organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,3R)-3-Iso­butyl-2,3-di­hydro­spiro[benzo[f]iso­indole-1,3′-indoline]-2′,4,9-trione methanol monosolvate

aDepartment of Chemistry, Karunya University, Coimbatore, India, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, cMalaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Halaman Bukit Gambir, 11700 Bayan Lepas, Penang, Malaysia, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 July 2012; accepted 18 July 2012; online 25 July 2012)

In the title compound, C23H20N2O3·CH3OH, the hexa­hydro-1H-benzo[f]isoindole and indoline rings are planar, with maximum deviations of 0.092 (1) and −0.095 (1) Å, respectively. The dihedral angle between these two rings is 88.03 (4)°. An O—H⋯N inter­action links the main mol­ecule and the methanol solvent mol­ecule. An intra­molecular C—H⋯O inter­action forms an S(6) ring motif. In the crystal, the mol­ecules form two-dimensional layers parallel to the bc plane through N—H⋯O and C—H⋯O inter­actions.

Related literature

For biological activities of naphtho­quinones, see: Babula et al. (2007[Babula, P., Adam, V., Havel, L. & Kizek, R. (2007). Ceska Slov. Farm. 56, 114-20.]). For detailed literature on naphtho­quinone chemistry, see: Chen et al. (2011[Chen, H., Wang, S.-Y., Xu, X.-P. & Ji, S.-J. (2011). Synth. Commun. 41, 3280-3288.]); Silva et al. (2002[Silva, A. M. G., Tomé, A. C., Neves, M. G. P. M. S., Silva, A. M. S. & Cavaleiro, J. A. S. (2002). J. Org. Chem. 67, 726-732.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107. ]).

[Scheme 1]

Experimental

Crystal data
  • C23H20N2O3·CH4O

  • Mr = 404.45

  • Monoclinic, P 21 /c

  • a = 10.8485 (2) Å

  • b = 11.9605 (2) Å

  • c = 16.5705 (3) Å

  • β = 111.246 (1)°

  • V = 2003.95 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.32 × 0.20 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.990

  • 23197 measured reflections

  • 5871 independent reflections

  • 4460 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.135

  • S = 1.03

  • 5871 reflections

  • 286 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.903 (19) 2.249 (19) 3.1410 (16) 169.7 (17)
N2—H1N2⋯O4ii 0.89 (2) 1.97 (2) 2.8346 (18) 165 (2)
O4—H1O4⋯N1 0.93 (3) 1.88 (3) 2.8085 (18) 174 (2)
C13—H13B⋯O1 0.99 2.56 3.1919 (18) 121
C19—H19A⋯O3i 0.95 2.57 3.3368 (18) 138
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Naphthoquinones are known to possess various biological activities such as cyto-toxicity as well as antibacterial, antifungal, antiviral, insecticidal, anti-inflammatory, and antipyretic (Babula et al., 2007) properties. Recently, there have been a few efforts to conduct 1,3-cycloaddition involving naphthoquinones (Chen et al., 2011; Silva et al., 2002).

In the title compound, Fig. 1, the hexahydro-1H-benzo[f]isoindole (N1/C1–C12) and indoline (N2/C10/C17–C23) rings are planar with the maximum deviations of 0.092 (1) Å from atom N1 and -0.095 (1) Å from atom C10. The two rings make a dihedral angle of 88.03 (4)°. An O4—H1O4···N1 interaction links the main molecule with the methanol solvent molecule. An intramolecular interaction of C13—H13B···O1 forms an S(6) ring motif (Fig. 1).

In the crystal, the molecules form two-dimensional layers parallel to the bc-plane through the intermolecular interactions of N1—H1N1···O2i, N2—H1N2···O4ii and C19—H19A···O3i (Fig. 2).

Related literature top

For biological activities of naphthoquinones, see: Babula et al. (2007). For detailed literature on naphthoquinone chemistry, see: Chen et al. (2011); Silva et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of isatin (0.147 g, 1 mmol), L-leucine (0.131 g, 1 mmol) and 1,4-napthoquinone (0.158 g, 1 mmol) was refluxed in methanol (6 ml) until the disappearance of the starting material (monitored by thin layer chromatography, TLC). After standing for 1 h, the product of the reaction mixture was washed with cool water (2 × 25 ml) and cool ethanol (2 × 0.5 ml). The crude product was recrystallized from appropriate solvent to afford pure product (90% yield).

Refinement top

N-bound H atoms were located from a difference Fourier map and freely refined. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl group.

Structure description top

Naphthoquinones are known to possess various biological activities such as cyto-toxicity as well as antibacterial, antifungal, antiviral, insecticidal, anti-inflammatory, and antipyretic (Babula et al., 2007) properties. Recently, there have been a few efforts to conduct 1,3-cycloaddition involving naphthoquinones (Chen et al., 2011; Silva et al., 2002).

In the title compound, Fig. 1, the hexahydro-1H-benzo[f]isoindole (N1/C1–C12) and indoline (N2/C10/C17–C23) rings are planar with the maximum deviations of 0.092 (1) Å from atom N1 and -0.095 (1) Å from atom C10. The two rings make a dihedral angle of 88.03 (4)°. An O4—H1O4···N1 interaction links the main molecule with the methanol solvent molecule. An intramolecular interaction of C13—H13B···O1 forms an S(6) ring motif (Fig. 1).

In the crystal, the molecules form two-dimensional layers parallel to the bc-plane through the intermolecular interactions of N1—H1N1···O2i, N2—H1N2···O4ii and C19—H19A···O3i (Fig. 2).

For biological activities of naphthoquinones, see: Babula et al. (2007). For detailed literature on naphthoquinone chemistry, see: Chen et al. (2011); Silva et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
(1S,3R)-3-Isobutyl-2,3-dihydrospiro[benzo[f]isoindole- 1,3'-indoline]-2',4,9-trione methanol monosolvate top
Crystal data top
C23H20N2O3·CH4OF(000) = 856
Mr = 404.45Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7290 reflections
a = 10.8485 (2) Åθ = 2.6–30.1°
b = 11.9605 (2) ŵ = 0.09 mm1
c = 16.5705 (3) ÅT = 100 K
β = 111.246 (1)°Block, brown
V = 2003.95 (6) Å30.32 × 0.20 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5871 independent reflections
Radiation source: fine-focus sealed tube4460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1514
Tmin = 0.971, Tmax = 0.990k = 1416
23197 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.9585P]
where P = (Fo2 + 2Fc2)/3
5871 reflections(Δ/σ)max < 0.001
286 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C23H20N2O3·CH4OV = 2003.95 (6) Å3
Mr = 404.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8485 (2) ŵ = 0.09 mm1
b = 11.9605 (2) ÅT = 100 K
c = 16.5705 (3) Å0.32 × 0.20 × 0.11 mm
β = 111.246 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5871 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4460 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.990Rint = 0.035
23197 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.63 e Å3
5871 reflectionsΔρmin = 0.45 e Å3
286 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09694 (11)0.90322 (10)0.51378 (7)0.0300 (3)
O20.56629 (10)1.07980 (8)0.70838 (7)0.0186 (2)
O30.35764 (11)1.07705 (9)0.83896 (7)0.0235 (2)
N10.33921 (12)0.82889 (10)0.78597 (8)0.0160 (2)
N20.56151 (12)1.00095 (10)0.91874 (8)0.0187 (3)
C10.40186 (14)1.06328 (11)0.56677 (9)0.0159 (3)
C20.46388 (15)1.13840 (12)0.52980 (9)0.0187 (3)
H2A0.54691.16980.56400.022*
C30.40491 (16)1.16770 (12)0.44316 (10)0.0219 (3)
H3A0.44691.21980.41830.026*
C40.28436 (16)1.12071 (13)0.39287 (10)0.0234 (3)
H4A0.24501.13990.33340.028*
C50.22110 (16)1.04605 (13)0.42882 (9)0.0218 (3)
H5A0.13851.01460.39400.026*
C60.27860 (14)1.01691 (11)0.51630 (9)0.0179 (3)
C70.20717 (15)0.93985 (12)0.55492 (9)0.0198 (3)
C80.27704 (14)0.90981 (12)0.64722 (9)0.0172 (3)
C90.22425 (14)0.83749 (12)0.70212 (9)0.0170 (3)
H9A0.15030.87770.71220.020*
C100.44298 (13)0.91165 (11)0.78621 (9)0.0146 (3)
C110.39672 (14)0.95085 (11)0.69362 (9)0.0155 (3)
C120.46506 (14)1.03460 (11)0.66010 (9)0.0148 (3)
C130.17636 (14)0.72159 (12)0.66517 (9)0.0177 (3)
H13A0.25080.68150.65700.021*
H13B0.10610.73070.60740.021*
C140.12248 (14)0.64910 (12)0.72118 (10)0.0184 (3)
H14A0.18870.64840.78170.022*
C150.00825 (16)0.69353 (14)0.72296 (12)0.0297 (4)
H15A0.03980.64430.75870.044*
H15B0.07380.69570.66390.044*
H15C0.00480.76910.74750.044*
C160.10456 (16)0.52942 (13)0.68612 (11)0.0238 (3)
H16A0.06290.48390.71830.036*
H16B0.19110.49770.69290.036*
H16C0.04820.53000.62460.036*
C170.44567 (14)1.00939 (12)0.84967 (9)0.0170 (3)
C180.58027 (13)0.86393 (11)0.82701 (9)0.0151 (3)
C190.64232 (14)0.77902 (12)0.79995 (9)0.0182 (3)
H19A0.60090.74480.74500.022*
C200.76752 (15)0.74465 (13)0.85537 (10)0.0223 (3)
H20A0.81260.68720.83760.027*
C210.82649 (15)0.79390 (14)0.93626 (11)0.0252 (3)
H21A0.91060.76800.97370.030*
C220.76496 (15)0.88039 (13)0.96365 (10)0.0232 (3)
H22A0.80560.91401.01890.028*
C230.64231 (14)0.91542 (12)0.90724 (9)0.0172 (3)
O40.31230 (12)0.84323 (11)0.94796 (8)0.0309 (3)
C240.1798 (2)0.8342 (2)0.93687 (13)0.0425 (5)
H24A0.15070.75670.92260.064*
H24B0.12740.88350.88960.064*
H24C0.16760.85610.99050.064*
H1N10.3759 (17)0.7609 (16)0.7870 (11)0.021 (4)*
H1N20.587 (2)1.0493 (17)0.9621 (13)0.031 (5)*
H1O40.317 (2)0.842 (2)0.8928 (17)0.056 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0248 (6)0.0283 (6)0.0245 (6)0.0059 (5)0.0059 (5)0.0056 (5)
O20.0176 (5)0.0176 (5)0.0178 (5)0.0019 (4)0.0029 (4)0.0001 (4)
O30.0241 (6)0.0198 (5)0.0255 (6)0.0038 (4)0.0076 (5)0.0032 (4)
N10.0158 (6)0.0149 (6)0.0149 (5)0.0019 (4)0.0027 (5)0.0005 (4)
N20.0202 (6)0.0187 (6)0.0149 (6)0.0024 (5)0.0036 (5)0.0056 (5)
C10.0193 (7)0.0131 (6)0.0137 (6)0.0038 (5)0.0042 (5)0.0008 (5)
C20.0237 (7)0.0154 (7)0.0175 (7)0.0014 (5)0.0078 (6)0.0017 (5)
C30.0307 (8)0.0182 (7)0.0188 (7)0.0041 (6)0.0114 (6)0.0035 (5)
C40.0309 (8)0.0223 (7)0.0152 (7)0.0071 (6)0.0060 (6)0.0032 (5)
C50.0246 (7)0.0191 (7)0.0163 (7)0.0037 (6)0.0009 (6)0.0003 (5)
C60.0212 (7)0.0138 (6)0.0155 (6)0.0036 (5)0.0028 (5)0.0003 (5)
C70.0207 (7)0.0150 (6)0.0176 (7)0.0002 (5)0.0004 (6)0.0002 (5)
C80.0180 (7)0.0141 (6)0.0157 (6)0.0005 (5)0.0018 (5)0.0005 (5)
C90.0148 (6)0.0164 (6)0.0165 (6)0.0011 (5)0.0017 (5)0.0002 (5)
C100.0151 (6)0.0139 (6)0.0126 (6)0.0014 (5)0.0024 (5)0.0011 (5)
C110.0176 (6)0.0136 (6)0.0130 (6)0.0012 (5)0.0026 (5)0.0000 (5)
C120.0166 (6)0.0118 (6)0.0145 (6)0.0020 (5)0.0040 (5)0.0006 (5)
C130.0155 (6)0.0171 (7)0.0168 (6)0.0019 (5)0.0013 (5)0.0012 (5)
C140.0161 (6)0.0182 (7)0.0189 (7)0.0016 (5)0.0039 (5)0.0015 (5)
C150.0235 (8)0.0269 (8)0.0410 (10)0.0014 (6)0.0146 (7)0.0059 (7)
C160.0257 (8)0.0176 (7)0.0269 (8)0.0032 (6)0.0080 (6)0.0015 (6)
C170.0194 (7)0.0145 (6)0.0172 (6)0.0024 (5)0.0066 (6)0.0010 (5)
C180.0156 (6)0.0142 (6)0.0144 (6)0.0005 (5)0.0043 (5)0.0025 (5)
C190.0203 (7)0.0163 (7)0.0190 (7)0.0016 (5)0.0085 (6)0.0020 (5)
C200.0215 (7)0.0187 (7)0.0298 (8)0.0030 (6)0.0130 (6)0.0069 (6)
C210.0166 (7)0.0272 (8)0.0285 (8)0.0015 (6)0.0043 (6)0.0110 (6)
C220.0198 (7)0.0275 (8)0.0172 (7)0.0036 (6)0.0004 (6)0.0033 (6)
C230.0180 (7)0.0174 (7)0.0152 (6)0.0026 (5)0.0048 (5)0.0019 (5)
O40.0261 (6)0.0436 (7)0.0229 (6)0.0067 (5)0.0087 (5)0.0121 (5)
C240.0354 (10)0.0640 (14)0.0313 (10)0.0139 (9)0.0161 (8)0.0126 (9)
Geometric parameters (Å, º) top
O1—C71.2231 (18)C11—C121.470 (2)
O2—C121.2254 (17)C13—C141.532 (2)
O3—C171.2147 (18)C13—H13A0.9900
N1—C91.4969 (18)C13—H13B0.9900
N1—C101.4979 (18)C14—C151.525 (2)
N1—H1N10.902 (19)C14—C161.531 (2)
N2—C171.3627 (19)C14—H14A1.0000
N2—C231.4043 (19)C15—H15A0.9800
N2—H1N20.88 (2)C15—H15B0.9800
C1—C21.391 (2)C15—H15C0.9800
C1—C61.409 (2)C16—H16A0.9800
C1—C121.4870 (19)C16—H16B0.9800
C2—C31.388 (2)C16—H16C0.9800
C2—H2A0.9500C18—C191.380 (2)
C3—C41.390 (2)C18—C231.3969 (19)
C3—H3A0.9500C19—C201.398 (2)
C4—C51.386 (2)C19—H19A0.9500
C4—H4A0.9500C20—C211.390 (2)
C5—C61.3989 (19)C20—H20A0.9500
C5—H5A0.9500C21—C221.393 (2)
C6—C71.490 (2)C21—H21A0.9500
C7—C81.484 (2)C22—C231.385 (2)
C8—C111.3395 (19)C22—H22A0.9500
C8—C91.510 (2)O4—C241.386 (2)
C9—C131.528 (2)O4—H1O40.93 (3)
C9—H9A1.0000C24—H24A0.9800
C10—C111.5059 (19)C24—H24B0.9800
C10—C181.5072 (19)C24—H24C0.9800
C10—C171.5656 (19)
C9—N1—C10109.25 (11)C14—C13—H13A108.6
C9—N1—H1N1107.0 (11)C9—C13—H13B108.6
C10—N1—H1N1105.6 (12)C14—C13—H13B108.6
C17—N2—C23111.78 (12)H13A—C13—H13B107.5
C17—N2—H1N2123.9 (13)C15—C14—C16110.01 (13)
C23—N2—H1N2123.9 (13)C15—C14—C13112.09 (13)
C2—C1—C6119.98 (13)C16—C14—C13108.85 (12)
C2—C1—C12119.52 (13)C15—C14—H14A108.6
C6—C1—C12120.48 (13)C16—C14—H14A108.6
C3—C2—C1120.22 (14)C13—C14—H14A108.6
C3—C2—H2A119.9C14—C15—H15A109.5
C1—C2—H2A119.9C14—C15—H15B109.5
C2—C3—C4119.93 (15)H15A—C15—H15B109.5
C2—C3—H3A120.0C14—C15—H15C109.5
C4—C3—H3A120.0H15A—C15—H15C109.5
C5—C4—C3120.53 (14)H15B—C15—H15C109.5
C5—C4—H4A119.7C14—C16—H16A109.5
C3—C4—H4A119.7C14—C16—H16B109.5
C4—C5—C6120.12 (14)H16A—C16—H16B109.5
C4—C5—H5A119.9C14—C16—H16C109.5
C6—C5—H5A119.9H16A—C16—H16C109.5
C5—C6—C1119.20 (14)H16B—C16—H16C109.5
C5—C6—C7119.56 (13)O3—C17—N2127.52 (13)
C1—C6—C7121.22 (12)O3—C17—C10125.24 (13)
O1—C7—C8121.25 (14)N2—C17—C10107.21 (12)
O1—C7—C6122.55 (13)C19—C18—C23120.68 (13)
C8—C7—C6116.20 (12)C19—C18—C10130.70 (13)
C11—C8—C7121.98 (14)C23—C18—C10108.48 (12)
C11—C8—C9111.37 (12)C18—C19—C20118.38 (14)
C7—C8—C9126.57 (12)C18—C19—H19A120.8
N1—C9—C8103.19 (11)C20—C19—H19A120.8
N1—C9—C13110.95 (11)C21—C20—C19120.48 (15)
C8—C9—C13115.22 (12)C21—C20—H20A119.8
N1—C9—H9A109.1C19—C20—H20A119.8
C8—C9—H9A109.1C20—C21—C22121.43 (14)
C13—C9—H9A109.1C20—C21—H21A119.3
N1—C10—C11103.32 (10)C22—C21—H21A119.3
N1—C10—C18111.75 (11)C23—C22—C21117.46 (14)
C11—C10—C18119.03 (12)C23—C22—H22A121.3
N1—C10—C17109.04 (11)C21—C22—H22A121.3
C11—C10—C17111.72 (11)C22—C23—C18121.51 (14)
C18—C10—C17101.93 (11)C22—C23—N2128.54 (14)
C8—C11—C12123.34 (12)C18—C23—N2109.95 (12)
C8—C11—C10111.50 (13)C24—O4—H1O4106.8 (15)
C12—C11—C10124.73 (12)O4—C24—H24A109.5
O2—C12—C11120.62 (12)O4—C24—H24B109.5
O2—C12—C1122.93 (13)H24A—C24—H24B109.5
C11—C12—C1116.40 (12)O4—C24—H24C109.5
C9—C13—C14114.79 (12)H24A—C24—H24C109.5
C9—C13—H13A108.6H24B—C24—H24C109.5
C6—C1—C2—C30.2 (2)C10—C11—C12—O21.2 (2)
C12—C1—C2—C3178.75 (13)C8—C11—C12—C17.1 (2)
C1—C2—C3—C40.9 (2)C10—C11—C12—C1178.98 (12)
C2—C3—C4—C51.1 (2)C2—C1—C12—O25.0 (2)
C3—C4—C5—C60.3 (2)C6—C1—C12—O2173.59 (13)
C4—C5—C6—C10.8 (2)C2—C1—C12—C11177.33 (13)
C4—C5—C6—C7177.73 (14)C6—C1—C12—C114.10 (19)
C2—C1—C6—C51.0 (2)N1—C9—C13—C1463.48 (16)
C12—C1—C6—C5179.55 (13)C8—C9—C13—C14179.76 (12)
C2—C1—C6—C7177.48 (13)C9—C13—C14—C1569.24 (16)
C12—C1—C6—C71.1 (2)C9—C13—C14—C16168.83 (12)
C5—C6—C7—O12.5 (2)C23—N2—C17—O3177.45 (15)
C1—C6—C7—O1175.95 (15)C23—N2—C17—C104.59 (16)
C5—C6—C7—C8177.82 (13)N1—C10—C17—O367.24 (18)
C1—C6—C7—C83.7 (2)C11—C10—C17—O346.32 (19)
O1—C7—C8—C11178.74 (15)C18—C10—C17—O3174.49 (14)
C6—C7—C8—C110.9 (2)N1—C10—C17—N2110.78 (13)
O1—C7—C8—C92.3 (2)C11—C10—C17—N2135.65 (13)
C6—C7—C8—C9177.34 (13)C18—C10—C17—N27.49 (14)
C10—N1—C9—C811.53 (14)N1—C10—C18—C1967.08 (19)
C10—N1—C9—C13135.47 (12)C11—C10—C18—C1953.3 (2)
C11—C8—C9—N17.48 (16)C17—C10—C18—C19176.60 (14)
C7—C8—C9—N1175.79 (13)N1—C10—C18—C23108.46 (13)
C11—C8—C9—C13128.56 (13)C11—C10—C18—C23131.21 (13)
C7—C8—C9—C1354.71 (19)C17—C10—C18—C237.86 (14)
C9—N1—C10—C1111.27 (14)C23—C18—C19—C201.1 (2)
C9—N1—C10—C18140.42 (12)C10—C18—C19—C20173.99 (14)
C9—N1—C10—C17107.68 (12)C18—C19—C20—C211.1 (2)
C7—C8—C11—C124.6 (2)C19—C20—C21—C221.7 (2)
C9—C8—C11—C12172.30 (13)C20—C21—C22—C230.2 (2)
C7—C8—C11—C10177.44 (13)C21—C22—C23—C182.0 (2)
C9—C8—C11—C100.53 (17)C21—C22—C23—N2179.06 (14)
N1—C10—C11—C86.65 (15)C19—C18—C23—C222.7 (2)
C18—C10—C11—C8131.18 (13)C10—C18—C23—C22173.37 (13)
C17—C10—C11—C8110.43 (14)C19—C18—C23—N2178.20 (13)
N1—C10—C11—C12179.36 (12)C10—C18—C23—N25.73 (16)
C18—C10—C11—C1256.11 (18)C17—N2—C23—C22178.43 (15)
C17—C10—C11—C1262.28 (18)C17—N2—C23—C180.59 (17)
C8—C11—C12—O2170.65 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.903 (19)2.249 (19)3.1410 (16)169.7 (17)
N2—H1N2···O4ii0.89 (2)1.97 (2)2.8346 (18)165 (2)
O4—H1O4···N10.93 (3)1.88 (3)2.8085 (18)174 (2)
C13—H13B···O10.992.563.1919 (18)121
C19—H19A···O3i0.952.573.3368 (18)138
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC23H20N2O3·CH4O
Mr404.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.8485 (2), 11.9605 (2), 16.5705 (3)
β (°) 111.246 (1)
V3)2003.95 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.20 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.971, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
23197, 5871, 4460
Rint0.035
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.135, 1.03
No. of reflections5871
No. of parameters286
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.45

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.903 (19)2.249 (19)3.1410 (16)169.7 (17)
N2—H1N2···O4ii0.89 (2)1.97 (2)2.8346 (18)165 (2)
O4—H1O4···N10.93 (3)1.88 (3)2.8085 (18)174 (2)
C13—H13B···O10.99002.56003.1919 (18)121.00
C19—H19A···O3i0.95002.57003.3368 (18)138.00
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+2, z+2.
 

Footnotes

Additional correspondence author, email : habibahwahab@yahoo.co.uk.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HAW gratefully acknowledges the Malaysian Ministry of Science, Technology and Innovation for funding for the synthesis work (grant Nos. 09-05-lfn-meb-004 and 304/PFARMASI/650545/I121). GS and SVK thank the management and administration of Karunya University for their encouragement and support. HKF thanks USM for a Research University grant (No. 1001/PFIZIK/811160).

References

First citationBabula, P., Adam, V., Havel, L. & Kizek, R. (2007). Ceska Slov. Farm. 56, 114–20.  PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H., Wang, S.-Y., Xu, X.-P. & Ji, S.-J. (2011). Synth. Commun. 41, 3280–3288.  Web of Science CSD CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.   CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, A. M. G., Tomé, A. C., Neves, M. G. P. M. S., Silva, A. M. S. & Cavaleiro, J. A. S. (2002). J. Org. Chem. 67, 726–732.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds