metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino-3-methyl­pyridine-κN1)di­chloridomercury(II)

aDepartment of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: tajarodi@iust.ac.ir

(Received 9 July 2012; accepted 14 July 2012; online 21 July 2012)

In the title compound, [HgCl2(C6H8N2)2], the two independent HgII cations are each located on a twofold rotation axis and coordinated by two pyridine N atoms from two 2-amino-3-methyl­pyridine ligands and two Cl anions in a distorted tetra­hedral geometry. An intra­molecular N—H⋯Cl hydrogen bond occurs in each independent complex mol­ecule. Inter­molecular N—H⋯Cl hydrogen bonds occur in the crystal structure.

Related literature

For coordination modes of 2-amino-3-methyl­pyridine (ampy), see: Arab Ahmadi et al. (2011[Arab Ahmadi, R., Safari, N., Khavasi, H. R. & Amani, S. (2011). J. Coord. Chem. 64, 2056-2065.]); Tadjarodi et al. (2010[Tadjarodi, A., Bijanzad, K. & Notash, B. (2010). Acta Cryst. E66, m1293-m1294.]); Amani Komaei et al. (1999[Amani Komaei, S., Van Albada, G. A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (1999). Polyhedron, 18, 1991-1997.]); Ziegler et al. (2000[Ziegler, C. J., Silverman, A. P. & Lippard, S. J. (2000). J. Biol. Inorg. Chem. 5, 774-783.]); Castillo et al. (2001[Castillo, O., Luque, A., Lloret, F. & Román, P. (2001). Inorg. Chem. Commun. 4, 350-353.]); Chen et al. (2005[Chen, Z.-F., Liu, B., Liang, H., Hu, R.-X. & Zhou, Z.-Y. (2005). J. Coord. Chem. 28, 561-565.]). For proton-transfer compounds incorporating ampy, see: Carnevale et al. (2010[Carnevale, D. J., Landee, C. P., Turnbull, M. M., Winn, M. & Xiao, F. (2010). J. Coord. Chem. 63, 2223-2238.]).

[Scheme 1]

Experimental

Crystal data
  • [HgCl2(C6H8N2)2]

  • Mr = 487.78

  • Monoclinic, P 2/c

  • a = 16.495 (3) Å

  • b = 6.6320 (13) Å

  • c = 16.273 (3) Å

  • β = 119.56 (3)°

  • V = 1548.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.28 mm−1

  • T = 298 K

  • 0.30 × 0.30 × 0.27 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical [shape of crystal determined optically (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])] Tmin = 0.149, Tmax = 0.168

  • 5454 measured reflections

  • 2912 independent reflections

  • 2493 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.116

  • S = 1.03

  • 2912 reflections

  • 188 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.40 e Å−3

  • Δρmin = −2.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1 0.86 (2) 2.58 (4) 3.420 (9) 164 (10)
N2—H2B⋯Cl2i 0.87 (2) 2.72 (7) 3.420 (8) 139 (8)
N4—H4A⋯Cl1ii 0.86 (2) 2.70 (7) 3.409 (8) 140 (9)
N4—H4B⋯Cl2 0.87 (2) 2.59 (4) 3.424 (9) 162 (9)
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2-Amino-3-methylpyridine (ampy) is capable of coordinating to metals not only through the nitrogen atom of the pyridyl group (Arab Ahmadi et al., 2011; Tadjarodi et al., 2010; Amani Komaei et al., 1999; Ziegler et al., 2000; Castillo et al., 2001) but also via the nitrogen atom of the amino group (Chen et al., 2005). So far, different structures of proton-transfer compounds, [(ampyH)2CoX4] (X = Cl, Br) have been reported (Carnevale et al. (2010).

We report herein the synthesis and molecular structure of the title compound, [Hg(ampy)2Cl2]. The asymmetric unit of the title compound consists of two half of one mercury, one ampy and one chloride atom. The coordination sphere of the mononuclear complex consists of two chloride ions and two pyridyl nitrogen atoms from two ampy ligands in a distorted tetrahedral geometry (Fig. 1). In the crystal structure of [Hg(ampy)2Cl2], there are several intermolecular N–H···Cl hydrogen bond interactions which stabilized crystal structure (Fig. 2 & Table 1).

Related literature top

For coordination modes of 2-amino-3-methylpyridine (ampy), see: Arab Ahmadi et al. (2011); Tadjarodi et al. (2010); Amani Komaei et al. (1999); Ziegler et al. (2000); Castillo et al. (2001); Chen et al. (2005). For proton-transfer compounds incorporating 2-amino-3-methylpyridine, see: Carnevale et al. (2010). For similar structures, see: Tadjarodi et al. (2010); Amani Komaei et al. (1999); Arab Ahmadi et al. (2011).

Experimental top

An ethanolic solution of 2-amino-3-methylpyridine (10 mmol) was added to a solution of HgCl2 (5 mmol) in ethanol (10 ml) and stirred for 10 min at 50°C. Slow evaporation of the resulting filtrate gave the colorless crystals suitable for X-ray analysis (decomposition > 240 °C).

Refinement top

Hydrogen atoms attached to nitrogen atoms were found in difference Fourier map. H2A, H2B, H4A and H4B were refined with Uiso(H) = 1.5 Ueq(N). H2A, H2B, H4A and H4B were refined with distance restraints of N—H 0.86 (2), 0.87 (2), 0.86 (2) and 0.87 (2), respectively. H atoms attached to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å (CH), with C—H = 0.96 Å (CH3), and Uiso(H) = 1.2,1.5Ueq(C).

Structure description top

2-Amino-3-methylpyridine (ampy) is capable of coordinating to metals not only through the nitrogen atom of the pyridyl group (Arab Ahmadi et al., 2011; Tadjarodi et al., 2010; Amani Komaei et al., 1999; Ziegler et al., 2000; Castillo et al., 2001) but also via the nitrogen atom of the amino group (Chen et al., 2005). So far, different structures of proton-transfer compounds, [(ampyH)2CoX4] (X = Cl, Br) have been reported (Carnevale et al. (2010).

We report herein the synthesis and molecular structure of the title compound, [Hg(ampy)2Cl2]. The asymmetric unit of the title compound consists of two half of one mercury, one ampy and one chloride atom. The coordination sphere of the mononuclear complex consists of two chloride ions and two pyridyl nitrogen atoms from two ampy ligands in a distorted tetrahedral geometry (Fig. 1). In the crystal structure of [Hg(ampy)2Cl2], there are several intermolecular N–H···Cl hydrogen bond interactions which stabilized crystal structure (Fig. 2 & Table 1).

For coordination modes of 2-amino-3-methylpyridine (ampy), see: Arab Ahmadi et al. (2011); Tadjarodi et al. (2010); Amani Komaei et al. (1999); Ziegler et al. (2000); Castillo et al. (2001); Chen et al. (2005). For proton-transfer compounds incorporating 2-amino-3-methylpyridine, see: Carnevale et al. (2010). For similar structures, see: Tadjarodi et al. (2010); Amani Komaei et al. (1999); Arab Ahmadi et al. (2011).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of [Hg(ampy)2Cl2] with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound showing hydrogen bonding as blue dashed lines.
Bis(2-amino-3-methylpyridine-κN1)dichloridomercury(II) top
Crystal data top
[HgCl2(C6H8N2)2]F(000) = 920
Mr = 487.78Dx = 2.092 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 2912 reflections
a = 16.495 (3) Åθ = 2.5–26.0°
b = 6.6320 (13) ŵ = 10.28 mm1
c = 16.273 (3) ÅT = 298 K
β = 119.56 (3)°Block, colorless
V = 1548.5 (7) Å30.30 × 0.30 × 0.27 mm
Z = 4
Data collection top
Stoe IPDS 2T
diffractometer
2912 independent reflections
Radiation source: fine-focus sealed tube2493 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
rotation method scansθmax = 26.0°, θmin = 2.5°
Absorption correction: numerical
[shape of crystal determined optically (X-SHAPE and X-RED32; Stoe & Cie, 2005)]
h = 1620
Tmin = 0.149, Tmax = 0.168k = 78
5454 measured reflectionsl = 1920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0773P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2912 reflectionsΔρmax = 2.40 e Å3
188 parametersΔρmin = 2.67 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0064 (5)
Crystal data top
[HgCl2(C6H8N2)2]V = 1548.5 (7) Å3
Mr = 487.78Z = 4
Monoclinic, P2/cMo Kα radiation
a = 16.495 (3) ŵ = 10.28 mm1
b = 6.6320 (13) ÅT = 298 K
c = 16.273 (3) Å0.30 × 0.30 × 0.27 mm
β = 119.56 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
2912 independent reflections
Absorption correction: numerical
[shape of crystal determined optically (X-SHAPE and X-RED32; Stoe & Cie, 2005)]
2493 reflections with I > 2σ(I)
Tmin = 0.149, Tmax = 0.168Rint = 0.052
5454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0474 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 2.40 e Å3
2912 reflectionsΔρmin = 2.67 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.00000.19701 (7)0.25000.04474 (19)
Hg20.50000.76184 (6)0.25000.04007 (19)
Cl10.13755 (15)0.0118 (3)0.36667 (16)0.0565 (6)
Cl20.35836 (16)0.9352 (4)0.22391 (16)0.0590 (6)
N10.0500 (5)0.4038 (9)0.1715 (4)0.0407 (15)
N20.1527 (6)0.1618 (12)0.1736 (6)0.0497 (17)
N30.4556 (4)0.5485 (9)0.1232 (4)0.0359 (14)
N40.3477 (6)0.7778 (10)0.0184 (5)0.0472 (19)
C10.1163 (5)0.3496 (11)0.1495 (5)0.0362 (16)
C20.1430 (6)0.4814 (13)0.1001 (5)0.0441 (19)
C30.2151 (7)0.4171 (18)0.0751 (8)0.069 (3)
H3A0.22170.51920.03700.104*
H3B0.19620.29280.04040.104*
H3C0.27370.39800.13180.104*
C40.1028 (7)0.6659 (13)0.0756 (6)0.051 (2)
H40.12060.75490.04320.061*
C50.0361 (7)0.7229 (12)0.0981 (6)0.049 (2)
H50.00880.84990.08130.059*
C60.0103 (6)0.5893 (13)0.1459 (5)0.0454 (19)
H60.03520.62670.16090.055*
C70.3884 (6)0.5942 (11)0.0346 (5)0.0373 (16)
C80.3618 (6)0.4525 (12)0.0402 (5)0.0403 (17)
C90.2853 (7)0.5040 (17)0.1374 (6)0.066 (3)
H9A0.27830.39680.18010.100*
H9B0.30050.62670.15810.100*
H9C0.22800.52150.13640.100*
C100.4071 (8)0.2741 (12)0.0193 (6)0.050 (2)
H100.39040.17850.06680.060*
C110.4775 (7)0.2304 (13)0.0704 (6)0.049 (2)
H110.50960.10870.08330.058*
C120.4993 (6)0.3695 (12)0.1401 (5)0.0405 (17)
H120.54580.33940.20120.049*
H2A0.158 (7)0.107 (14)0.224 (4)0.061*
H4A0.301 (5)0.788 (14)0.038 (4)0.061*
H2B0.202 (4)0.161 (15)0.168 (7)0.061*
H4B0.348 (7)0.845 (14)0.064 (5)0.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0379 (3)0.0561 (3)0.0446 (3)0.0000.0238 (2)0.000
Hg20.0326 (3)0.0476 (3)0.0330 (3)0.0000.0108 (2)0.000
Cl10.0393 (11)0.0617 (13)0.0566 (12)0.0032 (9)0.0147 (10)0.0151 (9)
Cl20.0442 (11)0.0714 (14)0.0564 (12)0.0166 (10)0.0210 (10)0.0068 (10)
N10.043 (4)0.041 (4)0.036 (3)0.001 (3)0.018 (3)0.001 (2)
N20.048 (4)0.051 (4)0.063 (5)0.006 (3)0.037 (4)0.001 (3)
N30.036 (3)0.036 (3)0.034 (3)0.007 (3)0.016 (3)0.001 (2)
N40.049 (5)0.039 (4)0.040 (4)0.008 (3)0.012 (3)0.003 (3)
C10.029 (4)0.046 (4)0.033 (3)0.007 (3)0.014 (3)0.009 (3)
C20.045 (5)0.054 (5)0.039 (4)0.015 (4)0.025 (4)0.009 (3)
C30.055 (6)0.085 (8)0.081 (7)0.007 (5)0.044 (6)0.003 (5)
C40.065 (6)0.043 (4)0.052 (5)0.015 (4)0.034 (4)0.003 (4)
C50.058 (6)0.042 (5)0.042 (4)0.002 (4)0.020 (4)0.002 (3)
C60.040 (4)0.049 (5)0.039 (4)0.009 (4)0.014 (4)0.001 (3)
C70.045 (4)0.037 (4)0.030 (3)0.006 (3)0.018 (3)0.001 (3)
C80.042 (4)0.049 (4)0.031 (4)0.002 (3)0.019 (3)0.002 (3)
C90.054 (6)0.087 (7)0.029 (4)0.010 (5)0.002 (4)0.007 (4)
C100.066 (6)0.050 (5)0.036 (4)0.001 (4)0.027 (4)0.009 (3)
C110.058 (6)0.049 (5)0.045 (5)0.012 (4)0.030 (5)0.004 (3)
C120.042 (4)0.044 (4)0.032 (3)0.005 (3)0.016 (3)0.004 (3)
Geometric parameters (Å, º) top
Hg1—N12.287 (7)C2—C31.497 (14)
Hg1—N1i2.287 (7)C3—H3A0.9600
Hg1—Cl1i2.452 (2)C3—H3B0.9600
Hg1—Cl12.452 (2)C3—H3C0.9600
Hg2—N32.303 (6)C4—C51.373 (15)
Hg2—N3ii2.303 (6)C4—H40.9300
Hg2—Cl2ii2.446 (2)C5—C61.378 (13)
Hg2—Cl22.446 (2)C5—H50.9300
N1—C11.356 (11)C6—H60.9300
N1—C61.360 (10)C7—C81.425 (10)
N2—C11.354 (11)C8—C101.351 (12)
N2—H2A0.86 (2)C8—C91.498 (11)
N2—H2B0.87 (2)C9—H9A0.9600
N3—C121.345 (10)C9—H9B0.9600
N3—C71.350 (9)C9—H9C0.9600
N4—C71.352 (10)C10—C111.375 (13)
N4—H4A0.86 (2)C10—H100.9300
N4—H4B0.87 (2)C11—C121.365 (12)
C1—C21.397 (11)C11—H110.9300
C2—C41.355 (13)C12—H120.9300
N1—Hg1—N1i106.3 (3)C2—C3—H3C109.5
N1—Hg1—Cl1i108.60 (16)H3A—C3—H3C109.5
N1i—Hg1—Cl1i106.35 (17)H3B—C3—H3C109.5
N1—Hg1—Cl1106.35 (17)C2—C4—C5120.7 (8)
N1i—Hg1—Cl1108.60 (16)C2—C4—H4119.6
Cl1i—Hg1—Cl1119.88 (11)C5—C4—H4119.6
N3—Hg2—N3ii104.2 (3)C4—C5—C6119.0 (8)
N3—Hg2—Cl2ii107.38 (18)C4—C5—H5120.5
N3ii—Hg2—Cl2ii106.20 (16)C6—C5—H5120.5
N3—Hg2—Cl2106.20 (16)N1—C6—C5121.3 (9)
N3ii—Hg2—Cl2107.38 (18)N1—C6—H6119.4
Cl2ii—Hg2—Cl2123.91 (13)C5—C6—H6119.4
C1—N1—C6119.2 (7)N3—C7—N4118.5 (6)
C1—N1—Hg1123.3 (5)N3—C7—C8120.6 (7)
C6—N1—Hg1117.5 (6)N4—C7—C8120.9 (7)
C1—N2—H2A119 (7)C10—C8—C7117.7 (7)
C1—N2—H2B106 (7)C10—C8—C9122.6 (8)
H2A—N2—H2B116 (10)C7—C8—C9119.7 (7)
C12—N3—C7119.4 (6)C8—C9—H9A109.5
C12—N3—Hg2117.3 (5)C8—C9—H9B109.5
C7—N3—Hg2123.3 (5)H9A—C9—H9B109.5
C7—N4—H4A112 (7)C8—C9—H9C109.5
C7—N4—H4B120 (7)H9A—C9—H9C109.5
H4A—N4—H4B120 (10)H9B—C9—H9C109.5
N2—C1—N1117.8 (7)C8—C10—C11121.6 (8)
N2—C1—C2121.4 (7)C8—C10—H10119.2
N1—C1—C2120.7 (7)C11—C10—H10119.2
C4—C2—C1119.1 (8)C12—C11—C10118.6 (8)
C4—C2—C3121.1 (8)C12—C11—H11120.7
C1—C2—C3119.8 (8)C10—C11—H11120.7
C2—C3—H3A109.5N3—C12—C11122.1 (7)
C2—C3—H3B109.5N3—C12—H12118.9
H3A—C3—H3B109.5C11—C12—H12118.9
N1i—Hg1—N1—C1152.6 (6)C1—C2—C4—C50.5 (12)
Cl1i—Hg1—N1—C193.3 (5)C3—C2—C4—C5179.4 (8)
Cl1—Hg1—N1—C137.0 (6)C2—C4—C5—C60.2 (13)
N1i—Hg1—N1—C627.8 (5)C1—N1—C6—C50.1 (11)
Cl1i—Hg1—N1—C686.3 (5)Hg1—N1—C6—C5179.8 (6)
Cl1—Hg1—N1—C6143.4 (5)C4—C5—C6—N10.5 (13)
N3ii—Hg2—N3—C1231.0 (5)C12—N3—C7—N4177.6 (8)
Cl2ii—Hg2—N3—C1281.4 (6)Hg2—N3—C7—N42.9 (10)
Cl2—Hg2—N3—C12144.2 (6)C12—N3—C7—C81.8 (12)
N3ii—Hg2—N3—C7148.5 (7)Hg2—N3—C7—C8177.7 (6)
Cl2ii—Hg2—N3—C799.1 (6)N3—C7—C8—C101.2 (13)
Cl2—Hg2—N3—C735.3 (6)N4—C7—C8—C10178.3 (9)
C6—N1—C1—N2178.2 (7)N3—C7—C8—C9178.3 (8)
Hg1—N1—C1—N21.4 (9)N4—C7—C8—C92.3 (13)
C6—N1—C1—C20.6 (10)C7—C8—C10—C110.9 (15)
Hg1—N1—C1—C2179.0 (5)C9—C8—C10—C11179.7 (10)
N2—C1—C2—C4178.4 (8)C8—C10—C11—C122.1 (16)
N1—C1—C2—C40.9 (11)C7—N3—C12—C110.5 (13)
N2—C1—C2—C31.5 (11)Hg2—N3—C12—C11179.0 (7)
N1—C1—C2—C3179.0 (7)C10—C11—C12—N31.5 (15)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.86 (2)2.58 (4)3.420 (9)164 (10)
N2—H2B···Cl2iii0.87 (2)2.72 (7)3.420 (8)139 (8)
N4—H4A···Cl1iv0.86 (2)2.70 (7)3.409 (8)140 (9)
N4—H4B···Cl20.87 (2)2.59 (4)3.424 (9)162 (9)
Symmetry codes: (iii) x, y1, z; (iv) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[HgCl2(C6H8N2)2]
Mr487.78
Crystal system, space groupMonoclinic, P2/c
Temperature (K)298
a, b, c (Å)16.495 (3), 6.6320 (13), 16.273 (3)
β (°) 119.56 (3)
V3)1548.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)10.28
Crystal size (mm)0.30 × 0.30 × 0.27
Data collection
DiffractometerStoe IPDS 2T
Absorption correctionNumerical
[shape of crystal determined optically (X-SHAPE and X-RED32; Stoe & Cie, 2005)]
Tmin, Tmax0.149, 0.168
No. of measured, independent and
observed [I > 2σ(I)] reflections
5454, 2912, 2493
Rint0.052
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.116, 1.03
No. of reflections2912
No. of parameters188
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.40, 2.67

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.86 (2)2.58 (4)3.420 (9)164 (10)
N2—H2B···Cl2i0.87 (2)2.72 (7)3.420 (8)139 (8)
N4—H4A···Cl1ii0.86 (2)2.70 (7)3.409 (8)140 (9)
N4—H4B···Cl20.87 (2)2.59 (4)3.424 (9)162 (9)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z1/2.
 

Acknowledgements

The authors wish to acknowledge the Iran University of Science and Technology (IUST) for financial support.

References

First citationAmani Komaei, S., Van Albada, G. A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (1999). Polyhedron, 18, 1991–1997.  Google Scholar
First citationArab Ahmadi, R., Safari, N., Khavasi, H. R. & Amani, S. (2011). J. Coord. Chem. 64, 2056–2065.  Google Scholar
First citationCarnevale, D. J., Landee, C. P., Turnbull, M. M., Winn, M. & Xiao, F. (2010). J. Coord. Chem. 63, 2223–2238.  Web of Science CSD CrossRef CAS Google Scholar
First citationCastillo, O., Luque, A., Lloret, F. & Román, P. (2001). Inorg. Chem. Commun. 4, 350–353.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, Z.-F., Liu, B., Liang, H., Hu, R.-X. & Zhou, Z.-Y. (2005). J. Coord. Chem. 28, 561–565.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTadjarodi, A., Bijanzad, K. & Notash, B. (2010). Acta Cryst. E66, m1293–m1294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZiegler, C. J., Silverman, A. P. & Lippard, S. J. (2000). J. Biol. Inorg. Chem. 5, 774–783.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds