—C4—H4110.4C11—C12—H12A109.5
C5—C4—H4110.4C11—C12—H12B109.5
O3—C5—C10107.89 (13)H12A—C12—H12B109.5
O3—C5—C4107.58 (12)C11—C12—H12C109.5
C10—C5—C4114.01 (13)H12A—C12—H12C109.5
O3—C5—H5109.1H12B—C12—H12C109.5
C10—C5—H5109.1O9—C13—O8123.42 (15)
C4—C5—H5109.1O9—C13—C14126.07 (16)
O4—C6—O3106.79 (13)O8—C13—C14110.51 (14)
O4—C6—C7102.44 (12)C13—C14—H14A109.5
O3—C6—C7112.54 (12)C13—C14—H14B109.5
O4—C6—H6111.5H14A—C14—H14B109.5
O3—C6—H6111.5C13—C14—H14C109.5
C7—C6—H6111.5H14A—C14—H14C109.5
O5—C7—C3109.66 (13)H14B—C14—H14C109.5
O5—C7—C6101.86 (12)C2—O2—C3116.85 (12)
C3—C7—C6114.39 (13)C6—O3—C5114.45 (12)
O5—C7—H7110.2C6—O4—C8108.62 (12)
C3—C7—H7110.2C7—O5—C8107.27 (12)
C6—C7—H7110.2C11—O6—C10117.71 (13)
O5—C8—O4106.08 (13)C13—O8—C4117.42 (12)
O5—C8—C9108.69 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···O3i0.982.553.511 (2)167
C8—H8···O7i1.002.493.317 (2)140
C12—H12A···O4ii0.982.563.469 (2)154
C12—H12B···O1iii0.982.513.460 (2)163
C14—H14B···O9iv0.982.533.361 (2)142
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+3/2, y+2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H20O9
Mr332.3
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.0494 (3), 14.6994 (7), 15.3608 (7)
V3)1591.72 (12)
Z4
Radiation typeCu Kα
µ (mm1)1.01
Crystal size (mm)0.16 × 0.16 × 0.12
Data collection
DiffractometerBruker APEX DUO 4K-CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.856, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
23454, 2701, 2684
Rint0.028
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.085, 1.20
No. of reflections2701
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.31
Absolute structureFlack (1983), 1110 Friedel Pairs
Absolute structure parameter0.06 (15)

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···O3i0.982.553.511 (2)167
C8—H8···O7i1.002.493.317 (2)140
C12—H12A···O4ii0.982.563.469 (2)154
C12—H12B···O1iii0.982.513.460 (2)163
C14—H14B···O9iv0.982.533.361 (2)142
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+3/2, y+2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1/2, y+3/2, z+1.
 

Acknowledgements

Research funds of the University of Johannesburg and the Research Center for Synthesis and Catalysis are gratefully acknowledged.

References

First citationBetaneli, V. I., Ovchinnikov, M. V., Bakinovskii, L. V. & Kochetkov, N. K. (1982). Carbohydr. Res. 107, 285–291.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDoores, K. J., Fulton, Z., Hong, V., Patel, M. K., Scanlan, C. N., Wormald, M. R., Finn, M. G., Burton, D. R., Wilson, I. A. & Davis, B. G. (2010). Proc. Natl Acad. Sci. USA, 102, 13372–13377.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWuts, P. G. W. & Greene, T. W. (2007). Protective Groups in Organic Synthesis, 4th ed. New Jersey: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds