metal-organic compounds
Bis(2-amino-3-methylpyridine-κN1)dichloridomercury(II)
aDepartment of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: tajarodi@iust.ac.ir
In the title compound, [HgCl2(C6H8N2)2], the two independent HgII cations are each located on a twofold rotation axis and coordinated by two pyridine N atoms from two 2-amino-3-methylpyridine ligands and two Cl− anions in a distorted tetrahedral geometry. An intramolecular N—H⋯Cl hydrogen bond occurs in each independent complex molecule. Intermolecular N—H⋯Cl hydrogen bonds occur in the crystal structure.
Related literature
For coordination modes of 2-amino-3-methylpyridine (ampy), see: Arab Ahmadi et al. (2011); Tadjarodi et al. (2010); Amani Komaei et al. (1999); Ziegler et al. (2000); Castillo et al. (2001); Chen et al. (2005). For proton-transfer compounds incorporating ampy, see: Carnevale et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2005); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812032126/xu5594sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812032126/xu5594Isup2.hkl
An ethanolic solution of 2-amino-3-methylpyridine (10 mmol) was added to a solution of HgCl2 (5 mmol) in ethanol (10 ml) and stirred for 10 min at 50°C. Slow evaporation of the resulting filtrate gave the colorless crystals suitable for X-ray analysis (decomposition > 240 °C).
Hydrogen atoms attached to nitrogen atoms were found in difference Fourier map. H2A, H2B, H4A and H4B were refined with Uiso(H) = 1.5 Ueq(N). H2A, H2B, H4A and H4B were refined with distance restraints of N—H 0.86 (2), 0.87 (2), 0.86 (2) and 0.87 (2), respectively. H atoms attached to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å (CH), with C—H = 0.96 Å (CH3), and Uiso(H) = 1.2,1.5Ueq(C).
2-Amino-3-methylpyridine (ampy) is capable of coordinating to metals not only through the nitrogen atom of the pyridyl group (Arab Ahmadi et al., 2011; Tadjarodi et al., 2010; Amani Komaei et al., 1999; Ziegler et al., 2000; Castillo et al., 2001) but also via the nitrogen atom of the amino group (Chen et al., 2005). So far, different structures of proton-transfer compounds, [(ampyH)2CoX4] (X = Cl, Br) have been reported (Carnevale et al. (2010).
We report herein the synthesis and molecular structure of the title compound, [Hg(ampy)2Cl2]. The
of the title compound consists of two half of one mercury, one ampy and one chloride atom. The coordination sphere of the mononuclear complex consists of two chloride ions and two pyridyl nitrogen atoms from two ampy ligands in a distorted tetrahedral geometry (Fig. 1). In the of [Hg(ampy)2Cl2], there are several intermolecular N–H···Cl hydrogen bond interactions which stabilized (Fig. 2 & Table 1).For coordination modes of 2-amino-3-methylpyridine (ampy), see: Arab Ahmadi et al. (2011); Tadjarodi et al. (2010); Amani Komaei et al. (1999); Ziegler et al. (2000); Castillo et al. (2001); Chen et al. (2005). For proton-transfer compounds incorporating 2-amino-3-methylpyridine, see: Carnevale et al. (2010). For similar structures, see: Tadjarodi et al. (2010); Amani Komaei et al. (1999); Arab Ahmadi et al. (2011).
Data collection: X-AREA (Stoe & Cie, 2005); cell
X-AREA (Stoe & Cie, 2005); data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[HgCl2(C6H8N2)2] | F(000) = 920 |
Mr = 487.78 | Dx = 2.092 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yc | Cell parameters from 2912 reflections |
a = 16.495 (3) Å | θ = 2.5–26.0° |
b = 6.6320 (13) Å | µ = 10.28 mm−1 |
c = 16.273 (3) Å | T = 298 K |
β = 119.56 (3)° | Block, colorless |
V = 1548.5 (7) Å3 | 0.30 × 0.30 × 0.27 mm |
Z = 4 |
Stoe IPDS 2T diffractometer | 2912 independent reflections |
Radiation source: fine-focus sealed tube | 2493 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
rotation method scans | θmax = 26.0°, θmin = 2.5° |
Absorption correction: numerical [shape of crystal determined optically (X-SHAPE and X-RED32; Stoe & Cie, 2005)] | h = −16→20 |
Tmin = 0.149, Tmax = 0.168 | k = −7→8 |
5454 measured reflections | l = −19→20 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.0773P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2912 reflections | Δρmax = 2.40 e Å−3 |
188 parameters | Δρmin = −2.67 e Å−3 |
4 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0064 (5) |
[HgCl2(C6H8N2)2] | V = 1548.5 (7) Å3 |
Mr = 487.78 | Z = 4 |
Monoclinic, P2/c | Mo Kα radiation |
a = 16.495 (3) Å | µ = 10.28 mm−1 |
b = 6.6320 (13) Å | T = 298 K |
c = 16.273 (3) Å | 0.30 × 0.30 × 0.27 mm |
β = 119.56 (3)° |
Stoe IPDS 2T diffractometer | 2912 independent reflections |
Absorption correction: numerical [shape of crystal determined optically (X-SHAPE and X-RED32; Stoe & Cie, 2005)] | 2493 reflections with I > 2σ(I) |
Tmin = 0.149, Tmax = 0.168 | Rint = 0.052 |
5454 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 4 restraints |
wR(F2) = 0.116 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 2.40 e Å−3 |
2912 reflections | Δρmin = −2.67 e Å−3 |
188 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.0000 | 0.19701 (7) | 0.2500 | 0.04474 (19) | |
Hg2 | 0.5000 | 0.76184 (6) | 0.2500 | 0.04007 (19) | |
Cl1 | 0.13755 (15) | 0.0118 (3) | 0.36667 (16) | 0.0565 (6) | |
Cl2 | 0.35836 (16) | 0.9352 (4) | 0.22391 (16) | 0.0590 (6) | |
N1 | 0.0500 (5) | 0.4038 (9) | 0.1715 (4) | 0.0407 (15) | |
N2 | 0.1527 (6) | 0.1618 (12) | 0.1736 (6) | 0.0497 (17) | |
N3 | 0.4556 (4) | 0.5485 (9) | 0.1232 (4) | 0.0359 (14) | |
N4 | 0.3477 (6) | 0.7778 (10) | 0.0184 (5) | 0.0472 (19) | |
C1 | 0.1163 (5) | 0.3496 (11) | 0.1495 (5) | 0.0362 (16) | |
C2 | 0.1430 (6) | 0.4814 (13) | 0.1001 (5) | 0.0441 (19) | |
C3 | 0.2151 (7) | 0.4171 (18) | 0.0751 (8) | 0.069 (3) | |
H3A | 0.2217 | 0.5192 | 0.0370 | 0.104* | |
H3B | 0.1962 | 0.2928 | 0.0404 | 0.104* | |
H3C | 0.2737 | 0.3980 | 0.1318 | 0.104* | |
C4 | 0.1028 (7) | 0.6659 (13) | 0.0756 (6) | 0.051 (2) | |
H4 | 0.1206 | 0.7549 | 0.0432 | 0.061* | |
C5 | 0.0361 (7) | 0.7229 (12) | 0.0981 (6) | 0.049 (2) | |
H5 | 0.0088 | 0.8499 | 0.0813 | 0.059* | |
C6 | 0.0103 (6) | 0.5893 (13) | 0.1459 (5) | 0.0454 (19) | |
H6 | −0.0352 | 0.6267 | 0.1609 | 0.055* | |
C7 | 0.3884 (6) | 0.5942 (11) | 0.0346 (5) | 0.0373 (16) | |
C8 | 0.3618 (6) | 0.4525 (12) | −0.0402 (5) | 0.0403 (17) | |
C9 | 0.2853 (7) | 0.5040 (17) | −0.1374 (6) | 0.066 (3) | |
H9A | 0.2783 | 0.3968 | −0.1801 | 0.100* | |
H9B | 0.3005 | 0.6267 | −0.1581 | 0.100* | |
H9C | 0.2280 | 0.5215 | −0.1364 | 0.100* | |
C10 | 0.4071 (8) | 0.2741 (12) | −0.0193 (6) | 0.050 (2) | |
H10 | 0.3904 | 0.1785 | −0.0668 | 0.060* | |
C11 | 0.4775 (7) | 0.2304 (13) | 0.0704 (6) | 0.049 (2) | |
H11 | 0.5096 | 0.1087 | 0.0833 | 0.058* | |
C12 | 0.4993 (6) | 0.3695 (12) | 0.1401 (5) | 0.0405 (17) | |
H12 | 0.5458 | 0.3394 | 0.2012 | 0.049* | |
H2A | 0.158 (7) | 0.107 (14) | 0.224 (4) | 0.061* | |
H4A | 0.301 (5) | 0.788 (14) | −0.038 (4) | 0.061* | |
H2B | 0.202 (4) | 0.161 (15) | 0.168 (7) | 0.061* | |
H4B | 0.348 (7) | 0.845 (14) | 0.064 (5) | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.0379 (3) | 0.0561 (3) | 0.0446 (3) | 0.000 | 0.0238 (2) | 0.000 |
Hg2 | 0.0326 (3) | 0.0476 (3) | 0.0330 (3) | 0.000 | 0.0108 (2) | 0.000 |
Cl1 | 0.0393 (11) | 0.0617 (13) | 0.0566 (12) | −0.0032 (9) | 0.0147 (10) | 0.0151 (9) |
Cl2 | 0.0442 (11) | 0.0714 (14) | 0.0564 (12) | 0.0166 (10) | 0.0210 (10) | −0.0068 (10) |
N1 | 0.043 (4) | 0.041 (4) | 0.036 (3) | 0.001 (3) | 0.018 (3) | 0.001 (2) |
N2 | 0.048 (4) | 0.051 (4) | 0.063 (5) | 0.006 (3) | 0.037 (4) | 0.001 (3) |
N3 | 0.036 (3) | 0.036 (3) | 0.034 (3) | 0.007 (3) | 0.016 (3) | 0.001 (2) |
N4 | 0.049 (5) | 0.039 (4) | 0.040 (4) | 0.008 (3) | 0.012 (3) | 0.003 (3) |
C1 | 0.029 (4) | 0.046 (4) | 0.033 (3) | −0.007 (3) | 0.014 (3) | −0.009 (3) |
C2 | 0.045 (5) | 0.054 (5) | 0.039 (4) | −0.015 (4) | 0.025 (4) | −0.009 (3) |
C3 | 0.055 (6) | 0.085 (8) | 0.081 (7) | −0.007 (5) | 0.044 (6) | 0.003 (5) |
C4 | 0.065 (6) | 0.043 (4) | 0.052 (5) | −0.015 (4) | 0.034 (4) | −0.003 (4) |
C5 | 0.058 (6) | 0.042 (5) | 0.042 (4) | 0.002 (4) | 0.020 (4) | 0.002 (3) |
C6 | 0.040 (4) | 0.049 (5) | 0.039 (4) | 0.009 (4) | 0.014 (4) | 0.001 (3) |
C7 | 0.045 (4) | 0.037 (4) | 0.030 (3) | −0.006 (3) | 0.018 (3) | −0.001 (3) |
C8 | 0.042 (4) | 0.049 (4) | 0.031 (4) | 0.002 (3) | 0.019 (3) | 0.002 (3) |
C9 | 0.054 (6) | 0.087 (7) | 0.029 (4) | 0.010 (5) | −0.002 (4) | −0.007 (4) |
C10 | 0.066 (6) | 0.050 (5) | 0.036 (4) | −0.001 (4) | 0.027 (4) | −0.009 (3) |
C11 | 0.058 (6) | 0.049 (5) | 0.045 (5) | 0.012 (4) | 0.030 (5) | 0.004 (3) |
C12 | 0.042 (4) | 0.044 (4) | 0.032 (3) | 0.005 (3) | 0.016 (3) | 0.004 (3) |
Hg1—N1 | 2.287 (7) | C2—C3 | 1.497 (14) |
Hg1—N1i | 2.287 (7) | C3—H3A | 0.9600 |
Hg1—Cl1i | 2.452 (2) | C3—H3B | 0.9600 |
Hg1—Cl1 | 2.452 (2) | C3—H3C | 0.9600 |
Hg2—N3 | 2.303 (6) | C4—C5 | 1.373 (15) |
Hg2—N3ii | 2.303 (6) | C4—H4 | 0.9300 |
Hg2—Cl2ii | 2.446 (2) | C5—C6 | 1.378 (13) |
Hg2—Cl2 | 2.446 (2) | C5—H5 | 0.9300 |
N1—C1 | 1.356 (11) | C6—H6 | 0.9300 |
N1—C6 | 1.360 (10) | C7—C8 | 1.425 (10) |
N2—C1 | 1.354 (11) | C8—C10 | 1.351 (12) |
N2—H2A | 0.86 (2) | C8—C9 | 1.498 (11) |
N2—H2B | 0.87 (2) | C9—H9A | 0.9600 |
N3—C12 | 1.345 (10) | C9—H9B | 0.9600 |
N3—C7 | 1.350 (9) | C9—H9C | 0.9600 |
N4—C7 | 1.352 (10) | C10—C11 | 1.375 (13) |
N4—H4A | 0.86 (2) | C10—H10 | 0.9300 |
N4—H4B | 0.87 (2) | C11—C12 | 1.365 (12) |
C1—C2 | 1.397 (11) | C11—H11 | 0.9300 |
C2—C4 | 1.355 (13) | C12—H12 | 0.9300 |
N1—Hg1—N1i | 106.3 (3) | C2—C3—H3C | 109.5 |
N1—Hg1—Cl1i | 108.60 (16) | H3A—C3—H3C | 109.5 |
N1i—Hg1—Cl1i | 106.35 (17) | H3B—C3—H3C | 109.5 |
N1—Hg1—Cl1 | 106.35 (17) | C2—C4—C5 | 120.7 (8) |
N1i—Hg1—Cl1 | 108.60 (16) | C2—C4—H4 | 119.6 |
Cl1i—Hg1—Cl1 | 119.88 (11) | C5—C4—H4 | 119.6 |
N3—Hg2—N3ii | 104.2 (3) | C4—C5—C6 | 119.0 (8) |
N3—Hg2—Cl2ii | 107.38 (18) | C4—C5—H5 | 120.5 |
N3ii—Hg2—Cl2ii | 106.20 (16) | C6—C5—H5 | 120.5 |
N3—Hg2—Cl2 | 106.20 (16) | N1—C6—C5 | 121.3 (9) |
N3ii—Hg2—Cl2 | 107.38 (18) | N1—C6—H6 | 119.4 |
Cl2ii—Hg2—Cl2 | 123.91 (13) | C5—C6—H6 | 119.4 |
C1—N1—C6 | 119.2 (7) | N3—C7—N4 | 118.5 (6) |
C1—N1—Hg1 | 123.3 (5) | N3—C7—C8 | 120.6 (7) |
C6—N1—Hg1 | 117.5 (6) | N4—C7—C8 | 120.9 (7) |
C1—N2—H2A | 119 (7) | C10—C8—C7 | 117.7 (7) |
C1—N2—H2B | 106 (7) | C10—C8—C9 | 122.6 (8) |
H2A—N2—H2B | 116 (10) | C7—C8—C9 | 119.7 (7) |
C12—N3—C7 | 119.4 (6) | C8—C9—H9A | 109.5 |
C12—N3—Hg2 | 117.3 (5) | C8—C9—H9B | 109.5 |
C7—N3—Hg2 | 123.3 (5) | H9A—C9—H9B | 109.5 |
C7—N4—H4A | 112 (7) | C8—C9—H9C | 109.5 |
C7—N4—H4B | 120 (7) | H9A—C9—H9C | 109.5 |
H4A—N4—H4B | 120 (10) | H9B—C9—H9C | 109.5 |
N2—C1—N1 | 117.8 (7) | C8—C10—C11 | 121.6 (8) |
N2—C1—C2 | 121.4 (7) | C8—C10—H10 | 119.2 |
N1—C1—C2 | 120.7 (7) | C11—C10—H10 | 119.2 |
C4—C2—C1 | 119.1 (8) | C12—C11—C10 | 118.6 (8) |
C4—C2—C3 | 121.1 (8) | C12—C11—H11 | 120.7 |
C1—C2—C3 | 119.8 (8) | C10—C11—H11 | 120.7 |
C2—C3—H3A | 109.5 | N3—C12—C11 | 122.1 (7) |
C2—C3—H3B | 109.5 | N3—C12—H12 | 118.9 |
H3A—C3—H3B | 109.5 | C11—C12—H12 | 118.9 |
N1i—Hg1—N1—C1 | 152.6 (6) | C1—C2—C4—C5 | −0.5 (12) |
Cl1i—Hg1—N1—C1 | −93.3 (5) | C3—C2—C4—C5 | 179.4 (8) |
Cl1—Hg1—N1—C1 | 37.0 (6) | C2—C4—C5—C6 | −0.2 (13) |
N1i—Hg1—N1—C6 | −27.8 (5) | C1—N1—C6—C5 | −0.1 (11) |
Cl1i—Hg1—N1—C6 | 86.3 (5) | Hg1—N1—C6—C5 | −179.8 (6) |
Cl1—Hg1—N1—C6 | −143.4 (5) | C4—C5—C6—N1 | 0.5 (13) |
N3ii—Hg2—N3—C12 | −31.0 (5) | C12—N3—C7—N4 | −177.6 (8) |
Cl2ii—Hg2—N3—C12 | 81.4 (6) | Hg2—N3—C7—N4 | 2.9 (10) |
Cl2—Hg2—N3—C12 | −144.2 (6) | C12—N3—C7—C8 | 1.8 (12) |
N3ii—Hg2—N3—C7 | 148.5 (7) | Hg2—N3—C7—C8 | −177.7 (6) |
Cl2ii—Hg2—N3—C7 | −99.1 (6) | N3—C7—C8—C10 | −1.2 (13) |
Cl2—Hg2—N3—C7 | 35.3 (6) | N4—C7—C8—C10 | 178.3 (9) |
C6—N1—C1—N2 | −178.2 (7) | N3—C7—C8—C9 | 178.3 (8) |
Hg1—N1—C1—N2 | 1.4 (9) | N4—C7—C8—C9 | −2.3 (13) |
C6—N1—C1—C2 | −0.6 (10) | C7—C8—C10—C11 | −0.9 (15) |
Hg1—N1—C1—C2 | 179.0 (5) | C9—C8—C10—C11 | 179.7 (10) |
N2—C1—C2—C4 | 178.4 (8) | C8—C10—C11—C12 | 2.1 (16) |
N1—C1—C2—C4 | 0.9 (11) | C7—N3—C12—C11 | −0.5 (13) |
N2—C1—C2—C3 | −1.5 (11) | Hg2—N3—C12—C11 | 179.0 (7) |
N1—C1—C2—C3 | −179.0 (7) | C10—C11—C12—N3 | −1.5 (15) |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Cl1 | 0.86 (2) | 2.58 (4) | 3.420 (9) | 164 (10) |
N2—H2B···Cl2iii | 0.87 (2) | 2.72 (7) | 3.420 (8) | 139 (8) |
N4—H4A···Cl1iv | 0.86 (2) | 2.70 (7) | 3.409 (8) | 140 (9) |
N4—H4B···Cl2 | 0.87 (2) | 2.59 (4) | 3.424 (9) | 162 (9) |
Symmetry codes: (iii) x, y−1, z; (iv) x, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [HgCl2(C6H8N2)2] |
Mr | 487.78 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 298 |
a, b, c (Å) | 16.495 (3), 6.6320 (13), 16.273 (3) |
β (°) | 119.56 (3) |
V (Å3) | 1548.5 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 10.28 |
Crystal size (mm) | 0.30 × 0.30 × 0.27 |
Data collection | |
Diffractometer | Stoe IPDS 2T |
Absorption correction | Numerical [shape of crystal determined optically (X-SHAPE and X-RED32; Stoe & Cie, 2005)] |
Tmin, Tmax | 0.149, 0.168 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5454, 2912, 2493 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.116, 1.03 |
No. of reflections | 2912 |
No. of parameters | 188 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 2.40, −2.67 |
Computer programs: X-AREA (Stoe & Cie, 2005), X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Cl1 | 0.86 (2) | 2.58 (4) | 3.420 (9) | 164 (10) |
N2—H2B···Cl2i | 0.87 (2) | 2.72 (7) | 3.420 (8) | 139 (8) |
N4—H4A···Cl1ii | 0.86 (2) | 2.70 (7) | 3.409 (8) | 140 (9) |
N4—H4B···Cl2 | 0.87 (2) | 2.59 (4) | 3.424 (9) | 162 (9) |
Symmetry codes: (i) x, y−1, z; (ii) x, −y+1, z−1/2. |
Acknowledgements
The authors wish to acknowledge the Iran University of Science and Technology (IUST) for financial support.
References
Amani Komaei, S., Van Albada, G. A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (1999). Polyhedron, 18, 1991–1997. Google Scholar
Arab Ahmadi, R., Safari, N., Khavasi, H. R. & Amani, S. (2011). J. Coord. Chem. 64, 2056–2065. Google Scholar
Carnevale, D. J., Landee, C. P., Turnbull, M. M., Winn, M. & Xiao, F. (2010). J. Coord. Chem. 63, 2223–2238. Web of Science CSD CrossRef CAS Google Scholar
Castillo, O., Luque, A., Lloret, F. & Román, P. (2001). Inorg. Chem. Commun. 4, 350–353. Web of Science CSD CrossRef CAS Google Scholar
Chen, Z.-F., Liu, B., Liang, H., Hu, R.-X. & Zhou, Z.-Y. (2005). J. Coord. Chem. 28, 561–565. Web of Science CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Tadjarodi, A., Bijanzad, K. & Notash, B. (2010). Acta Cryst. E66, m1293–m1294. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ziegler, C. J., Silverman, A. P. & Lippard, S. J. (2000). J. Biol. Inorg. Chem. 5, 774–783. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2-Amino-3-methylpyridine (ampy) is capable of coordinating to metals not only through the nitrogen atom of the pyridyl group (Arab Ahmadi et al., 2011; Tadjarodi et al., 2010; Amani Komaei et al., 1999; Ziegler et al., 2000; Castillo et al., 2001) but also via the nitrogen atom of the amino group (Chen et al., 2005). So far, different structures of proton-transfer compounds, [(ampyH)2CoX4] (X = Cl, Br) have been reported (Carnevale et al. (2010).
We report herein the synthesis and molecular structure of the title compound, [Hg(ampy)2Cl2]. The asymmetric unit of the title compound consists of two half of one mercury, one ampy and one chloride atom. The coordination sphere of the mononuclear complex consists of two chloride ions and two pyridyl nitrogen atoms from two ampy ligands in a distorted tetrahedral geometry (Fig. 1). In the crystal structure of [Hg(ampy)2Cl2], there are several intermolecular N–H···Cl hydrogen bond interactions which stabilized crystal structure (Fig. 2 & Table 1).